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Abstract

In this Supplemental Material (SM) we present details of the device, experiment, and theory.
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I. IMPURITY-BASED SPIN QUBIT

TFET-based device.— A tunnel field effect transistor (TFET) includes an n-type source

electrode and a p-type drain electrode. Zener tunneling carries on-current, which flows

between a channel driven to the p-type (or n-type) electrode by a gate voltage and the n

electrode (p electrode), see Fig. S1. This TFET-based device is attracting attention as an

ultra-low power consumption device because it enables steeper switching than conventional

metal-oxide-semiconductor field effect transistors (MOSFETs). When a deep impurity is

introduced into the channel of a TFET having a short channel length, which can be regarded

as a gated PIN structure (with an undoped intrinsic semiconductor region between a p-type

semiconductor and an n-type semiconductor region), a tunnel current flows through the

impurity level even at the off-state of the TFET.

Our TFET-based devices are fabricated in much the same process as conventional MOS-

FETs. Using a 100 nm thick Si-on-insulator (SOI) wafer with 145 nm thick buried oxide

(BOX), the source and drain are formed by shallow donor and acceptor ion implantation,

respectively, and are activated by high temperature rapid thermal annealing. Next, Al and

N are ion-implanted over the entire region consisting of source, channel, and drain, and an-

nealing is performed for a long time at a relatively low temperature to form Al-N impurity

pairs. A MOS gate is formed using TaN high-k / metal and poly-Si.

The electrical conductivity of these devices was probed at a temperature of 1.6 K. The

source-drain current ISD was measured while applying the gate voltage VG and the source-

drain voltage VSD. A magnetic field B was applied in parallel to the source-drain current,

and by applying a microwave current near the device, an ac magnetic field was generated and

used for electron spin resonance (ESR). For the synchronized modulation of both the gate

voltage and the microwave frequency, we used a two-channel square-waveform generator.

The two square-wave signals have the same frequency and tunable amplitudes and phase

difference. One of the square-wave signals is fed to the gate electrode of the device via a DC

block capacitor so that the gate voltage is modulated by the square wave with an averaged

DC voltage of VG. The other square-wave signal is fed to an auxiliary input as an analog

signal for the frequency modulation (FM) of the MW signal.

Without modulation.— The source-drain voltage VSD and the gate voltage VG of the

device are set to satisfy the spin-blockade condition, where the source-drain current shows
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Fig. S1 Device, qubit and measurement 
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FIG. S1: Overview of device and its operation. The device is fabricated by standard CMOS

processing technology with ion-implantations of Al and N, introducing Al-N impurity pairs as deep

impurities. (a) Photo of a 4-inch wafer after the ion-implantation processing. (b) Cross-section

image by a transmission electron microscope of the TFET-based device. (c) Schematic of an Al-N

impurity pair in the unit cell of Si. (d) Schematic diagram of the potential energy landscape for

PIN structure in the channel of the TFET with two impurity levels. Electron tunneling via a deep

impurity and a shallow impurity exhibits both double-dot-like transport and spin blockade. (e)

Schematic of the time evolution of one of the spin qubits. The qubit energy (Zeeman splitting) is

modulated with a square-wave form fq ± δfq. The applied microwave frequency is also modulated

with a square-wave form fMW ± δfMW. (f) Schematic of the measurement set up. A two-channel

square-waveform generator and a MW generator with an FM signal are connected for the double

modulation. Schematic wave forms are illustrated as red lines; a square wave from channel 1

(Ch. 1), a square wave from Ch. 2 that has a defined phase difference against the channel 1 signal,

and the FM MW signal where its frequency is modulated by the channel 2 signal.
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Fig. S2 example of ESR under modulation. 

-40 -20 0 20 40

2.52

2.56

fMW - fq (MHz)

 

(a) 

(d) 

(b) 

(c) 

2.65

2.70

2.75

 

 

I S
D
 (

pA
)

2.70

2.80

 

 

2.60

2.65  

 

No modulation 

𝑓MW = 16 MHz 

𝑉 = 5 mV (𝑓q = 7 MHz) 

𝑓MW = 16 MHz, V = 5 mV 

FIG. S2: Electron spin resonance (ESR) signal with and without modulation. (a) without any

modulation, one ESR peak (at fMW = fq = 9 GHz) is observed in the source-drain current ISD

of the device in the spin-blockade regime. Two ESR peaks for the modulation of the microwave

frequency (b) or for the modulation of the qubit energy (c). Panel (d) presents four ESR peaks

when the two modulations are applied simultaneously.

an ESR response. Figure S2(a) shows the ESR signal without any modulation, with a single

ESR peak observed where the microwave (MW) frequency fMW matches the qubit frequency

fq ∼ 9 GHz. The linewidth, or inverse coherence time (T ∗2 )−1 = 4 MHz, is limited by the

lifetime of the spin-blockade state, see Ref. [35] of the main text.

Slow amplitude modulation.— We first simultaneously apply the qubit energy modulation,

with amplitude 2δfq, and a microwave frequency modulation (FM), with amplitude 2δfMW.

Both of these modulations have a square-wave form.

In order to realize the condition where the high/low frequency microwave excites the

large/small energy gap of the qubit, we tuned the parameters in the following manner. The

waveform used for the FM is a square wave with frequency 0.05 MHz, which was set to be

much smaller than the inverse coherence time (T ∗2 )−1. The amplitude of the square wave

was set so that the microwave frequency is fMW ± δfMW. Thus, if we sweep fMW, the two

ESR peaks appear at fMW − fq = ±δfMW [Fig. S2(b)].
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Then we also turn-on the qubit energy modulation by adding a square-wave modulation

on VG. By increasing the modulation amplitude δVG from zero, each of the two ESR peaks

is further split into two, and thus in total four peaks appear. Those four peaks correspond

to four combinations where the qubit with energy fq ± δfq is excited by microwaves with

frequency fMW ± δfMW [Fig. S2(d)]. Figure 2(b) of the main text shows the evolution

of the ESR peaks increasing δVG. The crossing of the lines of the ESR peaks appear at

δVG = 11 mV, where we see three peaks instead of four. The three peaks correspond to

these three situations:

(1) the qubit with frequency (fq − δfq) is excited by microwaves with frequency

(fMW + δfMW);

(2) the qubit with (fq − δfq) is excited by the microwave with (fMW − δfMW) and, at the

same time, the qubit with (fq + δfq) is excited by the microwave with (fMW + δfMW); and

(3) the qubit with (fq + δfq) is excited by the microwave with (fMW − δfMW). Thus, at

the center peak (peak at the crossing) δfMW is matched to δfq. Now δVG can be converted

to δfMW, as shown in the left axis of Fig. 2(b) of the main text.

II. THEORY OF AMPLITUDE- AND FREQUENCY-MODULATED SINGLE

SPIN

A. Hamiltonian and master equation

We describe our device as a modulated and driven quantum two-level system with the

pseudo-spin Hamiltonian

H(t) = Bz(t)σz/2 +Bx(t)σx/2. (S1)

To be more precise, we consider a single 1/2-spin with a fast microwave driving and a slow

rf modulation of both amplitude and frequency. The longitudinal part is defined by the

Zeeman splitting, Bz(t) = g(t)µBB. The time-dependent gate voltage changes the g-factor

by a small value and we have

Bz/~ = ωq + δωq · s(t), δωq � ωq, (S2)
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Parameter Description Value or Range

ωq = 2πfq, ESR frequency; this is defined by

the magnetic field, ωq ∝ B

fq = 9.0 GHz

at B = 0.28 T

δωq = 2πδfq, amplitude of energy-level modulation;

defined by the gate voltage modulation, δωq ∝ δV

δfq = 16 MHz

at δV = 12 mV

Ω square-modulation frequency Ω ∈ [0.05, 50] MHz·2π

ωMW = 2πfMW, driving MW frequency ωMW = ωq −∆ω,

|∆ω| 6 50 MHz·2π

δωMW amplitude of frequency modulation δωMW = 32 MHz·2π

G driving amplitude; this is defined by the microwave

power at the MW-generator output, G ∝
√
PMW

G = 1 MHz·2π

at PMW = 7 dBm

φ phase shift φ ∈ [0, 360] degrees

TABLE I: Description of the parameters controlling our driven and modulated single-spin qubit

where ωq = 2πfq represents the ESR frequency, δωq describes the amplitude modulation. In

this work, we consider a square-wave modulation with the signal

s(t) = sgn [cos Ωt] . (S3)

The transverse part of the Hamiltonian is defined by the frequency-modulated MW voltage

applied to the substrate,

Bx/~ = 2G cos [ωFM(t)t] , (S4)

ωFM(t) = ωMW + δωMW · sφ(t),

sφ(t) = sgn [cos (Ωt+ φ)] ,

with amplitude G and microwave circular frequency ωMW = 2πfMW. The modulation is

assumed to be slow, i.e. Ω � ωMW, and with a small amplitude, δωMW � ωMW, where

δωMW describes the frequency modulation. The theoretical and experimental parameters are

collected in Table I.

After the unitary transformation U = exp (−iωMWσzt/2) and the rotating-wave approxi-
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mation, as in Refs. [35, 43, 45] of the main text, we obtain

H1 =
~
2

[
∆ω + f̃(t)

]
σz +

~G
2
σx, (S5)

f̃(t) = δωq ·s(t)− δωMW · sφ(t), (S6)

where ∆ω = ωq − ωMW = 2π (fq − fMW).

Then, the upper-level occupation probability P+ is readily obtained from the stationary

solution of the Bloch equations:

P+

(
∆ω,

δωq

Ω

)
=

1

2

∞∑
k=−∞

G2
k(δωq/Ω)

G2
k(δωq/Ω)+ T2

T1
(∆ω−kΩ)2+ 1

T1T2

, (S7)

where Gk(x) = G |∆k(x)|, which can be interpreted as the dressed qubit gap, modulated by

the function ∆k(x)

∆k =

1∫
0

dτ exp

[
−i2πkτ + i

∫ τ

0

dτ ′f̃ (τ ′)

]
. (S8)

The relaxation and decoherence times are denoted as T1 and T2, respectively.

It is straightforward to calculate ∆k using Eq. (S8) with the integrand f̃ (τ) defined by

Eq. (S6). The resulting expression for ∆k consists of four terms, which have the denominators

−k±x±w, respectively, with x = δωq/Ω and w = δωMW/Ω. This defines the characteristic

k′s for each term. And, respectively, the absolute values of ∆k for these four terms are the

following

|∆k| =

∣∣∣∣∣sin
[
π−φ
2

(k ∓ (x− w))
]

π (k ∓ (x− w))

∣∣∣∣∣ ,
∣∣∣∣∣sin

[
φ
2

(k ∓ (x+ w))
]

π (k ∓ (x+ w))

∣∣∣∣∣ . (S9)

Consider now the limiting case Ω→ 0, which describes the incoherent-regime resonances

at Ω < 2T−12 , as detailed in Ref. [35] of the main text. We then expect resonances along the

lines

∆ω = kΩ = ±δωq ± δωMW. (S10)

An analysis of the four relations from Eq. (S9) in the limit Ω→ 0 gives for φ ∈ [0, π]

|∆k| '
φ

2π
for k ' ± (δωq + δωMW) , (S11)

|∆k| '
π − φ

2π
for k ' ± (δωq − δωMW) . (S12)

The above equations are useful for describing the experimental results, as detailed in the

next Section.
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FIG. S3: Schematic of the refrigerator-like and engine-like cycles. The dressed energy levels Ẽ± are

plotted as a function of the modulation-defined frequency offset ∆̃ω. The modulation f̃(t) allows

the system to oscillate between two limiting values, with a possible excitation at the avoided-

level crossing and the subsequent relaxation. This is illustrated here for the incoherent regime,

Ω/2π < 2T−12 .

B. Dressed states and heat-engine-like cycles

Equation (S5) describes the qubit dressed by the microwave signal. The respective eigen-

states are

Ẽ± =±~
2

√
G2 + ∆̃ω

2
, (S13)

where ∆̃ω = ∆ω + f̃(t). In this way, the time dependence in f̃(t) results in varying the

distance between the dressed-state energy levels Ẽ+ − Ẽ−. The energy levels are plotted in

Fig. S3. Then, we consider the dynamics forced by the modulation f̃(t), around ∆̃ω = ∆ω.

In figure S3, we consider the symmetric case with δωq = δωMW, which corresponds to the

horizontal dashed line in Fig. 2(b) of the main text. Then the modulation f̃(t) takes three

values, 0 and ±2δωq. We colour the curve for f̃(t) in brown when this corresponds to the

large-energy-gap half-period and in purple when this corresponds to the small-energy-gap

half-period.
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Then we consider three situations in Fig. S3(a-c), for ∆ω = 2δωq, −2δωq , and 0, re-

spectively. In the situations (a) and (b), the qubit is excited during the small-energy-gap

and large-energy-gap stages, respectively. For the incoherent regime, when Ω/2π < 2T−12 ,

the system relaxes to the ground-state, and its evolution is shown by the blue and red tra-

jectories. In terms of Fig. 1 of the main text, these correspond to the refrigerator-like and

engine-like cycles. We mimic this by the blue and red round arrows in Fig. S3(a,b).

In the symmetric situation in Fig. S3(c), there are two cycles, both clockwise and counter-

clockwise, during one modulation period. We emphasize that there is no crosstalk between

the two cycles, since the relaxation is fast in the incoherent regime. In contrast, when

increasing the modulation frequency so that Ω/2π & 2T−12 , i.e. going to the coherent regime,

such cycles start to overlap. Essentially, such superposition of the two cycles results in the

constructive or destructive interference with increased or suppressed upper-level occupation

probability. We consider these interference fringes in detail both in the main text and below.

III. RESULTS

A. Experiments

Measurements as in Fig. 2(b) in the main text, for various φ, are shown in Fig. S4(a-e).

In Fig. S4(f-j) we demonstrate the results of calculations related to the experimental ones in

Fig. S4(a-e), respectively. Details of the calculations are described in the next subsection.

The dependence of the source-drain current ISD on the square-wave modulation frequency

Ω and the microwave frequency fMW for δfMW = 0 and δV = 0 are shown in Fig. S5(a) and

Fig. S5(b), respectively.

Figure S6 shows measurements as in Fig. 3(b) in the main text but with different pa-

rameters, as written in each figure. We note that due to the delay of the two modulation

signals, the phase difference depends on the modulation frequency within the MHz regime.

Thus we redefine the φ = 0 position so that the intensity plot image becomes symmetric.

These experimental data are all reproduced by our calculations. Figure S7 shows such

calculated results, where the modulation-frequency dependence corresponds to Fig. S6(a-e);

see details in the next subsection.

We extract the period of the notches from the data in Fig. S6 and summarize them in
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Fig. S3 W-pattern for various  
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FIG. S4: The experimental source-drain current ISD, top row, and the theoretical upper-level

occupation probability P+, bottom row, as a function of the energy-level modulation amplitude

δωq = δωq (δV ) and the microwave frequency ωMW = 2πfMW. The data are similar to the ones

in Fig. 2(b) of the main text, for various phase shifts φ; the parameters are the same as in Fig. 2

of the main text, except of φ. The panels (a-e) and (f-j) show the experiment and calculations,

respectively. For φ = 0 the in-phase condition is met at δV = 12 mV, where δfq = δfMW, while the

out-of-phase condition is met at δV = 12 mV and φ = 180 deg.

Fig. S8, showing excellent agreement between the experiments and calculations.

Figure S9(b) shows one example of the measurements as in Fig. S4(a) (φ = 0) for the

fast modulation frequency Ω/2π = 2 MHz. The X-shaped pattern in S9(b), similar to the

one in Fig. S4(a), was obtained; but there are weak ripples around the pattern. Note that

if φ is set at a notch [φ = 11 deg., Fig. S9(c)], the X-shaped pattern shows a weak avoided

crossing in the middle of the green dashed horizontal line in Fig. S9(c).

B. Theory

Using formulas (S7) and (S9) we can quantitatively describe the experimental results.
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Fig. S4 
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FIG. S5: Dependence of the source-drain current ISD on the square-wave modulation frequency

Ω and the microwave frequency fMW for δfMW = 0 (a) and δV = 0 (b). The amplitude of the

modulation δVG is fixed to 8 mV, which corresponds to δfq = 22 MHz. The interference pattern is

the same as discussed in Ref. [35] of the main text and agrees with the calculations. This ensures

that square-wave signals up to 50 MHz can be applied to the gate without significant deformation

of the waveform. In (b) the FM frequency of the microwave changes from 0.5 to 50 MHz. The

amplitude δfMW of the FM is fixed to 22 MHz. The interference pattern shows a cut-off of the

sideband peaks for modulation frequencies larger than 10 MHz. Thus, we limit the FM modulation

up to 5 MHz in the following measurements.

1. Incoherent regime

Consider, first, the incoherent regime, with Ω < 2T−12 . This is described by the four

possible resonance lines in Fig. 2 of the main text and Fig. S4, where the lower row was

plotted making use of Eqs. (S7) and (S9). We note that the height and the width of the

lines are defined by the phase shift φ.

In order to better understand the origin of the four lines in the W-shaped pattern in

Fig. S4, consider now Eqs. (S11, S12). Then, at φ = 0, the width of the lines, described by

Eq. (S11), tends to zero, and we have two lines only at

∆ω = ± (δωq − δωMW) , (S14)
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Fig. S5 

Mod. freq. Mod. amp. and MW amp. dependence, 

experiment.  
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FIG. S6: Summary of the phase φ dependence, as in Fig. 3 of the main text, for various modulation

frequencies Ω (a-e), various modulation amplitudes δfMW (f-j), and various microwave powers

PMW (k-o). Parameters are the same as in Fig. 3, except the ones shown in this figure. For (f-j)

similar measurements as in Fig. 2 were performed when δfq = δfMW.

which corresponds to the X-shaped lines in Fig. S4(f). They intersect at δωq = δωMW, which,

importantly, can be useful for calibration of the power. Next, at φ = π, the width of the

lines, described by Eq. (S12), tends to zero, and we have two other lines, along

∆ω = ± (δωq + δωMW) , (S15)

which corresponds to the V-shaped lines in Fig. S4(j). For other values of φ, we have all the

four lines. Their widths become equal for φ = π/2, Fig. S4(h).
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FIG. S7: Upper-level occupation probability P+ as a function of the frequency detuning (ωMW − ωq)

and the phase difference φ, for several values of the modulation frequency Ω (upper row), amplitude

of energy-level modulation δωq (middle row), and driving amplitude G (lower row).

2. Coherent regime

To describe the coherent regime, with Ω & 2T−12 , as in Fig. S6, we again use Eqs. (S7)

and (S9) to plot the upper-level occupation probability P+ in the general case, for the

respective parameters. Figure S7 presents the appearance of the interference fringes, where

the upper-level occupation probability rapidly changes between 0 and 1/2. This figure

correctly reproduces the experimental data in Fig. S6. Note that the upper panels of Fig. S6
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FIG. S8: Period of the notches (see Fig. 3 of the main text) as a function of the modulation

frequency Ω, inverse modulation amplitude δV −1, and the microwave power PMW.

and Fig. S7 demonstrate how the interference fringes appear when increasing the modulation

amplitude, starting from Ω = 0.5 MHz·2π < 2T−12 .

We call “notches” the suppression of the resonance lines down to P+ = 0, see Fig. 3 of

the main text. From Eq. (S9) it follows that the distance between the notches is defined by

∆φ/2π = Ω/δωMW ∝ Ω and ∆φ/2π = Ω/δωq ∝ δω−1q , (S16)

if changing Ω and δωq, respectively. Importantly, the distance between the notches is propor-

tional to the modulation frequency Ω, inversely proportional to the modulation amplitude

δωq, and is independent of the driving amplitude G, where the latter is defined by the MW

power PMW. These relations are demonstrated in Fig. S8(a, b, and c), respectively.

3. Dynamics

So far, we considered the stationary solution in order to describe the experimentally

observed data. The obvious success in this allows us to claim that we have both the correct

physical explanation of what happens and also the correct parameters. Then, with this, we

can go further and solve numerically the Bloch equations to demonstrate the dynamics of

the upper-level occupation probability.

The time evolution of the upper-level occupation probability P+(t) for the coherent case,

with Ω/2π = 2 MHz, is shown in Fig. S10. For this we solved the time-dependent Bloch

equations numerically, with different initial conditions. In a few cycles, the transient dynam-
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FIG. S9: Interference fringes in the dependence of the source-drain current ISD for the X-shaped

pattern. This is shown in (b) and (c) as a function of the frequency detuning (fMW − fq) and

the amplitude δfq of the energy-level modulation, for two values of the phase difference φ, which

correspond to the lines shown in (a).

ics evolves into the stationary solution. Note that Fig. 3 of the main text and the graphs

above show the time-averaged stationary solution, which corresponds to the upper-level oc-

cupation probability P+ at times t � T1,2. However, in principle, after preparing either

the ground or excited state, we can start up our device following one of the trajectories in

the main panel of Fig. S10 and quantify it by the extended efficiency e in the inset. The

extended efficiency is introduced there so that e = 1 corresponds to a perfect engine, as in

Fig. 1(a) of the main text, while e = −1 corresponds to a perfect refrigerator, as in Fig. 1(c).

Coexistence and interference of these two cycles gives e ∈ (−1, 1). A decoherence or com-

plete mixing of these cycles leads to e = 0 and the system does not work as a heat engine

anymore.

In order to see the dynamics in the experiment, after initializing the qubit, we would need

a pulse-modulation of the drive frequency + qubit energy. The pulse length is expected to

be about 0.1–1 µs from the previous Rabi oscillation experiment (Ref. [28]). However,

such experiments have not been possible because the current experimental setup does not

have enough equipment to perform this pulsing. Thus, the experiments on the dynamics

are outside of the scope of this paper. In the future, we would like to conduct the pulse

experiments related to our calculated predictions, shown in Fig. S10.
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Fig. 4 (a) Trace of P+(t) (b) Efficiency vs. cycle 
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FIG. S10: Dynamics and the extended efficiency e. Evolution of the upper-level occupation proba-

bility P+, starting from the ground state (thick green curve) and the excited state (thin red curve).

The inset shows the respective extended efficiency e, which is defined for each cycle as the difference

of the probability at the beginning and the end of the small-energy-gap stage, shown by the yellow

and black stars, respectively.

Results of calculations are further presented in Fig. S11 for (a) the incoherent (Ω < 2T−12 )

and (b) coherent (Ω & 2T−12 ) cases. In Fig. S11(a) the red and green curves correspond to

the resonant driving during either the high-energy stage or the low-energy stage, which

describe the upper or lower panels in Fig. 1 of the main text, respectively. Thin dashed and

dotted curves illustrate the situation of starting from a different initial condition, which is

being in the excited state. Note that during the excitation, the system is first resonantly

excited and then relaxes to the stationary solution, which makes a kink at the beginning of

the “ON” stage. In Fig. S11(b), the numbers n = 1, 2, 3 denote the parameters, taken for

the first three resonant points in Fig. 3(e) of the main text around δω = 0 and counted from

the bottom. At long times, t � T1,2, after the transient dynamics finishes, the upper-level

occupation probability tends to its stationary solution P+. This is defined by the competition

of excitation and relaxation, and is given by Eq. (S7), which gives P+ ≤ 1/2.

In Fig. S12 we present the calculated extended efficiency e, which is defined for each cycle

as the difference of the probability at the beginning and the end of the small-energy-gap stage,

see this in Fig. S11, shown by the arrows. Figure S12 is calculated for the incoherent regime,

for the same parameters as Fig. S4. Note that for the stationary solution, the extended
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Fig. S0 Dynamics 
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FIG. S11: Incoherent and coherent dynamics. The upper-level occupation probability P+ is plotted

as a function of the dimensionless time τ = Ωt/2π. Thin solid lines are given as a guide for the eye

in order to mimic the large- and small-energy gap stages. The square modulation frequency Ω/2π

is 0.2 MHz for (a) and 2 MHz for (b).
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FIG. S12: Extended efficiency e in the incoherent regime. This is calculated for the same parameters

as Fig. S4, as a function of the microwave frequency detuning ∆ω = ωMW−ωq and the energy-level

modulation amplitude δωq.

efficiency e is close to 0 in the coherent regime (see Fig. 4 of the main text), while it displays

both the heat-engine and refrigerator regimes in the incoherent regime, as shown in Fig. S12

by the red and blue colours, respectively.
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