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We study quantum interference effects of a qubit whose energy levels are continuously modulated. The
qubit is formed by an impurity electron spin in a silicon tunneling field-effect transistor, and it is read out by
spin blockade in a double-dot configuration. The qubit energy levels are modulated via its gate-voltage-
dependent g factors, with either rectangular, sinusoidal, or ramp radio frequency waves. The energy-
modulated qubit is probed by the electron spin resonance. Our results demonstrate the potential of spin
qubit interferometry implemented in a silicon device and operated at a relatively high temperature.
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Introduction.—Sensitive measurement techniques are
based on the interference of waves. The most striking
illustration is the recent use of interferometry for the
detection of gravitational waves [1]. If in place of classical
electromagnetic waves one can use the wave functions of
quantum objects, such techniques can be called quantum
interferometry. This was studied not only for conventional
small quantum objects [2,3], but also for large organic
molecules [4,5] and micrometer-size superconducting cir-
cuits [6–8]; see also a recent review article [9] for different
realizations and applications in quantum sensing. Since it is
difficult to maintain a coherent superposition of charge
states, it might be more beneficial to use instead the spin
degree of freedom [10]. Interestingly, silicon, the second
most abundant element in the Earth’s crust and the base of
modern electronics, is an ideal environment for spins in the
solid state [11]. In this Letter, we will explore how to use a
single-spin silicon-based qubit for quantum interferometry.
Among other characteristics, for quantum engineering it

is important to have qubits which are “hot, dense, and
coherent” [12]. In this context, “hot” means working in the
technologically less challenging few-kelvin regime rather
than being cooled down to the millikelvin domain. “Dense”
refers to the possibility to achieve high density of quantum
dots or donors in semiconductors. Another benefit of this
platform is its compatibility with the well-developed
complementary-metal-oxide-semiconductor (CMOS) tech-
nology. Even more, it has been shown [13–15] that
transistors can behave as quantum dots, in which either
charge or spin qubits are realized.

Quantum systems can be modulated by signals of
different shapes, such as sinusoidal and square-wave
signals. The latter allows one to rapidly change a qubit
state from one to another, which we can refer to as latching
modulation of qubit states [16,17]. If this is done with a
period longer than the coherence time, then the response
has two separate peaks, situated at the two resonance
frequencies corresponding to the two states. Increasing the
modulation frequency, the coherent response is displayed
as an averaged signal, situated at a frequency between the
two resonance frequencies mentioned above, which is
known as motional narrowing. Both motional averaging
and narrowing are known in NMR systems and recently
also studied in superconducting systems [18,19]. In this
way, by changing the modulation frequency, namely its
ratio to the coherence rate, one can observe the transition
between classical (incoherent) and quantum (coherent)
regimes, as in Refs. [18,20–22].
In this Letter, we focus on the time-ensemble behavior of

a spin-1=2 qubit and study the effect of continuously
modulating the qubit energy. In this way, we explore the
motional averaging not only for the symmetric latching
modulation (which was previously demonstrated in super-
conducting qubits [16–18]), but also in the asymmetric
regime, where dwelling in one state is longer than in the
other state. A square-wave modulation with variable duty
ratio shows weighted motional averaging. At low modu-
lation frequency, this is visualized, in the frequency
dependence, by two peaks (with weighted height and
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width); while at high modulation frequency there is only
one averaged peak. We also demonstrate the sinusoidal
energy modulation of the spin qubit and show the Landau-
Zener-Stückelberg-Majorana (LZSM) interference of the
spin resonance signal. This is the first demonstration of
LZSM interference where the temperature is much higher
than the photon energy of the sinusoidal modulation
frequency. For realizations of the low-temperature LZSM
interference in quantum-dot systems, see Refs. [23–30].
Device and measurement.—We used a spin qubit device

based on a short-channel tunneling field-effect transistor,
TFET [31], with the implanted deep impurity, Fig. 1(a)
[32–36]. The device is essentially a gate-tunable PIN diode
(a diode with an undoped intrinsic semiconductor region
between a p-type semiconductor and an n-type semi-
conductor region). The ion implantations created coupled
Al-N impurity pairs in silicon [37–40]. For an appropriate
channel length, a three-step tunneling from the n-type
source electrode to the p-type drain electrode occurs via

two localized states in the channel, Fig. 1(b). The PIN
structure allows tunneling via the localized states of a deep
impurity and a shallow impurity [36,41].
Spin blockade and ESR.—The device has two localized

states, which behave as a double quantum dot device, where
the current is defined by single-electron transport [42].
Under an appropriate source voltage VSD and gate voltage
VG, the device shows spin blockade (SB) [43]. At the
electron spin resonance (ESR) for one of the spins in
the double dot, the source-drain current ISD increases due
to the lifting of the spin blockade Fig. 1(c) [13,44]. Note that
the large on site Coulomb energy and strong confinement of
these impurities allow a spin-qubit operation with a reason-
able coherence time (T�

2 ¼ 0.2–0.3 μs) at relatively high
temperatures and low magnetic fields [45]. Changing the
gate voltageVG within the spin blockade region changes the
g factor by about 1% due to the Stark effect [46].
We describe our spin qubit device as a two-level system

with the pseudo-spin Hamiltonian HðtÞ ¼ BzðtÞσz=2þ
BxðtÞσx=2. The longitudinal part is defined by the
Zeeman splitting, BzðtÞ ¼ gðtÞμBB. The time-dependent
gate voltage changes the g factor by a small value and we
have Bz=ℏ ¼ ω0 þ δsðtÞ, where the amplitude δ ≪ ω0;
ω0 ¼ 2πf0 represents the ESR frequency. In this Letter,
we consider three types of signals [41]: a sinusoidal
modulation, sðtÞ ¼ cosΩt, a latching modulation, given by

sðtÞ ¼
�
2d; 0 < Ωt=2π < 1 − d;

−2ð1 − dÞ; 1 − d < Ωt=2π < 1;
ð1Þ

whered is the duty-cycle ratio, and a rampmodulation, given
by the fractional part in fΩt=2πg. Note that for a symmetric
latching modulation, with d ¼ 1=2, from Eq. (1), we have
sðtÞ ¼ sgnðcosΩtÞ. In addition, the transverse part of the
Hamiltonian is defined by the MW voltage applied to the
substrate, Bx=ℏ ¼ 2G cosωt with amplitude G and circular
frequency ω ¼ 2πf. The modulation is assumed to be slow,
i.e., Ω ≪ ω.
Square-wave modulation.—In Figs. 2 and 3 we present

the results of our measurements and calculations for
symmetric and asymmetric square-wave modulation sig-
nals. The left panel focuses on the source-drain current ISD,
showing the current derivative, dISD=df, in its main panel.
The right panel presents the corresponding theoretical
predictions for the qubit upper-level occupation.
By adding a square-wave MHz modulation signal to the

gate [Fig. 2(a)], the gate voltage, i.e., g factor, can be
switched between two values, as described by Eq. (1).
Figure 2(d) shows ISD at VG ¼ −0.36 V and square wave
of frequency 0.5 MHz and amplitude 32 mV. Due to the
slow measurement with a time constant (that shows how
fast the measured current changes) ∼0.3 s, we observe the
two ESR peaks with two different g factors for VG ¼
−0.36þ 0.016 V and −0.36 − 0.016 V, respectively. By

FIG. 1. High-temperature TFET-based single-spin qubit.
(a) Schematic of the device and measurement set up. The
transistor is defined on a SOI structure with n-type source and
p-type drain electrodes. The channel length and width are 80 nm
and 10 μm, respectively. The source-drain current ISD of the
device is measured for the source-drain voltage VSD; the gate
voltage VG at temperature T ¼ 1.6 K is achieved with a pumped
4He cryostat. A magnetic field B is directed along the source-
drain current. A microwave (MW) signal is applied on the
substrate. A gate-voltage modulation in the MHz regime is
applied through a high-pass block capacitor with cutoff frequency
(<10 kHz) much smaller than the modulation frequency
(∼MHz). (b) Schematic of the potential landscape of the device.
(c) Schematic of the single-electron tunneling cycle in the spin-
blockade regime; see the Supplemental Material [41] for details.
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increasing the modulation frequency, the ESR peaks show a
characteristic interference pattern and eventually a strong
(main) peak appears with weak sideband peaks [Fig. 2(b)].
The strong single peak at f ¼ f0 ¼ 9.01 GHz [Fig. 2(b)] is
a result of motional averaging of the two peaks for the slow
modulation [Fig. 2(d)]. A similar pattern was observed for
latching modulation of the energy of a superconducting
qubit in Ref. [16]. Changing the modulation amplitude
shows a similar behavior with a similar crossover fre-
quency [41].
In order to describe the system, we solve the Bloch

equations with the above Hamiltonian. We assume that
ω ≫ Ω and after a rotating-wave approximation

H1 ¼
ℏ
2
½Δωþ δsðtÞ�σz þ

ℏG
2

σx; ð2Þ

where Δω ¼ ω0 − ω ¼ 2πðf0 − fÞ. Details of the calcu-
lations are presented in [41], cf. Refs. [47,48]. As a result,
the upper-level occupation probability is readily obtained
from the stationary solution of the Bloch equations:

Pþ

�
Δω;

δ

Ω

�
¼ 1

2

X∞
k¼−∞

G2
kðδ=ΩÞ

G2
kðδ=ΩÞ þ Γ1

Γ2
ðΔω− kΩÞ2 þ Γ1Γ2

;

ð3Þ

where GkðxÞ ¼ GjΔkðxÞj, which can be interpreted
as the dressed qubit gap, modulated by the function
ΔkðxÞ. The relaxation and decoherence rates are denoted
as Γ1 ¼ T−1

1 and Γ2 ¼ T−1
2 , respectively. In particular, for

rectangular modulating system with duty-cycle ratio d, we
obtain:

FIG. 2. Square wave modulation of the spin qubit. (a) Shape of
the rf signal. (b),(c), and (d) The source-drain current ISD of the
device with a square modulation of its full amplitude 32 mV
added to the gate at VG ¼ −0.36 V through the high-pass block
capacitor. Other conditions are the same as in Fig. 1. In panel
(c) we present the intensity plot of dISD=df vs the frequency f
and the square-wave modulation frequency Ω (log scale from 0.5
to 50 MHz), showing the evolution from the two ESR peaks into
the strong main ESR peak and weak sideband peaks. Note that the
distance between the main and the sideband peaks (seen in the
upper area > 10 MHz) is linear in the modulation frequency Ω.
Panels (b) and (d) present the source drain current ISD at
modulation frequencies of 50 and 0.5 MHz, respectively. (e),
(f), and (g) Calculation of the upper-state population of the qubit
under square-wave modulation of its energy. For calculations,
the following parameters were used for all the graphs:
G=2π ¼ 1.1 MHz, Γ1=2π ¼ 0.2 MHz, Γ2=2π ¼ 1 MHz, and
also for the right panels (e)–(g) here: δ=2π ¼ 24 MHz.

FIG. 3. Weighted averaging for the spin qubit vs the duty ratio
d. (a) Shape of a square wave with d ¼ 20%. (b)–(d) Similar plot
of ISD as in Figs. 2(b)–2(d) but with a square wave with a 20%
duty ratio, which corresponds to d ¼ 0.2. The modulation
frequency is changed from 0.25 to 25 MHz in a log scale.
(e)–(g) Calculation of the qubit upper-state population under
square-wave modulation (d ¼ 0.2) of its energy. Besides the duty
ratio, other parameters are the same as in Figs. 2(e)–2(g). Note
that the main weighted averaged peak appears again at f ¼ f0
(here f0 ¼ 9.02 GHz), independent of the duty ratio. (h) Duty
ratio dependence of the ESR peak heights at Ω=2π ¼ 0.25 MHz
for lower frequency, ΔIL, and higher frequency, ΔIH . The ΔIL
and ΔIH for d ¼ 0.2 are indicated in (d). (i) The duty-ratio
dependence among three ESR peaks, i.e., the motional averaged
main peak at Ω=2π ¼ 25 MHz (f ¼ 9.021 GHz), to the ESR
peaks of lower or higher frequency at Ω=2π ¼ 0.25 MHz. The
distances between the peaks, ΔfL and ΔfH , are indicated in
(e) for d ¼ 0.2. (j) Duty-ratio dependence of the contrasts for the
peak heights and distances.
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jΔkðxÞj ¼
2

π

x sin ½πð1 − dÞðk − 2dxÞ�
ðkþ 2ð1 − dÞxÞðk − 2dxÞ : ð4Þ

We can interpret the effective Hamiltonian [Eq. (2)] as
follows. The microwave drive dresses the two-level system
resulting in an energy level difference Δω; when this is
matched to the k-photon energy of the rf signal, the dressed
qubit is resonantly excited. Indeed, the upper-level pop-
ulation in Eq. (3) has maxima at jΔωj ¼ kΩ [18,49]. With
Eq. (3) we generated the interferograms in the right panels
of Figs. 2–4 [41]. In particular, for Fig. 2 we used Eq. (4)
with d ¼ 1=2.
Asymmetric modulation.—Changing the duty ratio d

(ratio of the low VG signal duration to the period; for
the previous square wave the duty ratio was 50%) shows
both the asymmetric modulation and the weighted motional
average, as demonstrated in Fig. 3. Because the modulation
voltage is added through the block capacitor, the areas of
the signal curves below and above the average gate voltage
VG are equal, as shown in Fig. 3(a). Figure 3(d) shows
the ESR under slow modulation of the square-wave signal
with a 20% duty ratio. The two ESR peak heights are
different, reflecting the duty ratio. For fast modulation, the
main peak appears at the weighted averaged frequency
[Fig. 3(b)].
We repeat similar measurements with various duty ratios

(from 20 to 80%). In Fig. 3(h) we plot the heights of the two
ESR peaks at lowest modulation frequency. For each duty
ratio, we also plot distances between the above two peak
positions and the motional averaged main peak position at
the highest modulation frequency [Fig. 3(i)]. Both of the
peak heights and distances reflect the duty ratios. The ratio
of the peak heights and the frequency distances are plotted
in Fig. 3(j), and show the motional-averaged main peaks,
which indeed appear at the weighted average frequency.
The deviations from linear dependencies in these plots,
especially for the duty ratio of 20%, are due to the gate-
voltage dependence of the ESR peak height. More detailed
measurements for each duty ratio are shown in the
Supplemental Material [41].
We note here the following interesting features of the

weighted motional averaging. The rectangular-pulse modu-
lation places the qubit in one of the two allowed positions,
and the low-frequency characteristics reflect the weighted
time spent in those two states. For high Ω, the principal
ESR line is situated in between the two qubit states, the
position of which is independent of the duty ratio. A
counterintuitive aspect is that the position of this line does
not relate to any of the two qubit states, and thus is referred
to as “motional averaging” [18]. Details of calculations are
presented in the Supplemental Material [41]. There, it is
shown that the frequency shifts are the following: ΔfL ¼
−2dδ and ΔfH ¼ 2ð1 − dÞδ, while the peak heights are
nonlinear functions of d. These formulas are plotted with
solid lines in Figs. 3(h)–3(j).

Sinusoidal and ramp modulation.—Figures 4(b) and 4(c)
show the effect of the sinusoidal modulation that produces
the Landau-Zener-Stückelberg-Majorana interference pat-
tern. The modulation amplitude dependence with fixed
modulation frequency shows the radio-frequency-wave
assisted side bands [41]. In the case of a sinusoidal
modulation, the dressed energy gap is given by the
Bessel function of the first kind ΔkðxÞ ¼ JkðxÞ [49].
Then, with Eq. (3), we plot Fig. 4(c). Ramp-wave mod-
ulations are shown in Figs. 4(e) and 4(f). An inverse ramp
waveform gives identical results [41]. We note that at low
modulation frequency Ω and low detuning Δω the agree-
ment is rather qualitative, which might be due to the
rotating-wave approximation.
Discussion.—We have demonstrated that, under certain

conditions, an impurity in a field-effect transistor behaves
as a single-spin qubit which displays coherent phenomena,

FIG. 4. Sinusoidal and ramp modulation. (a) Shape of the rf
sinusoidal signal. (b) Source-drain current ISD under sinusoidal
modulation with amplitude 24 mV. Intensity plot of dISD=df vs
the frequency f and the modulation frequency Ω (linear scale
from 0 to 80 MHz). (c) Calculation of the upper-state population
of the qubit under the sinusoidal modulation of its energy. The
parameters are the same as for Fig. 2 besides the amplitude,
which here is δ=2π ¼ 30 MHz. (d) Shape of the ramp wave
signal. (e) Source-drain current ISD under the ramp modulation
with amplitude 36 mV. Intensity plot of dISD=df as a function of
the frequency f and the modulation frequency Ω (log scale from
0.25 to 25 MHz). (f) Calculation of the upper-state population of
the qubit under ramp modulation of its energy. The parameters are
the same as for Fig. 2 besides the amplitude, which here is
δ=2π ¼ 27 MHz.
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such as Landau-Zener-Stückelberg-Majorana interference
and motional averaging. The spin-qubit device is based on a
short-channel TFET in which, for an appropriate channel
length, a three-step tunneling from the n-type source
electrode to the p-type drain electrode occurs via two
localized states in the channel. These localized states (in a
deep impurity and a shallow impurity) form a double
quantum dot in which the spin qubit is formed in the spin-
blockade regime. The g factor of the spin can be tuned by
the gate voltage, which enables the fast modulation of the
qubit energy. We demonstrated coherent control by modu-
lating the qubit energy with various continuous waveforms.
In particular, when modulated by asymmetric rectangular
pulses with duty ratio d, we observed interferograms,
which we refer to as weighted motional averaging. At
low frequency, this displays d-weighted peaks which, at
higher frequency, merge into one peak. To conclude, we
summarize the advantages of the silicon single-spin inter-
ferometers: they operate at relatively high temperature
(1.6K), the g factor is controlled by the gate voltage
(∼1%, important for selectivity of measurements), the
relaxation times T1;2 are large, the fabrication is based
on the well-developed techniques for silicon, such as
CMOS, and they can be manipulated into the ESR and
Pauli spin blockade regimes.
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