Landau-Zener transitions; Landau-Zener- Stückelberg-Majorana interferometry; Adiabatic quantum computing, etc.

    1. S. Ashhab, J.R. Johansson, F. Nori
      Decoherence in a scalable adiabatic quantum computer
      Phys. Rev. A 74, 052330 (2006). [PDF][Link][arXiv]

    2. S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori
      Two-level systems driven by large-amplitude fields
      Phys. Rev. A 75, 063414 (2007). [PDF][Link][arXiv]

    3. S.N. Shevchenko, S. Ashhab, F. Nori
      Landau–Zener–Stückelberg interferometry
      Physics Reports 492, pp. 1-30 (2010). [PDF][Link][arXiv]
      (about 50-50 split between review and original results)
    4. J.N. Zhang, C.P. Sun, S. Yi, F. Nori
      Spatial Landau-Zener-Stückelberg interference in spinor Bose-Einstein condensates
      Phys. Rev. A 83, 033614 (2011). [PDF][Link][arXiv]

    5. S.N. Shevchenko, S. Ashhab, F. Nori
      Inverse Landau-Zener-Stückelberg problem for qubit-resonator systems
      Phys. Rev. B 85, 094502 (2012). [PDF][Link][arXiv]

    6. A.M. Satanin, M.V. Denisenko, S. Ashhab, F. Nori
      Amplitude spectroscopy of two coupled qubits
      Phys. Rev. B 85, 184524 (2012). [PDF][Link][arXiv]

    7. J. Stehlik, Y. Dovzhenko, J.R. Petta, J.R. Johansson, F. Nori, H. Lu, A.C. Gossard
      Landau-Zener-Stückelberg interferometry of a single electron charge qubit
      Phys. Rev. B 86, 121303 (2012). [PDF][Link][arXiv]

    8. Z. Sun, J. Ma, X. Wang, F. Nori
      Photon-assisted Landau-Zener transition: Role of coherent superposition states
      Phys. Rev. A 86, 012107 (2012). [PDF][Link][arXiv]

    9. A.M. Satanin, M.V. Denisenko, A.I. Gelman, F. Nori
      Amplitude and phase effects in Josephson qubits driven by a biharmonic electromagnetic field
      Phys. Rev. B 90, 104516 (2014). [PDF][Link][arXiv]

    10. M.F. Gonzalez-Zalba, S.N. Shevchenko, S. Barraud, J.R. Johansson, A.J. Ferguson, F. Nori, A.C. Betz
      Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor
      Nano Lett. 16 (3), pp. 1614–1619, (2016). [PDF][Link][arXiv][Suppl. Info.]

    11. Y.I. Rodionov, K.I. Kugel, F. Nori
      Floquet spectrum and driven conductance in Dirac materials: Effects of Landau-Zener-Stückelberg-Majorana interferometry
      Phys. Rev. B 94, 195108 (2016). [PDF][Link][arXiv]

    12. A. Chatterjee, S.N. Shevchenko, S. Barraud, R.M. Otxoa, F. Nori, J.J.L. Morton, M.F. Gonzalez-Zalba
      A silicon-based single-electron interferometer coupled to a fermionic sea
      Phys. Rev. B 97, 045405 (2018). [PDF][Link][arXiv][Suppl. Info.]

    13. O.V. Ivakhnenko, S.N. Shevchenko, F. Nori
      Simulating quantum dynamical phenomena using classical oscillators: Landau-Zener-Stückelberg-Majorana interferometry, latching modulation, and motional averaging
      Scientific Reports 8, 12218 (2018). [PDF][Link][arXiv]

    14. S.N. Shevchenko, A.I. Ryzhov, F. Nori
      Low-frequency spectroscopy for quantum multilevel systems
      Phys. Rev. B 98, 195434 (2018). [PDF][Link][arXiv]

    15. Y. Han, X.Q. Luo, T.F. Li, W. Zhang, S.P. Wang, J.S. Tsai, F. Nori, J.Q. You
      Time-Domain Grating with a Periodically Driven Qutrit
      Phys. Rev. Applied 11, 014053 (2019). [PDF][Link][arXiv]

    16. K. Ono, S.N. Shevchenko, T. Mori, S. Moriyama, F. Nori
      Quantum Interferometry with a g-Factor-Tunable Spin Qubit
      Phys. Rev. Lett. 122, 207703 (2019). [PDF][Link][arXiv][Suppl. Info.]

    17. R.M. Otxoa, A. Chatterjee, S.N. Shevchenko, S. Barraud, F. Nori, M.F. Gonzalez-Zalba
      Quantum interference capacitor based on double-passage Landau-Zener-Stückelberg-Majorana interferometry
      Phys. Rev. B 100, 205425 (2019). [PDF][Link][arXiv]

    18. P.Y. Wen, O.V. Ivakhnenko, M.A. Nakonechnyi, B. Suri, J.J. Lin, W.J. Lin, J.C. Chen, S.N. Shevchenko, F. Nori, I.C. Hoi
      Landau-Zener-Stückelberg-Majorana interferometry of a superconducting qubit in front of a mirror
      Phys. Rev. B 102, 075448 (2020). [PDF][Link][arXiv]

    19. K. Ono, S.N. Shevchenko, T. Mori, S. Moriyama, F. Nori
      Analog of a Quantum Heat Engine Using a Single-Spin Qubit
      Phys. Rev. Lett. 125, 166802 (2020). [PDF][Link][arXiv][Suppl. Info.]
      Editors' Suggestion

    20. Y.H. Kang, Y.H. Chen, X. Wang, J. Song, Y. Xia, A. Miranowicz, S.B. Zheng, F. Nori
      Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering
      Phys. Rev. Research 4, 013233 (2022). [PDF][Link][arXiv]


(these are easier to see using either Firefox or Chrome, instead of Internet Explorer)
(The iPad does not support “flash player”. Need to install “Puffin Web Browser”, which supports flash, and this App is not free.)