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Non-Hermitian systems have attracted much interest in recent decades, driven partly by the existence of
exotic spectral singularities, known as exceptional points (EPs), where the dimensionality of the system
evolution operator is reduced. Among various intriguing applications, the discovery of EPs has suggested
the potential for implementing a symmetric mode switch, when encircling them in a system parameter
space. However, subsequent theoretical and experimental works have revealed that dynamical encirclement
of EPs invariably results in asymmetric mode conversion; namely, the mode switching depends only on the
winding direction but not on the initial state. This chirality arises from the failure of adiabaticity due to the
complex spectrum of non-Hermitian systems. Although the chirality revealed has undoubtedly made a
significant impact in the field, a realization of the originally sought symmetric adiabatic passage in non-
Hermitian systems with EPs has since been elusive. In this work, we bridge this gap and theoretically
demonstrate that adiabaticity, and therefore a symmetric state transfer, is achievable when dynamically
winding around an EP. This becomes feasible by specifically choosing a trajectory in the system parameter
space along which the corresponding evolution operator attains a real spectrum. Our findings, thus, offer a
promise for advancing various wave manipulation protocols in both quantum and classical domains.
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Introduction—Non-Hermitian, i.e., nonconservative or
open, systems are characterized by a complex-valued
spectrum. Because of this complexity, such systems can
exhibit spectral singularities, known as exceptional points
(EPs), where both eigenvalues and eigenvectors of a
corresponding evolution operator coalesce [1]. The exist-
ence of EPs introduces a variety of rich and intriguing
phenomena not encountered in conservative, i.e.,
Hermitian, systems [2–4].
In the quantum realm, the non-Hermitian evolution

operator can be represented by either a non-Hermitian
Hamiltonian (NHH) or a Liouvillian, depending on
whether the portrayal of the system dynamics excludes
or includes the effects of quantum jumps, respectively [5].

Consequently, in the description of nonconservative (semi)
classical systems or open quantum systems upon post-
selection, exclusive reliance on the NHH formalism is
usually sufficient [6].
Since the discovery of EPs, it has been anticipated that

EPs can be potentially exploited for adiabatic state transfer,
due to the Riemann topology of the system spectrum
induced by these singularities [7–11]. That is, by winding
around an EP, one can symmetrically switch between
system eigenstates thanks to the presence of a branch
cut between two energy Riemann surfaces [12]. Adiabatic
evolution implies that this state transfer only depends on an
initial state, not on a winding direction. This observation
was also confirmed experimentally when realizing sta-
tionary, i.e., time-independent NHHs [13–17].
However, subsequent theoretical [18–20] and later

experimental [21–28] works have demonstrated that for
time-dependent NHHs the adiabaticity assumption breaks
down due to the imaginary part of the system spectrum.
Namely, when one dynamically encircles an EP, the
system inevitably experiences nonadiabatic transitions
(NATs), which lead to a state-flip asymmetry. This
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appearing chirality ensures that only the orbiting direction
determines the final state. A recent work [29] showed that
the state flip symmetry can be recovered in dissipative
systems by exploiting the spectral topology of hybrid
diabolic-exceptional points [30], but only through non-
adiabatic transformations in multimode systems.
While the chiral mode behavior revealed in time-modu-

lated non-Hermitian systems has, undoubtedly, led to
important advancements in the field, still, achieving the
originally sought symmetric adiabatic passage in such
systems has remained elusive. In this work, we bridge this
gap and demonstrate that one can restore adiabatic sym-
metric state transfer in open systems while dynamically
orbiting around an EP. This becomes feasible thanks to a
specific choice of the encircling trajectory in a system
parameter space. The protocol proposed here relies on a
proper mapping of the system parameter space of a given
NHH onto a certain submanifold, where the NHH becomes
pseudo-Hermitian, i.e., a Hamiltonian with real eigenval-
ues. Compared to systems with NATs, which are usually
associated with instabilities, our protocol exploits the
system real spectrum and therefore can provide greater
system control and robustness. The latter property is
especially crucial in the quantum domain. We illustrate
our findings with the simplest example of a dissipative two-
level system. Our results thus hold promise for advancing
light manipulation protocol in both quantum and classical
domains.
Model—We consider a two-level NHH

H ¼ ðkþ iκÞσx þ ðϵ − iΔÞσz; ð1Þ
where σx;z are Pauli matrices, and k; κ; ϵ;Δ∈R. This NHH
can describe either a classical two-level system or a
quantum one, subjected to postselection in some global
decaying reference frame [6]. As shown in Fig. 1, a
possible realization of such a system is two coupled
dissipative cavities (in the mode representation), where
Δ (−Δ) denotes the resonator gain (loss) rate and ϵ is the
frequency detuning of the resonators. The parameters k and
κ account for coherent and incoherent, i.e., dissipative,
mode coupling strengths, respectively [30–32]. This NHH
determines the state evolution via the Schrödinger equa-
tion i∂tjψðtÞi ¼ HjψðtÞi.

The Hamiltonian in Eq. (1) has complex eigen-
values E∓ ¼∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½−Δþ k − iðϵ − κÞ�½Δþ kþ iðκ þ ϵÞ�p
and admits EPs in its parameter space defined by equations
jΔEPj ¼ jkj and jϵEPj ¼ jκj. When κ ¼ 0, the NHH in
Eq. (1) reduces to the paradigmatic classical two-mode
model used for the demonstration of the chiral mode
behavior [21,33]. Indeed, while encircling the EP, the
imaginary part of the eigenenergies E� plays a fundamental
role in determining which state “survives” at the end of the
winding protocol, due to induced NATs, resulting thus in a
chiral state transfer. Evidently, the same conclusion holds
true when dynamically encircling other EPs in the system’s
complex energy space.
Mapping a non-Hermitian Hamiltonian onto a pseudo-

Hermitian one—In light of the emergent chiral mode
behavior in non-Hermitian systems with EPs, we are
motivated by the following question: Can one dynamically
encircle an EP without inducing NATs during the system
evolution? In other words, can one restore adiabatic state
transfer in a time-modulated non-Hermitian system? Below
we show that the answer is affirmative. This becomes
possible provided that, along the orbiting trajectory in a
system parameter space, a given NHH acquires a pseudo-
Hermitian form, i.e., it attains a real spectrum.
This pseudo-Hermitian transformation of the NHH in

Eq. (1) can be achieved, in particular, with the help of a
certain function f∶ r⃗ ¼ ðx; yÞ → ðΔ; ϵ; k; κÞ, which maps a
two-dimensional (2D) real space ðx; yÞ, called a chart, onto
a manifold in the 4D parameter space of the NHH. The
minimal dimension of the chart is 2D since for finding an
EP one needs only two parameters [34]. The sought
manifold can be parametrized as follows:

Δ ¼ α sinhϕi sinϕr; ϵ ¼ α coshϕi cosϕr;

k ¼ α coshϕi sinϕr; κ ¼ α sinhϕi cosϕr; ð2Þ

where ϕ ¼ ϕr þ iϕi ¼ arctan ½ðxþ iyÞ−1�∈C, and
α ¼ x sinhϕi= sinϕr ∈R. This manifold describes a 4D
hyperboloid with a nonconstant curvature α determined by
the relation ϵ2 þ k2 − Δ2 − κ2 ¼ α2. High-dimensional
hyperboloid space parametrizations find applications in
various fields of mathematics and physics. A notable
example is the anti–de Sitter spacetime with a constant
curvature, establishing the anti–de Sitter and conformal
field theory (AdS/CFT) correspondence, which links quan-
tum gravity to quantum field theories [35].
With the help of Eq. (2), the Hamiltonian H in Eq. (1)

and its eigenenergies E acquire the form

H ¼ α

�
cosϕ sinϕ

sinϕ − cosϕ

�
; E1;2 ¼∓ α: ð3Þ

The embedding in Eq. (2) (an injective continuous map)
guarantees that the NHH has real eigenvalues �α on the

FIG. 1. Schematic representation of an open system described
by a non-Hermitian Hamiltonian H in Eq. (1). The system
consists of two cavities, detuned in frequency �ϵ, and coupled
coherently with interaction strength k, and dissipatively with
strength κ. Both cavities can be amplified with gain rate Δ or
experience losses with rate −Δ.
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whole ðx; yÞ chart. In other words, this parametrization is
the one that ensures that the corresponding 4D system
parameter hyperboloid results in real-valued eigenvalues.
The corresponding right eigenvectors of H are

jψ1i≡
�
−sin

ϕ

2
;cos

ϕ

2

�
T
; jψ2i≡

�
cos

ϕ

2
; sin

ϕ

2

�
T
; ð4Þ

where T stands for transpose. Together with the left
eigenvectors [36]

jη1i≡
�
−sin

ϕ�

2
;cos

ϕ�

2

�
T
; jη2i≡

�
cos

ϕ�

2
;sin

ϕ�

2

�
T
; ð5Þ

they form the biorthogonal basis, i.e., hηjjψki ¼ δjk. The
introduction of the left eigenvectors, i.e., dual vector
space, is necessary since the right eigenvectors alone are
nonorthogonal [37].
Explicitly, the acquired pseudo-Hermiticity of the NHH

in Eq. (3) on a given 4D hyperboloid means that there is a
Hermitian operator ξ, such that H† ¼ ξ−1Hξ [39], and this
symmetry is exact on the whole parametrized 4D space.
The operator ξ does not necessarily express this symmetry
globally, i.e., independently of the system parameters, but
can exhibit it locally, as can be expected from the chosen
parametrization. Obviously, one can take ξ ¼ MM†, where
M is the diagonalizing matrix of H, whose columns are
formed by the right eigenvector jψ1;2i in Eq. (4) [40].
The eigenenergy manifold of the NHH is characterized

by the Riemann topology, where two real-valued energy
surfaces wrapped around two EPs on the ðx; yÞ plane at
r⃗EP ¼ ð0;�1Þ (see Fig. 2). Accordingly, in the 4D hyper-
boloid parameter space, these EPs are defined at ϵEP ¼∓ 1,
ΔEP ¼ kEP ¼ 0, and κEP ¼ 1 [43]. Moreover, the branch
cut corresponds to the finite diabolic zero-energy line, with
these two EPs on its ends (Fig. 2). The right eigenvectors

become equivalent at the EPs, up to a certain global phase,
namely, jψ1iEP ≡ exp ð�iπ=2Þjψ2iEP, respectively.
Adiabatic state transfer while dynamically encircling an

EP—Here we demonstrate that the dynamics governed by
the time-dependent NHH in Eq. (3) is free from NATs,
implying that the states can adiabatically evolve along the
orbits on the parametrized space while dynamically encir-
cling the EP. Let us first define the system time-evolution
trajectory as

xðtÞ ¼ r sinðωtþ ϕ0Þ;
yðtÞ ¼ 1 − r cosðωtþ ϕ0Þ; ð6Þ

where r;ω;ϕ0 ∈R are constants, and the time t is presented
in arbitrary units. Correspondingly, we change HðtÞ in
Eq. (3). The path in Eq. (6) describes a circle with a radius r
on the plane ðx; yÞ, whose center is at the EP, r⃗EP ¼ ð0; 1Þ
[see Figs. 4(a) and 4(b)]. The starting point corresponds to
the phase ϕ0 ¼ π, where the two energy levels E1;2 are
maximally separated. For the angular frequency ω > 0
(ω < 0), the orbiting trajectory goes counterclockwise
(clockwise). This circle trajectory on the chart corresponds
to a loop on the surface of the 4D hyperboloid due to the
embedding nature of the map f (see also Fig. 3).
We initialize the system in one of the right eigenstates in

Eq. (4), namely, jψðt ¼ 0Þi ¼ jψki, and then we find the
evolving state jψðtÞi by numerically integrating the

FIG. 2. Eigenenergy spectrum E of the pseudo-Hermitian
Hamiltonian H given in Eq. (3). The spectrum consists of energy
Riemann surfaces wrapped around two EPs (red circles). The
spectrum is purely real on the ðx; yÞ plane, and, therefore, on the
corresponding 4D hyperboloid in the system parameter space
described in Eq. (2).

(a) (b)

(c)

FIG. 3. Time-modulated system parameters in Eq. (2) when
winding in the counterclockwise direction in the chart ðx; yÞ,
according to Eq. (6). (a) Gain-loss rates Δ (red solid curve), and
frequency detuning ϵ (blue dashed curve). (b) Coherent k (green
solid curve) and incoherent κ (orange dashed curve) mode-
coupling strengths, respectively. (c) A projection of the corre-
sponding loop on a surface of the 4D hyperboloid, in the system
parameter space, onto the subspaces ðϵ;ΔÞ (cyan solid curve) and
ðk; κÞ (purple dashed curve), respectively. Red points denote the
same EP in both subspaces, which correspond to that in Fig. 2 for
ðx ¼ 0; y ¼ 1Þ. In all panels, the winding radius is set at r ¼ 0.5
and the angular frequency is ω ¼ 2π.
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Schrödinger equation. To track the state dynamics, we
calculate the fidelity Fjk ¼ jhηjjψðtÞij2, i.e., the overlap of
jψðtÞi with the instantaneous left eigenvector jηji of the
NHH [44]. Instantaneous in the sense that for each time
step we independently calculate the left eigenvectors of the
NHH in Eq. (5) by substituting the parameters obtained by
½xðtÞ; yðtÞ� in Eq. (5) [45]. The results of these calculations
for different winding directions and initialized states are
shown in Fig. 4. For completeness, we also calculate the
fidelity between evolving right eigenstates and left eigenm-
odes at t ¼ 0 in the Supplemental Material [46].
As one can see in Fig. 4, the eigenstates jψ1i → jψ2i and

jψ2i → jψ1i are exchanged after one period T ¼ 2π=ω,
regardless of the encircling direction, exhibiting thus the
adiabatic character of the state evolution. For instance, the
system initialized in the state jψ1i [blue lower energy
surface in Figs. 4(a) and 4(b)], continuously evolves until
the branch cut, corresponding to the half of the period T=2
[see Figs. 4(c) and 4(e)]. After that, the evolving state starts
moving on the upper green energy surface, corresponding
to the eigenstate with energy E2. Thus, after completing the
full cycle, independently on the encircling path, the initial
eigenstate jψ1i is switched to the eigenstate jψ2i, and vice
versa [see Figs. 4(d) and 4(f)].
Such an adiabatic behavior is in striking contrast to the

previously studied non-Hermitian systems with EPs, where
the presence of complex Riemann topology always leads to
the nonadiabatic jumps during the state evolution. Here, on
the other hand, thanks to the purely real spectrum of the

NHH along the chosen trajectory, the presence of NATs is
eliminated, allowing us to restore the adiabatic nature of the
non-Hermitian state dynamics.
Discussion—The results shown above remain unaffected

by incorporating an additional σy term in the NHH in
Eq. (1), provided that it is handled appropriately [46]. Also,
the mode switching protocol presented does not depend on
the encircling radius r in Eq. (6), if the trajectories for
different r remain equivalent in the sense that they encircle
the same number of EP(s) [47].
When considering the stability of the observed adiabatic

dynamics upon a perturbation of the NHH in Eq. (3) as
H0 ¼ H þHδ, its behavior can vary drastically depending
on the nature of the disturbance. Evidently, a perturbation
that breaks the pseudo-Hermiticity of the NHH in Eq. (3)
may substantially affect the state evolution. If the pertur-
bation just shifts the NHH spectrum by an imaginary
constant (Hδ ¼ −iγI2, where I2 is the identity matrix), the
adiabaticity is preserved and no NATs are induced in the
system [48]. This property can be utilized, e.g., for
implementing a symmetric mode converter in purely
dissipative quantum systems, i.e., with no gain [50,51].
However, by perturbing the system, e.g., as
Hδ ¼ diag½δ; 0�, where diag stands for a diagonal matrix,

the induced difference ν ∼ Im
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ 4α2 þ 4αδ cosϕ
p i

in

the imaginary parts for the two eigenvalues of H0 becomes
larger for larger jδj. The latter can eventually lead to the
emergence of NATs in the system dynamics and, therefore,
to a chiral state transfer for ν ≫ 0 [52] (see details in the

(a)

(b)

(c) (d)

(e) (f)

FIG. 4. Adiabatic state transfer while dynamically encircling around an EP in the ðx; yÞ plane. Schematic representation of the
clockwise (a) and counterclockwise (b) winding direction. In (a),(b) the initial state is jψ1i, corresponding to the E1 energy surface (blue
surface). (c)–(f) Fidelity Fjk ¼ jhηjjψðtÞkij2 between the time-evolving right eigenstate jψkðtÞi and static left eigenvector jηji of the
NHH in Eq. (3) while encircling the EP. Panels (c)–(d) Counterclockwise winding and (e)–(f) Clockwise winding. The other parameters
are r ¼ 0.5, ω ¼ π=100, and ϕ0 ¼ π, according to Eq. (6). The right eigenstates are exchanged after the complete dynamical cycle
regardless of the winding direction. The state dynamics exhibits a purely adiabatic character with no NATs; thus, enabling one to
implement a symmetric state switch.
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Supplemental Material [46]). Furthermore, this perturba-
tion-induced chirality, if controlled, can also enable one to
switch between symmetric and asymmetric regimes on
demand.
Conclusions—We have demonstrated that time-modu-

lated non-Hermitian systems can exhibit pure adiabatic
dynamics while dynamically encircling EP in their param-
eter space. This is in striking contrast to previous works,
where the system complex spectrum always leads to NATs
during state evolution, and therefore to asymmetric state
transfer. Remarkably, the adiabaticity can be eventually
restored by properly mapping the system parameter space
onto a certain manifold, over which a given NHH becomes
pseudo-Hermitian with a real spectrum. In particular, this
procedure allows to realize a long-sought symmetric mode
converter, where system eigenstates are always dynami-
cally swapped regardless of the EP winding direction.
Evidently, the presented results also echo the adiabatic

rapid passage (ARP) protocol in Hermitian systems, where
a symmetric state switch is realized by adiabatically driving
a system along closed loops through diabolic points (DPs)
in a system parameter space [54,55]. In that respect, our
findings can be treated as a non-Hermitian extension of the
ARP. Indeed, the ARP protocol contains crossings of DPs,
our switch protocol involves crossings of the diabolic lines
while encircling the EPs. Though our protocol is purely
adiabatic, whereas the ARP includes a diabatic (i.e.,
rapid) stage.
Because of the absence of NATs, this observed mode

switching mechanism, which exploits energy Riemann
topology, among others, can also hold promise for advanc-
ing the field of holonomic computations [56–58]. Our
findings, thus, open new avenues for the development of
novel light manipulation protocols in both classical and
quantum photonics.
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