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I Construction and solution of the
Floquet-Liouvillian problem

The periodically modulated systems described by

Eq. (2) in the main text can be described using a strobo-

scopic Lindblad master equation of period T'. The equa-
tion of motion of such a system is

hop(t) = L(E)p(E),  L(E+T) = L(?). (1)

While the temporal dependence of L(t) prevents the
emergence of a true steady state, one can still reach a
stroboscopic stationary regime.

A The average Floquet steady-state

We are interested in the average properties of the sys-
tem along one modulation period T' = 27/Q after a time
long enough for the system to have reached a strobo-
scopic stationary regime. To solve this problem, we as-
sume that, for a long enough time,

+o00 )
Z p\melmﬂt . (2)

m=—0o0

One can easily verify that

t+T
= / pr)dT = po. (3)

At this point, one has to determine pg. A convenient way
to find it is to solve it through Fourier analysis (see, e.g.,

[1, 2]).
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The equation of motion can be recast as
d = ,
hp(t) = m;m M e
= [ﬁo + L™ 4 E,le_mt} p(t) (4)
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m=—0o0

where Ly is the time-independent part of the Liouvil-
lian in Eq. (2) of the main text (i.e., ¢ = 0), while £,
and L£_; represent the decomposition of the modulation.
Collecting each term evolving with  we have
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(5)

If we now assume that each term of the sum is station-
ary, we obtain the recursion relation

(Lo —imQ) pm + L1pm—1+ L_1pms+1 =0.  (6)
By truncating this recursion (i.e., assuming p,, = 0 if

m > M or m < —M), the problem can be then self-
consistently solved.

B Analysis of the Floquet Liouvillian spectrum

A different approach to solving the Floquet problem
consists of constructing the so-called Floquet evolution
superoperator (a Floquet map for Lindbladian systems).
Indeed, using the time ordering 7, we can formally solve
Eq. (1) as

o =T e ([ t et )| 510) = .00, @

F(t,tp) is the evolution superoperator for the time-
dependent Lindblad master equation. We can then for-
mally introduce the Floquet Liouvillian Lr as

F(T,0) = exp (LeT/h). (®)


mailto:pasquale.scarlino@epfl.ch

The stroboscopic steady state is the state such that

Leps =0, or Fpg = pg. 9)

ss T

To construct F(T,0) [3], let us consider

pig = il (10)

Since p; ; are an orthonormal basis of the operators space
(i.e., any operator can be written as a linear combination
of p; ;), we conclude that the matrix form of F(T,0) can
be obtained as

F(T,0)p5,

Fim=i-(N+1)+4,:] = vec [pi j(T)], (11)

where F[,, . indicates the mth row of the evolution oper-
ator in its matrix form, and vec [p; ;(T')] is the vectorized
form of the initial density matrix p; ; evolved for a time
T.

IT SQUID arrays as frequency-tunable
Kerr resonators

An array of N SQUIDs results in N nonlinear bosonic
modes whose dispersion relation can be obtained nu-
merically from the linearized Lagrangian of an effective
lumped LC model [4]. The dispersion is linear for the
lower frequency modes, and saturates at a high-frequency
cutoff close to the plasma frequency of the junctions. In-
troducing the lowest order nonlinear terms as a pertur-
bation to the previous linear model yields the self- and
cross-Kerr terms of each mode [5]. This approximation
is valid if the mode frequency w; is much smaller than
the Josephson energy E;/h of individual junctions. In-
creasing the number of SQUIDs in the array reduces both
the frequency of the lower modes and the nonlinearity of
all modes. The scaling of the frequency and nonlineari-
ties depends on the circuit parameters and the boundary
conditions.

The SQUID arrays considered in this work have be-
tween N = 10 and N = 32 SQUIDs with nominally
identical Josephson junctions. One end of the array is
shorted to ground, while the other end of the array is
left open with a capacitance to ground and to a read-
out waveguide. Throughout this study we only use the
fundamental mode of the SQUID arrays. The frequency
of the second mode of the array is approximately twice
that of the first mode. Consequently, we can safely ne-
glect the second mode, along with all higher modes of the
array. The Josephson inductance of all junctions in the
array can be tuned with an external magnetic flux, and
the frequency of the first mode the array follows approx-
imately

w(Pz) = wev/| cos (1P, /Do) |, (12)

with w, the zero-flux frequency, @, the flux threading the
SQUIDs loop and &y = h/2e the magnetic flux quantum.
For the large ratio F;/FE¢ of the SQUID’s junctions, the

Kerr nonlinearity depends weakly on the flux ®. For the
two devices presented here, we choose the flux operating
point Py, such that the frequency of the first mode of
the arrays is similar, with wyp/27 = 4.5 GHz (4.3 GHz)
for the N =10 (N = 32) device.

Retaining only the first mode of the SQUID array, and
keeping only the first-order nonlinearity, we arrive at the
Kerr resonator Hamiltonian in the lab frame,

H/h = wypa'a + xa'ataa, (13)

with x the Kerr nonlinearity. After adding a
drive F(ae~™it + afe™a?) and a frequency modulation
¢ cos(t)ata, and moving to a frame rotating at the pump
frequency wy, we obtain the Hamiltonian of Eq. (1) in the
main text. We note that to accurately model the Kerr
multiphoton resonances of the N = 10 device, we had to
include a higher-order nonlinearity [6].

IIT Derivation of an effective model for the
study of the nonlinear modulated res-
onators

To simplify the equation of motion Eq. (2) from the
main text, we want to eliminate the frequency mod-
ulation. To do this, we use the interaction picture
p(t) = UT(t)pU(t), where

. t
U(t) = T exp [/ —idt' ¢ cos( t’)dT&]
0

- [_lé sin(Q2¢) a*a} | 19

We obtain

ROp(t) = —ilH, p(t)] + kDap(t) + keDatap(t), (15)
where

H/h = Aata + yatataa

+F{anp {_iéb‘in(ﬂt)} +h.c}. (16)

Equations (15) and (16) can be straightforwardly derived
thanks to

Utt)aU(t) = aexp [—zé sin( t)} . (17)

We finally use the Jacobi-Anger expansion, reading

eiz sin 6 =

Z Im(2) ™o (18)

m=—0oo

where Jp,(2) is the mth Bessel function of the first kind,
to obtain (up to a phase)

H/h = Aata + yatataa

+ Z FlJ,, (é) [&efimﬂt +dTeimQt] )

m=—0o0

(19)
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FIG. 1.

Comparison between the full Floquet analysis and the effective model derived in Appendix I1I. We show the photon

number n computed with the Floquet steady state [panel (a)] and with the effective Hamiltonian Eq. (3) of the main text [panel
(b)]. The full quantum solution and the effective model exhibit a good agreement. We plot in panels (c) and (d) the Wigner

function W(a) = 2/m - Tr [ﬁae”dT&DLﬁ], with D, = exp(aa’ — a*a), of the Floquet steady state and the effective model

respectively. The green lines in panels (c) and (d) encircles the region where W (c) > 7 x 107 according to the effective model.
We conclude that the effective model is reliable when computing <(A1TCAL>, i.e., the distance from the center of the distribution

W(a).

On the contrary, () can not be captured by the simple treatment presented in Appendix III, as evident from the

different angular distribution of W («) obtained from the full and effective model. All physical parameters as in Fig. (6) (d) of

main text. We set (/Q ~ 1.67 and A/Q = —1.1.

Notice that both dissipation and Kerr nonlinearity re-
main unchanged by this set of transformations.

Up to this point, no approximations have been made.
For the small-drive amplitudes considered in Fig. 3 of
the main text, however, we can assume that only one of
the driving frequencies is relevant, and discard the fast-
rotating terms. Namely, we select only those frequen-
cies around which A; = A — m) ~ 0, finally obtaining
Eq. (3) of the main text.

In Fig. 1 we benchmark the validity of the effective
Hamiltonian given by Eq. (2) of the main text for the
N = 32 device in the Duffing regime at intermediate in-
put power. All the physical parameters have been chosen
as in Fig. 6 (d) of the main text. We compare the photon
number n computed with the Floquet steady state [Fig. 1
(a)] and with the effective model [Fig. 1 (b)] showing that
the two approaches exhibit a good agreement. While the
approximation is remarkably predictive in determining
the photon number, this is not the case for the coherence
(a). In Figs. 1 (c-d) we compute the Wigner functions
obtained from the full quantum simulation of the Floquet
steady state and that obtained according to the effective
model. While the effective model nicely reproduces the
radial distribution of the Wigner function (and thus the
photon number), it completely misses the phase, which
remains accessible only within the full Floquet-Lindbald
treatment described in Appendix I A. In both Figs. 1 (¢)
and (d) we report the contour of the effective Wigner
function, showing that W («) of the full quantum model
contains the effective Wigner function, but the phase co-
herence is reduced with respect to the effective model.
We argue that these dephasing-like effects are due to

higher-order processes not accounted for in the effective
model, emerging from the combination of Hamiltonian
and dissipative terms, and treating them would require
higher-order time-dependent perturbation theories such
as the Floquet-Magnus expansion.

IV Device characterization

The flux-dependence of the SQUID array frequency is
reported for both devices in Fig. 2. The value of the flux
® x is controlled by applying a direct current to the ex-
ternal coil. We convert the current applied to the flux
threading the SQUIDs by fitting a larger flux modula-
tion sweep over more than one period. The two devices
are made of SQUIDs with identical junctions and have a
similar total capacitance. As a consequence their maxi-
mum frequency differs due to the total number of SQUID
N in the two arrays.

We observe an unexplained dip in the flux modulation
of device N = 32 (blue). This feature is periodically
repeated for ®( increments of the flux ®x, and we ob-
serve no hysteretic effect. This spurious dip was observed
across several cooldowns at the same position. A similar
device with N = 46 SQUIDs located on the same chip
does not show a similar dip. Cross markers in Fig. 2 in-
dicate the flux operating point of both devices, and the
segment on the x-axes show the maximum flux modula-
tion performed in this work. The N = 32 SQUID array
is always operated far from the unexpected feature which
thus does not impact the results of the experiment.

Because of the nonlinear flux dependence of the fre-
quency of the resonators, the applied frequency modula-
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Measurement of the magnitude of the transmission |S21| as a function of the flux ®x in the SQUID arrays for the

N = 32 Duffing device (left, blue) and the N = 10 Kerr device (right, red). The flux working points used throughout the paper
are indicated by cross markers. The black horizontal segments approximately denote the maximum flux modulation reported
is in this work with respectively +0.4 GHz and +1.0 GHz for the Duffing and Kerr devices.

tion is not exactly sinusoidal, ¢ cos(Qt), as stated in the
Hamiltonian Eq. (1) of the main text. Instead, we apply
a sinuoisidal modulation of the flux threading the SQUID
loop as

®,.(t) = 2 + Acos(Qt), (20)

with ®0 the static flux, Q the frequency of the modula-
tion and A the amplitude of the modulation in ®q unit.
Following Eq. 12, the exact frequency modulation is thus
given by

W(P, (1)) = we /| cos [1(PO + Acos(Q))/Po]|.  (21)

Consequently, for large modulation strength ¢, the fre-
quency modulation is not symmetric around the value
without modulation w(®%) = wy,p,. This results in a de-
viation of the LZSM resonances m away from Az. We
observe this deviation in our measurements, most clearly
in Fig. 4 where ( is as large as 1.0 GHz. It is also apparent
in Fig. 6 (d-f) of the main text where the data are system-
atically shifted to negative frequencies compared to the
superimposed numerical simulations. The deviation from
the LZ mode position expected for an ideal modulation
is towards negative detuning because of the curvature of
the flux dependence of the frequency. The deviation in-
creases when the flux operating point is brought closer
to zero flux where the curvature is more important. This
phenomenon is reported and explained in Ref. [7].

From the measurement of the room-temperature
normal-state resistance, we estimate the single junction
Josephson energy to Fj/h =~ 170 GHz. The frequencies
and Kerr non-linearities of the SQUID array modes can
be simulated using a lumped-model and assuming E; >
Ec [5]. From this model, we estimate the plasma fre-
quency of the junctions to iwp = /8E;Ec ~ hx39 GHz.

The zero-flux frequency of the Kerr N = 10 device is out
of our measurement bandwidth of 4-8 GHz, but we es-
timate it to be approximately 13 GHz from the lumped
model discussed above. We find a single junction charg-
ing energy Ec = e2/2C; ~ hx1.1 GHz. Even for the flux
operating point ®x /Py ~ 0.455 of the N = 10 device, the
effective Josephson energy of the SQUID remains much
larger than the charging energy, ensuring the validity of
the Kerr approximation of the Josephson Hamiltonian.

V Additional experimental data

In this section, we report additional measurements per-
formed with the N = 32 Duffing device in the linear
regime. In Fig. 3 we repeat the linear regime LZSM inter-
ferometry measurements of Fig. 3 (d-f) of the main text
for different values of 2 and (. The drive power is set to
the same low value to remain in the linear regime with
a low photon occupation number. In panels (a-d), we
sweep the modulation strength  for increasing values of
modulation frequency 2. LZSM resonances are visible for
¢ > |A|, irrespective of the value of Q. As expected from
Eq. (3), the spacing between LZSM resonances is equal to
Q. In panels (e-h), we sweep the modulation frequency 2
for increasing modulation strengths (. We observe more
and more LZSM resonances as ( is increased, and again
the extension of the resonances is approximately confined
to |A] < ¢. These measurements highlight the superb
control offered by the platform on the position and num-
ber of modes, as for instance in panel (a) we observe
clearly LZSM resonances up to mode m = 25.

Next, in Fig. 4 we repeat the Duffing regime LZSM
interferometry of Fig. 6 of the main text, but this time
sweeping the modulation frequency (2 at fixed (. We re-
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FIG. 3. Extended data of LZSM interference patterns in the linear regime. The measurements are performed on the device

N = 32 with the same weak drive power as in Fig. 3 (d-f) of the main text. In panels (a-d), the same sweep of modulation
strength ( is repeated for increasing modulation frequencies Q. In panels (e-h), the same sweep of modulation frequency §2 is
repeated for increasing modulation strengths (. These measurements highlight the exquisite control over both the frequency
spacing and the number of resonances offered by the platform, with for instance LZSM resonances up to m = +25 visible in

(a).
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FIG. 4. Extended data of LZSM interferometry in the Duffing regime measured with the N = 32 device. The magnitude of
S21 is measured versus A and 2 for increasing drive power P,. The modulation strength is fixed to (/27 = 206 MHz.



peat this measurement for three increasing values of drive
power Py,. For the lowest drive shown in panel (a), in-
dividual LZSM resonances remain mostly isolated. How-
ever, when compared to the linear regime of weak drive,
LZSM resonances appear distorted with a rounded shape.
This rounding is a combination of the Kerr nonlinearity
bending the peak to negative frequencies, and the mod-
ulation of the effective drives Fj; that controls the peak

bendings. For increasing drive power, as shown in panels
(b) and (c), the interference pattern gets more distorted
and individual resonances start merging together. In this
regime, the effective model of Eq. (3) is no longer valid
and a full Floquet-Lindblad treatment is required. As we
have theoretically shown, the broadening and distortion
of the LZSM interference pattern in the Duffing regime
is associated to a dissipative quantum chaotic phase.
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