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Quantum heat engine based on quantum interferometry: The SU(1,1) Otto cycle
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We present a quantum heat engine based on a quantum Otto cycle whose working substance reproduces the
same outcomes as an SU(1, 1) interference process at the end of each adiabatic transformation. This device
takes advantage of the extraordinary quantum metrological features of the SU(1, 1) interferometer to better
discriminate the sources of uncertainty of relevant observables during each adiabatic stroke of the cycle. In
particular, the SU(1, 1) adiabatic transformations enable high-precision estimations of the energy extracted from
the adiabatic stroke, despite the presence of thermal fluctuations. Applications to circuit QED platforms are also
discussed.
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I. INTRODUCTION

The advent of quantum thermodynamics marks the be-
ginning of a modern way of conceiving the laws of
thermodynamics [1–7]. Whereas classical thermodynamics
relies its predictions on the statistical behavior of large sys-
tems characterized by an uncountable number of components
(e.g., the molecules of a gas confined in a piston), quantum
thermodynamics studies concepts such as heat transport, en-
tropy production, and work extraction at the quantum scale.
One of the main goals within this framework is to miniaturize
heat engines by utilizing standard quantum systems, such as
qubits or quantum harmonic oscillators, as working substance
[8–20].

A quantum heat engine (QHE) is a quantum apparatus that
performs a thermodynamic cycle from which one wishes to
extract net work [21–32]. In quantum thermodynamics it is
possible to define thermodynamic cycles, in complete anal-
ogy to the classical counterpart, that depend on the specific
transformations performed by the system [8,9]. An example
of a thermodynamic cycle largely considered in literature is
the quantum Otto cycle [8,33,34], which consists of two adi-
abatic transformations and two isochoric transformations. At

*Contact author: a.ferreri@fz-juelich.de
†Contact author: david.edward.bruschi@posteo.net;

d.e.bruschi@fz-juelich.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the quantum level, the isochoric transformation is equivalent
to the thermalization of the working substance with the hot or
cold bath, while the eigenenergies of the system remain con-
stant. On the other hand, during each adiabatic transformation
the quantum system is isolated, and its eigenenergies change
by means of an external drive.

The working substance releases net work during the adi-
abatic expansion. Nevertheless, the generation of work does
not necessarily imply the release of power. This is the case
when the adiabatic transformation occurs quasistatically, for
example. For technological purposes it is generally of greater
interest to consider more practical scenarios, wherein trans-
formations occur in finite time [35–38], such that one can
extract power from the working substance [39–43]. In this
case, it may happen that the release of power is affected
by inner friction, which means that the system is still not
exchanging heat with the environment (classical adiabatic
condition), but the population varies during the transformation
[44,45].

In this work we propose a quantum heat engine subject
to inner friction that performs an Otto cycle whose adia-
batic transformations mimic the outcome of the SU(1, 1)
interferometer. The SU(1, 1) interferometer is a nonlinear
interferometer that is constituted by active optical elements
[46–48]. In particular, it can be engineered from the stan-
dard Mach-Zehnder interferometer (MZI) by replacing the
two beam splitters with two squeezers [49]. The nonlinearity
of the interferometer stems from the nonlinear susceptibil-
ity of the media typically used as a squeezing resource
[50,51].

In quantum metrology, there are several advantages of us-
ing SU(1, 1) interferometers with respect to other platforms,
such as the Mach-Zehnder interferometer. For example, it has
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been shown that such devices are highly immune to external
losses [52]. Moreover, they can overcome the classical shot
noise limit and reach the so-called Heisenberg limit even when
seeded with the vacuum state [46]. For these reasons, this class
of interferometers has been thoroughly studied in the past,
for example, by analyzing the role of different input states
[53–55], as well as specializing to both spectral and spatial
multimode scenarios [50,51,56,57].

The Otto cycle proposed in this work is based on two
interacting quantum harmonic oscillators, whose time evo-
lution is modeled in terms of elements of the su(1, 1) Lie
algebra. In particular, our device exploits the equivalence be-
tween the output values of the observables after each adiabatic
transformations and the outcomes at the end of an SU(1, 1)
interference scheme to improve our knowledge about such
observables beyond the shot-noise limit. Indeed, taking for
granted that all observables of interest are affected by quantum
fluctuations, we may ask if the uncertainty of our outcomes
stems from the instability of the protocols controlling the
adiabatic transformations, or from the quantum or thermal
fluctuation of the observables themselves. To answer this
question, we encode the information about our protocols into
the phase of an equivalent SU(1, 1) interferometer and study
the dependence of the phase sensitivity of the heat engine with
respect to both the number of excitations and the average en-
ergy at the end of the adiabatic transformations, benchmarking
it with the shot-noise limit.

The phase sensitivity is a tool largely used in quantum
metrology for estimating the minimal modulation of the phase
needed to overcome the quantum (or in this case thermal)
fluctuation of observables. In this work, the phase sensitivity
is utilized as a tool to optimize the protocols such that, at the
end of the adiabatic strokes, we can safely distinguish possible
errors due to the instability of our protocols from the pertur-
bation generated by the thermal fluctuations. We show that by
increasing the amount of squeezing, while at the same time
properly manipulating the internal phase, our device can work
simultaneously as a quantum thermal machine performing the
Otto cycle with a net work output, as well as an SU(1, 1)
interferometer working beyond the shot-noise limit.

The paper is structured as follows: in Sec. II we review
the mathematical tools to describe the two-mode SU(1, 1)
interferometer as well as the concept of phase sensitivity. In
Sec. III we introduce our model of SU(1, 1) heat engine, with
focus on the analogy between the outputs of the adiabatic
transformations and the outputs of an SU(1, 1) interference
scenario. In Sec. IV we examine the performance of the QHE
by analyzing both the efficiency of the cycle and the phase
sensitivity at the end of the adiabatic expansion. We also
discuss a superconducting platform where our model can be
implemented. We report our conclusions in Sec. V.

II. THEORETICAL BACKGROUND

In this section we introduce the formalism to study the
system of interest. In particular, we first present the algebraic
tools to describe the SU(1, 1) interferometer. Afterwards, we
provide a short review of the concept of phase sensitivity and
noise limits in quantum metrology.

FIG. 1. Design of the SU(1,1) interferometer. The input channel
is seeded with a classical source (pump laser), which interacts with
two squeezing sources (nonlinear optical media) in order to generate
photon pairs. In the degenerate scheme, the created photons may be
distinguished by their polarization. The two squeezers are separated
by a phase shifter, which controls the relative phase between the laser
and the photon pairs.

A. The SU(1, 1) interferometer

The SU(1, 1) interferometer is schematically depicted in
Fig. 1 and consists of a sequence of squeezing and phase
operations: squeezing → phase shift → antisqueezing [46].
The unitary transformation encoding the interference process
takes the form

Ûsu(ζ , φ) = e−iζ K̂x e−iφK̂z eiζ K̂x , (1)

where ζ and φ identify the squeezing and the phase parame-
ters, respectively.

The operators Ki with i = x, y, z fulfill the following com-
mutation relations,

[K̂ j, K̂k] = i f jk�K�, (2)

which define the su(1, 1) Lie algebra with structure constants
fabc that read fxyz = −1, fyzx = 1, fzxy = 1, while the only
other nonvanishing expressions can be obtained by permuta-
tions of the indices in the standard fashion. The Lie algebra is
fully defined by the commutation relations (2) and is indepen-
dent of the choice of concrete representation of the operators
K̂j . We also recall that the operators K̂ j satisfy the Jacobi
identity [A, [B,C]] + [B, [C, A]] + [C, [A, B]] = 0.

For the purposes of this work we choose to express these
operators using the annihilation and creation operators âk, â†

k
of two harmonic oscillators that satisfy the canonical com-
mutation relations [âk, â†

k′ ] = δkk′ , while all others vanish.
Employing these operators we introduce the following expres-
sions:

K̂x = 1

2
(â†

1â†
2 + â1â2), K̂y = i

2
(â1â2 − â†

1â†
2),

K̂z = 1

2
(â†

1â1 + â2â†
2), N̂ = â†

1â1 + â†
2â2, (3)

which include also the definition of the number operator N̂
and we observe that K̂z = (N̂ + 1)/2. The Casimir invari-
ant for this Lie algebra is K̂2 := K̂2

z − K̂2
x − K̂2

y and satisfies
[K̂2, K̂ j] = 0 for all j. Note that K̂z is the only element of
the group that commutes with the number operator N̂ . This
feature is key, as we see below.

An equivalent form of the unitary operator introduced in
(1) is given by

Ûsu = eiθK̂z eiχK̂y e−iθK̂z , (4)
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where the parameters θ and χ can be determined as functions
of ζ and φ by means of the following relations:

cos(θ (ζ , φ)) = sin φ√
sin2 φ + (1 − cos φ)2 cosh2 ζ

,

cosh(χ (ζ , φ)) = (1 − cos φ) cosh2 ζ + cos φ, (5)

which have already been obtained in the literature [46].
The form of expression (4) of the unitary operator Ûsu

dramatically simplifies the computation of the average values
of any observable that commutes with K̂z. To see this, consider
a state diagonal in the Hamiltonian eigenbasis as initial state
|in〉 (as will always be in this work) and the final state |out〉
at the end of the interference process. Then, we can easily
compute the average number Nout := 〈out|N̂ |out〉 of particles
leaving the interferometer, and we find

Nout = 〈in|Û †
suN̂Ûsu|in〉

= 〈in|eiθK̂z e−iχK̂y N̂eiχK̂y e−iθK̂z |in〉
= (Nin + 1) cosh χ − 1, (6)

where Nin := 〈in|N̂ |in〉 is the average number of particles en-
tering the interferometer. It is not surprising that the number
of additional particles created is determined ultimately by the
squeezing parameter χ , since squeezing introduces energy
into the system and therefore potentially new excitations.

B. Phase sensitivity

Quantum metrology studies the precision that can be
obtained by measurements of physical parameters when quan-
tum resources can be exploited [58,59]. Among possible
applications one finds precision measurements using interfer-
ometers, where the performance of the interferometer can be
evaluated by estimating its phase sensitivity [60]. This is the
precision with which we can discriminate the variation of an
observable Ô(φ) due to the modulation of an internal param-
eter φ [61]. At the output of the interferometer the average
value O(φ) := 〈Ô(φ)〉ρ̂ of the observable Ô(φ) in the state ρ̂

will depend on φ. A small shift δφ of the variable φ induces
a change δO = O(φ + δφ) − O(φ) = ∂O(φ)

∂φ
δφ, to first order

in δφ. To make sure that the variation of the observable is
only due to the modulation of φ, the variation itself must be
at least as large as the statistical fluctuation of the observable
itself, which translates in the condition δO = 
O, where 
X
determines the standard deviation of the quantity X . This
means that

δφ = 
O∣∣ ∂O(φ)
∂φ

∣∣ (7)

is the variation of φ determining the smallest appreciable
perturbation of O beyond its statistical fluctuation. Note that
an observable undergoing a Poissonian fluctuation achieves its
best sensitivity at


φSNL = 1/
√

Nφ, (8)

which is called shot-noise limit (SNL) and is the maximum
precision achieved by a Mach-Zehnder interferometer when
the two input channels are seeded by a coherent state [59].
In Eq. (8) the quantity Nφ indicates the number of photons

FIG. 2. Pictorial representation of two degenerate quantum har-
monic oscillators performing the SU(1, 1) Otto cycle. The four
stages labeled by the capitol letters are connected by the four
strokes of the cycle. In particular: (1) SU(1, 1) adiabatic compression
(A → B), (2) SU(1, 1) hot isochoric transformation (B → C), (3)
SU(1, 1) adiabatic expansion transformation (C → D), and (4) cold
isochoric (D → A).

undergoing the phase shift. A Mach-Zehnder interferometer
overcoming this limit means therefore taking advantage of
the sub-Poissonian (nonclassical) statistics of the input state
to perform high-precision measurements of δO. For instance,
it was shown [58,62] that the phase sensitivity can scale as

φHL = 1/Nφ if both input channels of the Mach-Zehnder
interferometer are seeded with squeezed light. The scaling
proportional to N−1

φ is also called the Heisenberg limit (HL)
since it is strictly connected to the energy-time uncertainty
principle [63]


N
φ � 1. (9)

The crucial advantage of using the SU(1, 1) interferometer is
the fact that it can overcome the SNL without requiring any
exotic input state. In particular, it has been demonstrated that
the precision of such interferometer can reach the Heisenberg
limit by seeding it with the vacuum state [46].

III. MODEL OF A SU(1, 1) HEAT ENGINE

The system of interest is depicted in Fig. 2 and consists of
two degenerate bosonic modes (i.e., with the same frequency),
which are employed as working substance and undergo an
Otto cycle. The Otto cycle is a four-stroke cycle in which the
working substance undergoes four transformations:

(1) adiabatic compression, during which the two oscilla-
tors, decoupled from any bath, increase their frequency;

(2) hot isochoric thermalization of the system with a hot
bath at temperature Th once the compression stops;

(3) adiabatic expansion, during which the two oscillators
release output work; their frequency returns to the same value
that they had at the beginning of stage (1);

(4) cold isochoric, during which the system thermalizes
with the cold bath at temperature Tc and is ready to repeat the
cycle.

Note that during each isochoric transformation the sys-
tem is weakly coupled to the baths, which ensures that the
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dressing of the bare system Hamiltonian, due to the presence
of nonvanishing system-bath interactions, can be ignored [64].

The frequency variation at each adiabatic transformation
occurs by means of a unitary evolution operator Û (t ) defined
in the next section. This operator encodes the information
about the two protocols controlling both the time dependence
of the bare frequency of the oscillators (which is identical) and
the strength of their interaction. The unitary evolution opera-
tor varies according to the transformation it is referred to the
following: during compression, the frequencies are increased,
whereas they decrease during the expansion. Crucially, we see
that the average values O(t ) := 〈Û †(t )ÔÛ (t )〉ρ̂ in the state ρ̂

of any observable Ô of interest at the end of the time evolution
are indistinguishable from its average value after the unitary
transformation determined by Eq. (4).

A. Time evolution operator and Hamiltonian

We assume that the adiabatic transformations causing the
frequency shift of the two oscillators is represented by the
following, already time-ordered, unitary operator:

Û (t ) :=
←
T e−i

∫ t
0 dt ′ĤS(t ′ ) = e−i fz (t )K̂z e−i fy(t )K̂y , (10)

where fz(t ) and fy(t ) are two time-dependent functions en-
coding the protocols of each adiabatic transformations. In
our notation, we set h̄ = 1. Since the time evolution operator
must be the identity operator 1 at t = 0, these two functions
are subject to the initial conditions fz(0) = fy(0) = 0. The
Hamiltonian written in the Schrödinger picture inducing such
time evolution is obtained from Eq. (10) by taking the time
derivative on both sides and then multiplying each side by
Û †(t ) on the right [65]. We find

ĤS(t ) = ḟz(t )K̂z + ḟy(t )[cos( fz(t ))K̂y − sin( fz(t ))K̂x]. (11)

We want the two oscillators to be decoupled at the begin-
ning of each adiabatic transformation. In this way, the system
can thermalize at each isochoric transformation without the
two subsystems interacting. This means that, at t = 0, we
require ḟy(0) = 0, and the initial Hamiltonian ĤS(0) reduces
to

ĤS(0) = ḟz(0)K̂z = ḟz(0)

2
(â†

1â1 + â†
2â2 + 1). (12)

This allows us to attribute the following initial conditions to
the time derivative: ḟz(0) = 2 ω(0) = 2 ωi, where ωi is the
frequency of the two oscillators before the time evolution.
Importantly, at the end of the dynamics, that is at time t = tf,
we re-initialize the Hamiltonian; thus, ĤS(tf ) = ĤS(0). This
adds the following further boundary condition ḟy(tf ) = 0:

The Hamiltonian ĤH(t ) in the Heisenberg picture is ob-
tained from Eq. (10) via the relation

ĤH(t ) := Û †(t )ĤS(0)Û (t ) ≡ −i
dÛ †(t )

dt
Û (t ), (13)

and it reads

ĤH(t ) =2ω(t )[ch( fy(t ))K̂z − sh( fy(t ))K̂x] + ḟy(t )K̂y, (14)

where we identified ḟz(t ) = 2ω(t ), and we have introduced
ch(x) := cosh x and sh(x) := sinh x for simplicity of notation.

Note that if we had ḟy(t ) ≈ 0 at all times we would have
fy(t ) ≈ 0 due to the initial conditions, and the time evolution
would describe a quantum adiabatic transformation [8]. Once
the dynamics stops at time tf, the Hamiltonian ĤH(t ) becomes

ĤH(tf ) = 2ωf[ch( fy(tf ))K̂z − sh( fy(tf ))K̂x], (15)

where ωf ≡ ω(tf ) is the frequency of the two oscillators at the
end of the dynamics. The relation between the initial and final
frequencies is ωf > ωi at the end of the adiabatic compression,
and ωf < ωi at the end of the adiabatic expansion.

B. The SU(1, 1) adiabatic transformation

We now show that, although the unitary operator in
Eq. (10) driving the adiabatic transformation does not
perfectly match the unitary operator of the SU(1, 1) interfer-
ometer in Eq. (4) (a second phase shift misses), the average
values of any observable at the end of each adiabatic transfor-
mation are indistinguishable from the average values obtained
as result of both the frequency tuning and the SU(1, 1) inter-
ference of the bosonic modes.

Recall that the thermal state, which is the state of the two
oscillators at the beginning of each adiabatic transformation,
is a mixed state defined as ρ = e−βĤS (0)/Z , where Z is the
partition function and β = 1/(kBT ), with T representing tem-
perature and kB being the Boltzmann constant. In our case,
since

ĤS (0) = 2ωiK̂z, (16)

and

2K̂z = N̂ + 1 = â†
1â1 + â†

2â2 + 1, (17)

we have

ρ̂ =
∑

n1

∑
n2

e−ωiβ(n1+n2+1)

Z
|n1, n2〉〈n1, n2|, (18)

where in the last line we expressed the thermal state in terms
of the Hamiltonian (Fock) eigenstates. The partition function
Z := Tr(ρ̂ ) therefore reads

Z =
∑

n1

∑
n2

e−ωiβ(n1+n2+1) = [2 sinh(βωi/2)]−2. (19)

Note that K̂z and the Hamiltonian at t = 0 share the same
eigenbasis, because they commute. This means that, at the end
of the interference process described by the unitary transfor-
mation in Eq. (4), the average value OH := 〈ÔH〉ρ̂ ≡ Tr[ÔHρ̂]
of any observable ÔH calculated with respect to this thermal
state must be of the form

OH = Tr[Û †
suÔSÛsuρ̂]

= Tr[eiθK̂z e−iχK̂y e−iθK̂z ÔSeiθK̂z eiχK̂y e−iθK̂z ρ̂]

= Tr[e−iχK̂y e−iθK̂z ÔSeiθK̂z eiχK̂y ρ̂], (20)

where in the last step we took advantage of the commutation
between K̂z and ρ̂, as well as the cyclic property of the trace.
The average value of ÔH at the end of the interference process
would therefore be indistinguishable from its average value at
time tf if the time evolution is governed by the unitary operator
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in Eq. (10), assuming χ = − fy(tf ) and θ = −2
∫ tf

0 dt ′ω(t ′) =
− fz(tf ):

OH = Tr[Û †
suÔSÛsuρ̂] = Tr[Û †(t )ÔSÛ (t )ρ̂]. (21)

This proves that the average values of a observable calculated
after the adiabatic transformation controlled via Û (t ) corre-
sponds to the average value of the same observable when the
system undergoes both the frequency tuning and the SU(1, 1)
interference process. As a consequence of these considera-
tions we wish to strongly emphasize the fact that controlling
the protocol functions at the end of the dynamics, fy(tf ) and
fz(tf ), means controlling χ and θ , which allows us to directly
manipulate both the squeezing parameter ζ and the phase φ

of the equivalent SU(1, 1) interferometer by means of the
constituent relations (5).

In the study of the performance of the thermodynamic cy-
cle presented here we note that the only observable of interest
is the Hamiltonian, whose average value gives the amount of
energy of the system at each step of the cycle. Employing
Eqs. (3), (15), and (18)–(20) we finally obtain

〈ĤH(tf )〉ρ̂ = ωf cosh χ coth

(
βωi

2

)
. (22)

IV. ANALYTICAL RESULTS

We have introduced the working substance and the func-
tioning of the SU(1, 1) adiabatic transformation. Therefore,
we can now discuss the performance of the quantum heat
engine. In particular, we focus on the efficiency of the Otto
cycle and the phase sensitivity of the equivalent SU(1, 1)
interferometer at the end of the adiabatic expansion. Interest-
ingly, we see that it is possible to find a regime of parameters
wherein our system can work simultaneously as a quantum
heat engine producing net work, and as an SU(1, 1) inter-
ferometer with precision beyond the standard quantum limit.
Finally, we discuss an application of our model of SU(1, 1)
heat engine in the context of circuit QED [66].

A. Thermodynamic cycle

In this section we study the efficiency of the heat engine.
Therefore, we start from calculating the average value of the
energy at each of the four stages of the cycle. To do this, we
calculate the average value of the Hamiltonian at the end of the
two thermalization branches (isochoric transformation) and at
the end of the two adiabats:

〈Ĥ〉A = ω1 coth

(
βcω1

2

)
, (23)

〈Ĥ〉B = ω2 cosh χ coth

(
βcω1

2

)
, (24)

〈Ĥ〉C = ω2 coth

(
βhω2

2

)
, (25)

〈Ĥ〉D = ω1 cosh χ coth

(
βhω2

2

)
, (26)

where ω1 and ω2 are the oscillators frequency at the beginning
and at the end of the compression, respectively, whereas βh =
1/(kBTh) and βc = 1/(kBTc) are the inverse temperatures of

the hot and cold baths, respectively. Here kB is the Boltzmann
constant as usual.

From these expressions, we can calculate the average work
and heat transferred during each transformation. During the
adiabatic compression, the external work done on the system
is given by WAB := 〈Ĥ〉B − 〈Ĥ〉A, which becomes

WAB

ω1
=

(
ω2

ω1
cosh χ − 1

)
coth

(
βcω1

2

)
. (27)

The system is then thermalized to the hot bath absorbing the
amount QBC = 〈Ĥ〉C − 〈Ĥ〉B of heat from the environment,
given by

QBC

ω2
= coth

(
βhω2

2

)
− cosh χ coth

(
βcω1

2

)
. (28)

At this point, the system releases energy in the form of fruitful
work defined by WCD = 〈Ĥ〉D − 〈Ĥ〉C . We find

WCD

ω2
=

(
ω1

ω2
cosh χ − 1

)
coth

(
βhω2

2

)
. (29)

Notice that WAB can be obtained from WCD by exchanging the
two frequencies (and vice versa), as well as the hot and cold
temperatures.

Finally, the system thermalizes with the cold bath ceding
heat to the environment defined by QDA := 〈Ĥ〉A − 〈Ĥ〉D,
which reads

QDA

ω1
= coth

(
βcω1

2

)
− cosh χ coth

(
βhω2

2

)
. (30)

The cycle can therefore restart from the compression stage
A → B.

The explicit expressions obtained above allow us to cal-
culate the efficiency of the cycle. This is defined as the ratio
between the net work and the heat absorbed by the system. We
employ Eqs. (27)–(29) to obtain η = −(WAB + WCD)/QBC ,
which for us reads

η = 1 − ω1

ω2

cosh χ coth
(

βhω2

2

) − coth
(

βcω1

2

)
coth

(
βhω2

2

) − cosh χ coth
(

βcω1

2

) . (31)

This result, unsurprisingly, is very similar to what achieved
in the literature [39], where the coefficients Q∗

1 and Q∗
2, in

the same manner of our parameter χ , encode the adiabaticity
of the compression and the expansion, respectively. Conse-
quently, an analysis of the output power (which also includes
the study of the efficiency at maximum power) would not
substantially differ from what accomplished before [39], and
therefore we choose not to report it here.

The squeezing during each adiabatic process causes the
presence of quantum friction. This quantity can be com-
puted as described in Ref. [45]. In our case, it is given by
Wfric = WCD − Wad, which explicitly reads

Wfric =2ω1 sinh2 (χ/2) coth

(
βhω2

2

)
. (32)

Here, the work exchanged during the expansion, assuming the
process were quantum adiabatic, is given by

Wad = (ω1 − ω2) coth

(
βhω2

2

)
. (33)
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Evidently, the higher the parameter χ , the smaller the
amount of energy extracted from the system during the expan-
sion. In general, in order for our system to work as quantum
heat engine we require −(WAB + WCD) > 0, or χ < χmax,
where we have defined χmax through

cosh(χmax) <
ω1 coth

(
βcω1

2

) + ω2 coth
(

βhω2

2

)
ω2 coth

(
βcω1

2

) + ω1 coth
(

βhω2

2

) . (34)

Interestingly, if kBTh 
 h̄ω2 and kBTc 
 h̄ω1, we have
coth(βcω1/2) ≈ 2Tc/ω1 and coth(βhω2/2) ≈ 2Th/ω2, and we
can express the positive work condition in terms of the tem-
perature ratio as

Th

Tc
>

ω2

ω1

ω2 cosh χ − ω1

ω2 − ω1 cosh χ
. (35)

As expected, the right side of the equation above reduces
to the frequency ratio ω2/ω1 in case of quantum adiabatic
transformations, χ = 0.

Note that Eq. (34) corresponds to an upper bound for the
parameter χ . Nevertheless, this bound does not necessarily
affect our choice of the squeezing parameter ζ . From Eq. (5),
we see that we can choose relatively large ζ at the price of a
narrower range for φ. With ζ fixed, we can easily find that the
phase takes values in the interval 0 � φ < φmax, where φmax

is defined as

cos(φmax(ζ )) = 1 − 2
sinh2(χmax/2)

sinh2 ζ
. (36)

Notably, the higher ζ the more φmax tends to vanish.
Before concluding this section, we find it useful to elab-

orate on the importance of having two interacting oscillators
evolving according to Eq. (10), rather than a single oscillator
as the working substance performing finite time transforma-
tions. We recall that it is indeed possible to extract power
from a single harmonic oscillator experiencing nonadiabatic-
ity during the adiabatic strokes [39]. Likewise, in the case of
our quantum system, the Hamiltonian of a single quantum
harmonic oscillator with a time-dependent frequency can be
expressed in terms of elements of the su(1, 1) Lie algebra
given in Eq. (3) [67]. This suggests that rapidly tuning the
frequency of a single quantum harmonic oscillator during any
adiabatic stroke induces a squeezing effect on the quantum
state. Therefore, the squeezing effect is the price paid in terms
of quantum friction to generate power from a single oscillator,
corresponding to energy wasted by the engine.

Given that the squeezing of the quantum state is an
inevitable consequence of rapidly tuning the frequency of
quantum harmonic oscillators, with our model of QHE we
intend to take advantage of this effect to better estimate the
expectation value of the energy exchange with the system. The
action of the two protocols (guiding both the frequencies and
the coupling parameter of the oscillators, rather than relying
on a single protocol) enables better control of the squeezing
effect and allows us to exploit the inner friction as a quantum
metrological tool.

B. Efficiency at minimum sensitivity

It should be clear from Sec. III B that we can interpret
the final stage of any adiabatic strokes of the quantum heat

engine as an interference process. The parameters θ and χ ,
representing the protocols of the time evolution operators at
tf, can be parametrized in terms of the squeezing parameter
ζ and the internal phase φ of a SU(1, 1) interferometer by
means of Eq. (5).

Assuming that the adiabatic processes induce an amount
of squeezing quantified by ζ , and that the source of instability
in our protocols is entirely captured by the phase φ, we can
then ask what precision we can achieve from the knowledge
of an observable parametrically dependent on φ and subject to
thermal noise.

In other words, since θ and χ are connected to the protocols
of the QHE at the end of the adiabats, we may ask how
precisely we can attribute the uncertainty of an observable
to the instability of fz(tf ) and fy(tf ), rather than to its own
thermal fluctuation.

Using the mathematical tools introduced in Sec. II B, we
can make use of the phase sensitivity to test the precision
of our knowledge of relevant observables, such as the output
number of particles or, more importantly, the average energy
at the end of the process.

Note that, although the study of work fluctuations has a
fundamental role in quantum thermodynamics [68,69], work
is not an observable [70,71], but it is calculated as the dif-
ference between the average energy of the working substance
after the adiabatic transformation (which depends on the inter-
nal phase of the interferometer) and the average energy before
the adiabatic transformation (which does not depend on the
phase φ). For these reasons, we discuss only those observables
which are directly involved by the variation of φ in our study
of the phase sensitivity.

According to the definition in Eq. (7), we need to calcu-
late both the variance of our observables and their derivative
with respect to ϕ. Focusing on the adiabatic expansion
(which is more affected by thermal fluctuations), we com-
pute 
2N = Tr[N2

Hρ] − Tr[NHρ]2 and 
2H = Tr[H2
Hρ] −

Tr[HHρ]2, which read


2N = 1

2

[
cosh (2χ ) coth2

(
βhω2

2

)
− 1

]
, (37)


2H = 2ω2
1

{

2N + 1

4

[
coth2

(
βhω2

2

)
+ 1

]}
, (38)

whereas the latter are

∂NH

∂φ
= sin φ sinh2 ζ coth2

(
βhω2

2

)
, (39)

∂HH

∂φ
=ω1

∂NH

∂φ
. (40)

Clearly, both variance and derivative depend on the phase of
the interferometer φ. We notice that the variance of the energy
is not proportional to 
N , which is due to the fact that the
Hamiltonian operator also includes the energy of the quantum
vacuum.

The two phase sensitivity curves are plotted in Fig. 3, along
with the efficiency of the thermodynamic cycle in Eq. (43),
with respect to the phase φ. Here, the indices “N” and “H”
indicate the phase sensitivity calculated with respect to the
excitation number and the Hamiltonian, respectively. We nor-
malized the curves with respect to natural benchmarks: the
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FIG. 3. Normalized phase sensitivity calculated with respect to the average excitation number (blue curve) and the average energy (red
curve), normalized efficiency of the Otto cycle (magenta curve). The bar above all quantities in the legend stresses these normalization.
The dashed black horizontal line indicates the normalization. The four panels refer to different squeezing intensities: (a) ζ = 2, (b) ζ = 3,
(c) ζ = 3.4, and (d) ζ = 4. Other parameters are ω1 = 0.1, ω2 = 1, Th = 2, and Tc = 0.01. Frequencies and temperatures are normalized with
respect to ω2.

phase sensitivity is normalized with respect to the SNL, while
the efficiency is normalized with respect to the Carnot limit
ηC = 1 − Tc/Th.

Recall that the SU(1, 1) interferometer consists of active
elements that do not preserve the number of particles. For
this reason, in the definition of SNL in Eq. (8) we need the
actual number of particles subject to the phase modulation.
We therefore have 
φSNL = 1/

√
Nφ , where

Nφ = (Nin + 1) cosh ζ − 1. (41)

At φ = 0 we have χ = 0, and the quantum system per-
forms quantum adiabatic transformations reaching therefore
the efficiency of an ideal Otto cycle ηO = 1 − ω1/ω2 [8]. As
soon as we increase the phase φ, the efficiency inevitably
decreases due to the inner friction until it vanishes at φmax.
Note that, as predicted in Eq. (36), the operational phase
range of our quantum system as a heat engine decreases with
increasing squeezing ζ .

We now look at the two phase sensitivity curves. We ob-
serve that, as the squeezing parameter ζ increases, the phase
sensitivity decreases. For very large values of ζ , both curves
reach their minimum values below the SNL line (indicated
by the black dotted line in the graph). In this regime, our
quantum system functions both as a quantum heat engine and
as SU(1, 1) interferometer working beyond the classical limit.

In quantum metrology, the range of φ where the phase sen-
sitivity overcomes the SNL, i.e., δφ < 
φSNL, is sometimes
called supersensitivity [50,57,72]. Evidently, the supersensi-
tivity range depends on the observable with respect to which

the phase sensitivity is calculated: from Figs. 3(b)–3(d), we
see that, for a fixed squeezing parameter ζ , δφN is always
lower than δφH , and the corresponding supersensitivity range
is larger. Note that, due to the energy-time uncertainty princi-
ple [as expressed in Eq. (9)], improving the phase sensitivity
requires a large number of excitations in the phase shifter.
This is why we simulate the SU(1,1) interference processes
with high squeezing parameters (see Fig. 3). The first squeez-
ing process creates a large number of excitations. These
excitations undergo phase shifting and, finally, antisqueez-
ing occurs. However, despite the large number of particles
created and annihilated in the squeezing processes, the total
squeezing-phase-(anti-)squeezing operation generates few ex-
citations. This explains why the system can properly work as
a QHE.

At this point, we may be interested at the efficiency of the
cycle when the minimum of the phase sensitivity 
φH reaches
the SNL. To calculate this quantity, we first need to calculate
the minimum ζ required to reach the SNL. Given a set of
{ω1, ω2, Th, Tc} of frequencies and temperatures, this value
determines the minimum amount of squeezing necessary for
the phase sensitivity to reach the SNL in at least one point of
the phase φ, which we call φSNL:

δφmin(ζSNL) = 
φSNL. (42)

The corresponding phase φSNL is obtained from Eq. (42) and
used to calculate the efficiency at the SNL. This reads

η = 1 − ω1

ω2

cosh χSNL coth
(

βhω2

2

) − coth
(

βcω1

2

)
coth

(
βhω2

2

) − cosh χSNL coth
(

βcω1

2

) , (43)
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FIG. 4. Example of platform supporting the SU(1, 1) Otto cycle.
The superconducting transmission line consists of a series of induc-
tors, while two consecutive inductors are connected by a node with a
SQUID and a capacitor, placed in parallel [87,88].

where χSNL ≡ χ (ζSNL, φSNL). These quantities are not simple
to calculate analytically. However, we numerically computed
both ζSNL and ηSNL with the choice of parameters used in
Fig. 3. This result in ζSNL = 3.4 and ηSNL � 0.705. For com-
pleteness, we also report the efficiency at φ = 0, ηO = 0.9,
and the Carnot efficiency, ηC = 0.995.

C. Application to superconducting transmission lines

The specific dynamics described by the unitary time evo-
lution operator in Eq. (10) can be achieved in circuit QED
[73,74]. Thanks to their flexibility and high controllability,
superconducting circuits are indeed promising platforms for
the realization of QHE [75–82]. Moreover, transmission lines
simulating particle creation phenomena [73], such as the dy-
namical Casimir effect [83–85], have already been taken into
account for the study of effects of quantum friction on the
efficiency of the Otto cycle [86].

Here we consider the device drawn in Fig. 4 and discussed
in detail in Refs. [87,88] as a possible platform for the im-
plementation of the SU(1, 1) Otto cycle proposed here. The
transmission line is based on a series of unit cells. Each cell
consists of a inductor placed in series, and a superconduct-
ing quantum interference device (SQUID) placed in parallel.
Finally, each SQUID is parallel to a capacitor.

This transmission line has been proposed as a platform
to simulate the cosmological model of particle creation due
to a rapid expansion of the space-time [87,89,90]. The La-
grangian, as well as the equations of motion, describing the
quantum magnetic flux field along the transmission line can
indeed be interpreted as a (1 + 1)-dimensional equivalent of
the Lagrangian of a quantum massive scalar field immersed
in a dynamical background described by a time-dependent
Friedmann-Robertson-Walker metric [89,90]. It emerges that
the modes of the quantum magnetic flux undergo the same
Bogoliubov transformations leading to the squeezing of the
quantum vacuum of the scalar field before the expansion pro-
cess.

For later convenience, we report here the dispersion
relation of the transmission line, as well as the Bogoli-
ubov transformations. The former has already been obtained
[87,91] and reads

ω j (t ) =
√

4 sin2
( k j
x

2

)
LC

+
(

2π

�0

)2 E (t )

C
, (44)

where k j = 2π j/(Ncell
x) are the wave vectors of the quan-
tum field assuming to possess a transmission line with Ncell

cells, 
x is the cell length, L and C are respectively the

inductance and the effective capacitance of the transmission
line, �0 is the magnetic flux quantum, and E (t ) = E0[A ±
B tanh(ν t )] is the time-dependent Josephson energy, with A
and B adimensional constants and ν the rapidity coefficient.
The sign in the Josephson energy depends on the thermody-
namic transformation we are considering: the positive sign
refers to the frequency during the adiabatic compression,
while the negative sign refers to the expansion [92]. The
Bogoliubov transformations have the general expression

âout
j = α j â

in
j + β∗

j

(
âin

− j

)†
, (45)

which is well known in the literature [87,89,90], while the
Bogoliubov coefficients α j, β j for this particular case read

α j =
(

ωf

ωi

) 1
2 �(1 − iωi/ν)�(−iωf/ν)

�(−iω+/ν)�(1 − iω+/ν)
,

β j =
(

ωf

ωi

) 1
2 �(1 − iωi/ν)�(iωf/ν)

�(iω−/ν)�(1 + iω−/ν)
. (46)

Here, we define ωi ≡ ω j (t → −∞) and ωf ≡ ω j (t → +∞)
as the frequencies of the degenerate modes before and after
the transformation, respectively. Additionally, ω+ = ωi + ωf

and ω− = ωf − ωi.
We can safely isolate any degenerate mode pair of the

transmission line by properly fixing the boundary conditions
of the magnetic flux field. Therefore, we can omit the index
j, focus our attention on the first mode pair, and write the
Hamiltonian at the beginning of the dynamics as

ĤS = ωi
[(

âin
1

)†
âin

1 + (
âin

2

)†
âin

2 + 1
]
. (47)

Note that the two modes are distinguishable, thus degenerate.
At the end of the dynamics, the Hamiltonian in the Heisenberg
picture is

ĤH ≡ ωf
[(

âout
1

)†
âout

1 + (
âout

2

)†
âout

2 + 1
]
, (48)

which reads

ĤH = (1 + 2|β|2)
[(

âin
1

)†
âin

1 + (
âin

2

)†
âin

2 + 1
]

+ 2Re{αβ}[âin
1 âin

2 + (
âin

1

)†(
âin

2

)†]
+ 2iIm{αβ}[âin

1 âin
2 − (

âin
1

)†(
âin

2

)†]
(49)

in terms of the initial operators, and we have used the
Bogoliubov identity |α|2 − |β|2 = 1 for this specific one-
dimensional degenerate case.

Interestingly for our goals, it turns out that the Bogoliubov
transformations in Eq. (45) fulfill the following properties:

(i) they describe a two-mode squeezing scenario;
(ii) they couple two degenerate modes (in the specific

case, counterpropagating modes with the same frequency and
opposite momentum);

(iii) we can find a regime wherein the Bogoliubov coeffi-
cients can take real values.

The first two conditions are evident from Eqs. (45) and
(47). However, in order to demonstrate that there is a regime
wherein condition (iii) applies (i.e., the last term of Eq. (49)
vanishes), in Fig. 5 we plotted the two coupling parameters,
namely, the coefficients in the last two lines of Eq. (49), by
fixing two convenient values for ωi and ωf and varying the
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FIG. 5. Dependence of the coupling coefficients Re{αβ} (red
curve) and Im{αβ} (blue curve) on the parameter ν. When ν is much
larger than the two frequencies ωi and ωf, the imaginary part of
αβ vanishes. Chosen values: ωi = 1 and ωf = 0.35. Frequencies and
temperatures are normalized with respect to ωi.

rapidity parameter ν. The graph shows that, when ν is much
larger than the frequencies of the system, the imaginary part
of the coupling constant vanishes, and the Hamiltonian in
Eq. (49) corresponds to that in Eq. (15), with cosh( fy(tf )) =
1 + 2|β|2 and sinh( fy(tf )) = −2Re{αβ}.

Despite the strong analogy between the dynamics in the
transmission line and the adiabatic transformation described
in this work, we need to clarify an important point. Our model
interprets the adiabatic transformation of the Otto cycle as the
result of a time evolution that starts at t = 0 and terminates
at t = tf. Once the dynamics stops, we control all relevant
coefficients at time t = tf in order to optimize the phase
sensitivity. Instead, the frequency transformation in the trans-
mission line described by the Bogoliubov transformation in
Eq. (45) refers to an interaction that occurs in an infinite time,
from t = −∞ to t = +∞. The two values of the frequency,
ωi and ωf, must therefore be intended as the frequencies of
the two oscillators in the past and in the future, respectively, as
defined below Eq. (45). Nevertheless, if the transition between
the two values happens in a short time (or alternatively, if
ν 
 ωi, ωf), we can make the reasonable assumption that the
adiabatic transformation occurs in a finite time, and that the
frequency of the two oscillators in the past and in the future
are respectively the effective initial and final frequency of the
two oscillators. Moreover, at tf 
 1/ν, namely, at time t far
from the frequency transition, we can safely assume that ωf is
constant. This means that the parameter θ approximately takes
the value θ ≈ −ωf tf.

Recalling that χ ≡ − fy(tf ), and that we can control φ

and ζ by means of θ and χ [see Eqs. (5)], we can now
implement the SU(1, 1) Otto cycle in the superconducting
circuit. To realize the two isochoric transformations, we need
to couple the transmission line with the two baths, whereas
the two adiabatic transformations are accomplished by tuning
the Josephson energy. We observe that, with an appropriate
choice of circuit parameters, we can reach a regime wherein
the transmission line behaves both as Otto heat engine and as
supersensitive SU(1, 1) interferometer during each adiabatic
transformation. In particular, we obtain the normalized effi-

TABLE I. Choice of parameters.

Th 2 K
Tc 0.01 K
C 0.4 pF
L 60 pH
E0/C 1 nJ × F−1

Ncell 100
A 1
B 0.78
ν 20

ciency η = 0.23 and the normalized phase sensitivity 
φ =
0.56 with the choice of parameters reported in Table I.

D. Why the SU(1,1) interferometer?

We believe it is necessary to stress the fundamental role
of the su(1, 1) Lie algebra employed for the description of
the SU(1,1) interferometer. One may wonder for example
if it is possible to realize a similar model of QHE based
on other types of interferometers, for instance, on the well-
known Mach-Zehnder interferometer. The algebra describing
the transformations of the MZI is the su(2) Lie algebra,
which can be used to describe the rotations in the three-
dimensional space [46]. Choosing this interferometer would,
however, turn out to be inconvenient: all elements of the
su(2) Lie algebra commute with the total excitation number
operator N̂ , as can be seen by writing a possible representa-
tion N̂ = â†

1â1 + â†
2â2, B̂+ = â†

1â2 + â†
2â1, and B̂− = i(â†

1â2 −
â†

2â1). This agrees with the well-known property of MZI that
preserves the total number of photons injected into the system.
This implies that observables of interest for the thermody-
namic analysis, such as the Hamiltonian, commute with all
elements of the algebra, and are therefore not affected by the
Mach-Zehnder unitary transformation. Clearly, we cannot ex-
clude that conceiving a QHE based on more complex algebras
can be of any advantage for other purposes. However, here
we have chosen to specialize to a QHE based on the SU(1,1)
interference, which introduces great advantages in measuring
the observables with precisions that beat the SNL.

V. CONCLUSION

In this work we used mathematical tools from quan-
tum thermodynamics and quantum metrology to investigate
the performance of an SU(1, 1) quantum heat engine. This
allowed us to introduce standard concepts of quantum in-
formation theory, such as the quantum Fisher information,
which play a fundamental role in quantum thermodynamics
(see, for example, the thermodynamic uncertainty relations
[93–95]). Thus, we apply well-established protocols for phase
sensitivity in the context of the performance of quantum ther-
mal machines, an approach that has not yet been sufficiently
explored.

Our quantum heat engine exploits the outstanding quan-
tum metrological features of the SU(1,1) interferometer in
order to improve the precision in the knowledge of output
observables at the cost of a reduced efficiency. Considering
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that the decrease of the efficiency is inevitable in pro-
cesses characterized by inner friction (in our case arising
due to squeezing), the improvement of the sensitivity offers
an advantage in the thermodynamic analysis of QHEs, and
can also aid the design and analysis of future experimental
implementations.

Finally, we applied our model to a specific superconducting
transmission line, showing that it can work as a supersensitive
SU(1, 1) quantum heat engine. Clearly, we cannot exclude
that the use of other engines in circuit QED, as well as
other highly flexible quantum platforms such as Bose-Einstein
condensates [96,97], may provide similar solutions with com-
parable or better efficiency and/or sensitivity.
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