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The implementation of quantum technologies in electronics leads naturally to the concept of coherent single-
electron circuits, in which a single charge is used coherently to provide enhanced performance. In this work,
we propose a coherent single-electron device that operates as an electrically-tunable capacitor. This system
exhibits an oscillating dependence of the capacitance with voltage, in which the amplitude of the capacitance
changes and the voltage period can be tuned by electric means. The device concept is based on double-passage
Landau-Zener-Stückelberg-Majorana interferometry of a coupled two-level system that is further tunnel coupled
to an electron reservoir. We test this model experimentally by performing Landau-Zener-Stückelberg-Majorana
interferometry in a single-electron double quantum dot coupled to an electron reservoir and show that the voltage
period of the capacitance oscillations is directly proportional to the excitation frequency and that the amplitude
of the oscillations depends on the dynamical parameters of the system: intrinsic relaxation and coherence times,
as well as the tunneling rate to the reservoir. Our work opens up an opportunity to use the nonlinear capacitance
of double quantum dots to obtain enhanced device functionalities.
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I. INTRODUCTION

The new wave of quantum technologies aims at using basic
principles of quantum mechanics, such as superposition or en-
tanglement, to obtain functionality beyond what conventional
devices can provide [1–3]. In the field of nanoelectronics,
superposition and entanglement can be harnessed to build
coherent quantum circuits that can be used, for example, for
quantum information processing [3], precision sensing [4],
and quantum-limited amplification [5,6]. To produce a coher-
ent superposition between quantum states in nanoelectronic
circuits, Landau-Zener-Stückelberg-Majorana (LZSM) inter-
ferometry [7,8] is a prime example. In LZSM interferometry,
a quantum two-level system [9] is driven strongly across
an avoided energy-level crossing producing first a quantum
superposition between the ground and excited state of the
system. These states evolve with different dynamical phases
and, following a second passage through the anticrossing,
coherent interference between these two states can occur
[10,11]. LZSM interference has been observed in a number of
different platforms such as Rydberg atoms [12], superconduc-
tive Josephson junctions [11,13,14], nitrogen vacancy centers
in diamond [15], silicon charge qubits in complementary
metal-oxide semiconductor (CMOS) technology [16–19], and
silicon carbide devices [20]. Moreover, it has been used as

a diagnostic tool to obtain physical parameters of two-level
systems as well as a method for the fast manipulation of
spin-based qubits [21].

Although standard LZSM interferometry has been exten-
sively studied for two-level systems, realistic quantum sys-
tems may have more than just two levels. Multilevel LZSM
physics has been observed, for example, in superconducting
qubits [22–26] and semiconductor quantum dots [27–34].

Here, we present an application of multi-level LZSM in-
terferometry to propose a device that presents an oscillatory
dependence of the capacitance with voltage in which the
amplitude of the capacitance changes, and the voltage period
can be tuned by electric means. The device is a tunable ca-
pacitor based on LZSM interferometry of a coupled two-level
system that is further tunnel coupled to an electron reservoir.
In the double-passage regime, we find that the capacitance
of the system varies periodically with the bias voltage and
that the amplitude of the capacitance changes depends on the
intrinsic relaxation and phase coherence times of the electron
as well as the tunnel rate to the reservoir.

We implement the capacitor experimentally and explore its
functional dependence with bias voltage and drive frequency
following our work on a silicon single-electron double quan-
tum dot (DQD) defined in the topmost corners of a nanowire
transistor [35,36] that is also coupled to an electronic
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FIG. 1. Quantum interference capacitor proposal. (a) Schematic illustration of a DQD coupled to a reservoir and the relevant charge
states and tunneling processes. (b) Left, circuit representation of the DQD coupled to a reservoir. Right, equivalent circuit which includes the
geometrical Cgeom and parametric Cpm capacitance in parallel. (c) Energy levels of the DQD as a function of detuning. Here �1 is the relaxation
rate from |e〉 to |g〉, and �̂1 from |g〉 to |e〉. The red lines indicate charge states involving the reservoir and cross |g〉 at ε = ±ε̂. �R indicates the
QD1-reservoir tunnel rate. Below the graph, the horizontal double arrow indicates the cycle to perform double-passage LZSM interferometry
and its central dot indicates the offset detuning ε0. (d) Simulated parametric capacitance Cpm, normalized to its maximal value C0

pm, versus the
detuning ε0 normalized to the MW amplitude A, for T1 = 50 ns, T2 = 35 ps, TR = 30 ps, and ω/2π = 11 GHz.

reservoir [32]. We drive the system in the LZSM double-
passage regime using microwave excitations and probe the
nonlinear parametric capacitance of the driven system using
radiowave reflectometry. Finally, we compare the theory and
experiment and find good agreement that enables us to de-
termine the dynamical parameters of the system: intrinsic re-
laxation and coherence time as well as quantum-dot-reservoir
tunneling rate.

II. QUANTUM INTERFERENCE CAPACITOR PROPOSAL

In this section, we describe the physical requirements of the
quantum interference capacitor. We consider a quantum two-
level system where the two levels correspond to two different
charge states. The energy difference between levels can be
controlled by a tuning parameter ε in timescales comparable
or faster than the characteristic relaxation (T1) and coherence
times (T2) of the system. The two levels are coupled via a
coupling term �. The Hamiltonian of the two-level system,
expressed in terms of the Pauli spin matrices, is

H (t ) = −�

2
σx − ε(t )

2
σz. (1)

Furthermore, the system must be tunnel coupled to the charge
reservoir to allow particle exchange. These elementary re-
quirements can be found in a variety of systems [9], such as
superconducting charge qubits [1,2], impurities in semicon-
ductors [17], and DQDs [37,38]. In this paper, we focus on the
latter for the case where the charged particles are electrons.

In a single-electron DQD, an electron is shared among
the QDs giving rise to two possible classical charge con-
figurations (n1n2) = (10) and (01), where ni corresponds to
the number of charges in the ith QD. We consider the case
in which an electron can tunnel between the QDs and can
also exchange particles with an electron reservoir [states (00)
or (11)], see Fig. 1(a). For a DQD, ε represents the energy
detuning between the (10) and (01) charge states, and � is the
tunnel coupling that mixes them at ε = 0.

In Fig. 1(b), we present the minimal electrical circuit to
implement the quantum interference capacitor. The two QDs
are connected to a top-gate electrode via the gate capacitances
CGi. The QDs are tunnel coupled to each other via a mutual
capacitance Cm, and QD1 is further tunnel-coupled to a reser-
voir via a capacitance CD. The differential capacitance, as seen
from the top gate, can be expressed as [39–41]

Cdiff = ∂ (Q1 + Q2)

∂VTG
= Cgeom + Cpm, (2)

where VTG is the top-gate voltage and Qi is the total charge
in the respective QD, that includes the discrete charges ni and
externally induced charge by the gate electrodes. Here Cgeom

is the geometrical capacitance and Cpm is a voltage-dependent
term, the quantum capacitance, see the equivalent circuit on
the right side of Fig. 1(b). We consider the weak coupling
limit Cm � CGi,CD, where the geometrical capacitance reads
Cgeom = CG2/(CG2 + CD). The parametric capacitance can be
probed with a sinusoidal detuning ε(t ) = ε0 + εrsin(ωrt ) and,
when it has a small amplitude εr � �, low frequency (ωr
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lower than the relaxation rates of the system) and offset ε0,
its average value can be expressed as [32],

Cpm = 2e2α2
−

∂

∂ε0

[
P01 − P10 + α+

α−
(P00 − P11)

]
. (3)

Here α± = (α2 ± α1)/2, where α1 = CG1/(CG1 + Cm) and
α2 = CG2/(CG2 + Cm + CD) are the QD-gate couplings. Note
that we have used the expression

ε = −2eα−
(
VTG − V 0

TG

)
, (4)

with V 0
TG denoting the top-gate voltage where the states (10)

and (01) anticross, to relate the top-gate voltage to the induced
detuning. Finally, Pn1n2 refers to the probability of being in the
electronic state (n1n2). For the implementation of the quantum
interference capacitor, we will consider DQDs with similar
gate couplings, α− � α+, so that the parametric capacitance
in Eq. (3) is predominately determined by changes in P00

or P11.
Next, we subject the DQD to a faster oscillatory detuning

ε(t ) = ε0 + Asin(ωt ) + δε(t ), where A is the amplitude of
the detuning oscillations, ω is the frequency of the driving
field (ω � ωr) and δε(t ) is the classical noise. When a
coupled two-level system is subject to periodic driving with
sufficiently large amplitude, LZSM transitions between the
ground |g〉 and excited state |e〉 of the Hamiltonian in Eq. (1)
can occur. We consider the scenario in which the system
performs a double passage through the anticrossing producing
the LZSM interference and then a QD exchanges particles
with the electron reservoir, see Fig. 1(c). For simplicity, we
explain the cycle that involves the (01)-(11) particle exchange
process (indicated by the black horizontal arrow) although the
discussion also applies for the symmetric drive with respect to
ε = 0 where the exchange is (00)-(10).

The dynamics of the two-level system can be described by
a master equation:

∂t Pg = [W (ε0) + �1]Pe − [W (ε0) + �̂1]Pg, Pg + Pe = 1, (5)

where W is the rate of the LZSM transitions, �1 is the
relaxation rate from the excited state |e〉 to the ground state
|g〉, and �̂1 from |g〉 to |e〉, see Fig. 1(c). We consider the
low-temperature limit kBT � �, where �̂1 = 0. Therefore,
Eq. (5) can be written as

∂t Pg = [W (ε0) + �1]Pe − W (ε0)Pg. (6)

We calculate the stationary solution of the system and find

Pg = 1 − W (ε0)

2W (ε0) + �1
. (7)

After a second passage, considering (01) as a starting
point, the system exchanges electrons with the reservoir. The
probability P11 at that point can be expressed as

P11 = PR(ε0)

(
1 − W (ε0)

2W (ε0) + �1

)
, (8)

where PR represents the tunneling probability to the reservoir.
PR can be expressed as PR(ε0) = 1 − exp (−tR/TR), where TR

is the QD-reservoir relaxation time and tR represents the time
the electron spends after passing the crossing point between

the (01) and (11) charge states at ε = ε̂. Given the functional
shape of the drive, we obtain

PR(ε0) = 1 − exp

{ −1

TRω

[
π − 2 arcsin

(
ε̂ − ε0

A

)]}
. (9)

The probability of the (11) state increases as the system
expends more time passing the crossing point. Eventually, we
calculate the derivative of the probability P11 with respect to
the detuning as it enters in Eq. (3),

∂ε0 P11 = ∂ε0 PR(ε0)

[
1 − W (ε0)

2W (ε0) + �1

]

− PR(ε0)
�1∂ε0W (ε0)

[2W (ε0) + �1]2
. (10)

As the detuning gets closer to ε̂, the first term in Eq. (10)
becomes negligible compared to the second one, leading to
the final expression for the variation of the probability P11

∂ε0 P11 ≈ −PR(ε0)
T1∂ε0W (ε0)

[1 + 2W (ε0)T1]2 , (11)

with T1 = �−1
1 . Therefore, the problem of calculating Cpm

reduces to calculating the rate of the LZSM transitions, which
we do in the following. After the first passage through the
anticrossing, the system acquires a dynamical phase due
to the energy difference between the two energy states as
follows [14]

�θ (τ ) =
∫ t+τ

t
(Ee − Eg)dt = �

∫ t+τ

t
e−iφ(t)dt, (12)

where φ(t ) refers to the driving mechanism, φ(τ ) =∫ τ

0 ε(t )dt , and we assumed h̄ = 1. Once the system is far from
the avoided crossing, the |e〉 and |g〉 states evolve indepen-
dently, accumulating the so-called Stückelberg phase �θe↔g

and the rate of LZSM transitions can be expressed as

W (ε) = lim
τ→∞

�θ (t )e↔g�θ∗(t + τ )e↔g

τ
. (13)

Using the Jacobi-Anger expansion, exp(iz sinγ ) =∑∞
n=−∞ Jn(z)einγ , where Jn(z) are Bessel functions of the

first kind. We associate the noise energy term exp (−iδε(t ))
to a noise in the phase exp (−iδφ(t )). As a result, when we
integrate Eq. (12), we obtain

W (ε0) = �2

2

∫ τ

0

∑
n

J2
n

(
A

ω

)
e−t[iT2(ε0−nω)−1]/T2 dt, (14)

where we made use of the white noise theorem
〈e−iδφ(t )e−iδφ(t+τ )〉 = e−τ/T2 . Assuming n to be large in
Eq. (14), the Bessel function can be approximated to the Airy
function as Jn( A

ω
) = A

ω
Ai[ A

ω
(n − A

ω
)]. Furthermore, using the

approximation π cot πz ≈ ∑∞
n=−∞

1
z−n , the LZSM transition

rate becomes

W (ε0) = π�2ζ 2

2ω
Ai2

[
ζ

ω
(ε0 − A)

]
exp(−t1/T2), (15)

where

ζ = (2 ω/A)1/3, and t1 = 2 [π − arcsin(ε0/A)]/ω (16)
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is the time after the first passage. We restore h̄ and write the
parametric capacitance explicitly:

Cpm = C0
pm

2πAi′(u)Ai(u)

(1 + γ Ai2(u))2
, u = ζ (ε0 − A)

h̄ω
, (17)

where

C0
pm(ε0) = e2α−α+ζγ

π h̄ω

[
1 − exp

(
− tR

TR

)]
, (18)

γ = T1
πζ 2�2

h̄2ω
exp(−t1/T2). (19)

Using Eq. (17), in Fig. 1(d), we show a plot of the normal-
ized Cpm as a function of the reduced detuning ε0/A for A =
ε̂ and ω/2π = 11 GHz, T1 = 50 ns, T2 = 35 ps, and TR =
30 ps. For values ε0 < A, the parametric capacitance shows
an oscillatory behavior as a function of detuning, whereas
for ε0 > A the signal decays exponentially. In the oscillatory
region, the variation of the amplitude of the oscillations with
detuning is determined by T2 and TR, whereas the overall
amplitude depends on ω, T1, T2, and TR. To facilitate the
understanding of the functional dependence Cpm, in the limit
ε0 < A, we find that Eq. (17) can be simplified to

Cpm = C0
pm(VTG) cos

[
2π

VTG − VTG,0

δVTG

]
, (20)

where δVTG = π h̄ω/(2
√

2eα−) is the top-gate voltage period.
To elucidate the validity of our model, we study the imple-
mentation of the quantum interference capacitor using LZSM
interferometry in a single-electron DQD strongly driven by a
microwave (MW) field.

III. EXPERIMENTAL RESULTS

We now turn to a concrete implementation of the quantum
interference capacitor, consisting of a single-electron DQD in
which we perform LZSM interferometry. Our device consists
of a silicon nanowire transistor fabricated using industrial
300 mm silicon-on-insulator (SOI) technology, as described
in previous work [35,36,42] and shown in Fig. 2(a). The
nanowire is 11 nm high, with a width of 60 nm, while a 40 nm
wide wrap-around top gate covers the nanowire, separated
by a SiO2/HfSiON dielectric layer. In such square-section
transistors, when a positive top-gate voltage (VTG) is applied,
electron accumulation occurs along the topmost corners of
the channel, resulting in a DQD in parallel with the source
and drain electron reservoirs. This situation is shown in the
schematic in Fig. 2(b). The use of SOI technology enables
back gating the device by applying a voltage (VBG) to the
silicon intrinsic handle wafer, made temporarily conductive
by flashing a blue LED placed on the sample printed circuit
board at 35 mK.

FIG. 2. Experiment. (a) Scanning electron microscope image of a device similar to the one measured connected to a radio frequency
reflectometry setup via the top gate. The RF signal is applied via a 100 pF capacitor and a 390 nH inductor. VTG is applied via an on-chip
bias tee with a 100 k� resistor. The drain of the device is AC grounded via a 100 pF capacitor. (b) Schematic of the device indicating the
location of the corner quantum dots in top view, with the top gate transparent for clarity. The electronic transitions are marked by arrows, and
� represents the tunnel coupling. (c) Color map of the DQD charge stability diagram extracted from reflectometry measurements. The dashed
white line indicates the interdot charge transition. The letters indicate sequential operations: starting from the (11) state at point A, followed
by the unloading of an electron to (10) at point B, the creation of a superposition at point C, a return back to B across the transition to create
the interference, which is then projected back onto (11) when returning to A. (d) Measured resonator phase response ��, normalized by its
maximal value ��0, vs gate voltage, VTG, for a probing frequency ω/2π = 11 GHz.
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To measure the parametric capacitance of the DQD, we
employ gate-based radiofrequency (RF) reflectometry by em-
bedding the transistor in an electrical LC resonator via the
top-gate electrode [43–47]. The resonator consists of a surface
mount inductor (L = 390 nH) in series with the parallel
combination of the parasitic capacitance to ground and the
device differential capacitance Cdiff, see Fig. 2(a). In this case,
both parasitic capacitance and geometrical capacitance of the
device can be lumped together in a total capacitance term,
CT = 660 fF. Changes in Cpm due to single electron tunneling
events manifest as changes in the natural frequency of oscilla-
tion of the resonator, ωr(Cpm) = 1/

√
L(CT + Cpm). Since we

measure at a fixed frequency ωr0 = ωr(0) = 2π × 313 MHz,
capacitance changes appear as variations in the phase response
of the reflected signal

�� = −2QCpm/CT, (21)

where Q is the resonator loaded quality factor, Q ∼ 40. To
detect these phase changes we use low-noise cryogenic and
room-temperature amplification combined with homodyne
detection.

In order to perform LZSM interferometry, we apply MW
signals directly to the source of the transistor. We operate the
DQD in the charge-qubit regime. The DQD is further coupled
to an electron reservoir at the source and drain, with one quan-
tum dot being significantly more coupled to the reservoirs
than the other, as shown in Fig. 2(b). We measure the charge
stability diagram of the device as a function of the top and
back gates, as shown in Fig. 2(c). We see four stable charge
configurations (n1n2). In the absence of additional charge
transitions at lower gate voltages, we tentatively conclude
that lower voltages result in the system being depleted of
electrons. We therefore operate in the single-electron regime,
with the electron occupying the left or right dot, denoted as
the state (10) or (01). Loading or unloading of an electron
from or into a reservoir leads to the states (11) and (00),

respectively. From the FWHM of the interdot charge transition
line [(10) ↔ (01)] [40], we extract � = 34 μeV.

Next, we apply MWs (with the amplitude A = ε̂ and
frequency ω/2π = 11 GHz) to the source of the transistor,
effectively varying VTG at a fixed VBG, as indicated along the
set of lines in Fig. 2(c). The MW field drives the system back
and forth between the different charge states. For example,
if the system begins in state (11), indicated by point A in
Fig. 2(c), and is then driven to lower gate voltage (point B),
an electron exits the DQD: state (01). At even lower gate
voltages (point C), the system traverses the (01)-(10) anti-
crossing, the system performs a LZSM transition, and its wave
function is therefore split into two components, acquiring
different dynamical phases. Upon a sweep back to higher gate
voltage, the system undergoes a second passage through the
anticrossing, resulting in interference in the probabilities of
the (10) and (01) states (point B again). Finally, the state (01)
is projected by relaxation to the (11) state in point A and the
cycle starts again. Since ωr � ω, the resonator sees an average
of the occupation probabilities of the DQD at each point in
detuning. These changes in probabilities manifest as changes
in the parametric capacitance of the DQD, which we detect
via changes in the phase response.

In Fig. 2(d), we plot the results of the drive sequence in
Fig. 2(c), where we show the normalized phase response,
��/��0, as a function of VTG for VBG = −4.3 V. For VTG <

0.4875V , where LZSM interference occurs, we observe the
predicted oscillatory phase response. The oscillations de-
crease in amplitude when decreasing VTG, as predicted by our
model, see Fig. 1(d). Finally, for VTG > 0.4875V , the phase
response decays rapidly as predicted by Eq. (17).

IV. COMPARISON BETWEEN THEORY
AND EXPERIMENT

Comparing Figs. 1(d) and 2(d), we observe a good agree-
ment between our theoretical prediction and the experiments.

FIG. 3. Microwave frequency dependence: experiment and theory. (a) Experimental normalized response of the resonator phase shift as a
function of the top-gate voltage for microwave frequencies ω/2π = 4.72 (black), 6.9 (red), 8 (blue), 11 (green), 15 (purple), 21 GHz (yellow).
Traces are displaced upwards by 1.8 for clarity. (b) Calculated normalized parametric capacitance as a function of the reduced detuning for
the same frequencies as in (a) using T1 = 50 ns, T2 = 35 ps, and TR = 30 ps. Traces are displaced upwards by 1.45. (c) Position in VTG of the
maximum of the Fourier transform of the experimental data in (a) as a function of ω, and linear fit as theoretically expected from the Fourier
transform of Eq. (20).
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The calculations reproduce the experimentally observed os-
cillating dependence and amplitude attenuation of the capaci-
tance, with good agreement in the voltage regions in which the
LZSM experiments were performed. Now, we explore further
the validity of our model by probing the system at differ-
ent MW frequencies. In Fig. 3(a), we show the normalized
resonator phase response as a function of VTG for six differ-
ent frequencies, ranging from 4.72 GHz (black) to 21 GHz
(yellow). Additionally, in Fig. 3(b), we show the normalized
parametric capacitance obtained with Eq. (17) using the same
frequencies as in the experiment, with T1 = 50 ns, T2 = 35 ps,
and TR = 30 ps. We observe that our model reproduces well
the experimental results. It captures the frequency and detun-
ing dependence of the amplitude oscillations, as well as the
change in oscillation lineshape at the highest MW frequencies
(see yellow trace). Changing the rate at which the system is
driven enables testing both the oscillating dependence and the
amplitude of the signal predicted by Eq. (17).

First, we explore the oscillating shape of the signal. In
Fig. 3(c), we plot the top-gate voltage at which the maximum
in the Fourier transform of the data in Fig. 3(a) occurs
for different MW frequencies. We observe a linear relation
between both magnitudes. The results confirm the functional
dependence between the parametric capacitance and VTG pro-
posed in Eq. (20). From the fit we extract a QD gate coupling
difference, α− = 0.06 ± 0.004.

Next, in Fig. 4, we explore the dependence of the amplitude
of the capacitance oscillations with VTG (or equivalently ε0)
and ω. In Fig. 4(a), we show the data for the normalized
phase response as a function of reduced detuning, where we
have used Eq. (4) with V 0

TG = 0.475 V and A = 1.35 meV. In
this case, we show the data for the cycle involving (00)-(10)
particle exchange with the reservoir to show the symmetry
of the signal with respect to ε = 0. Here, we observe the
amplitude of the oscillations decaying with increasing VTG.
Looking at Eq. (17), we see that the envelope of the oscil-
lations is determined by T2 and TR. Intuitively, for values
ε0 ≈ A, the system spends less time after the first passage and
hence the effect of decoherence in the amplitude of the signal
is reduced. Additionally, at this detuning setting, the system
has more time to tunnel to the reservoir increasing the overall
amplitude of the signal. On the contrary, for values ε0 ≈ 0,
the system has more time to decohere and less to tunnel to the
reservoir, leading to a reduced phase amplitude. The shape of
the envelope allows determining T2 = 35 ps and TR = 30 ps,
extracted from the fit [red lines in Fig. 4(a)].

Finally, in Fig. 4(b), we explore the peak-to-peak ampli-
tude of the capacitance oscillations as a function of ω. As
we increase the frequency, we observe an increase in the
peak-to-peak amplitude until ω/2π ≈ 10 GHz, where it starts
to decay. These results can be explained as a competition
between the different timescales of the system, T1, T2, and
TR, as can be seen in Eq. (17). In the following, we explain
this competition qualitatively. Starting at low ω, where the
frequency is still comparable to the decoherence rate, the
system cannot always complete the LZSM interference cycle
leading to a lower capacitance signal. As we increase the fre-
quency, the signal increases because, on average, more LZSM
cycles are completed. However, as we continue increasing ω,
the TR processes start to matter since the system may not

FIG. 4. Amplitude analysis. (a) Experimental normalized phase
response as a function of the reduced detuning for ω/2π = 11 GHz
and the envelope of the oscillations obtained using the envelope of
Eq. (17) and T2 = 35 ps and TR = 30 ps (red). (b) Experimental
normalized peak-to-peak amplitude of phase response (black dots).
Calculated normalized peak-to-peak parametric capacitance as a
function of the MW frequency for an intrinsic relaxation time T1 =
50 ns, T2 = 35 ps, and TR = 30 ps (blue dotted line).

have sufficient time to relax to the reservoir. The position of
the maximum in this experiment is determined primarily by
the competition of these two processes. However, in general
the ratio between the LZSM transition rate and the DQD
relaxation rate influences the position of the maximum. In
our case, we observe a dependence of the maximum with T1

that enables estimating this parameter. In Fig. 4(b), we plot
the best fit, using the already extracted values of T2 = 35 ps
and TR = 30 ps, and find T1 = 50 ns. Both charge relaxation
and coherence times are compatible with other measurements
in silicon qubits [17]. Overall, the good agreement between
the theoretical model and the experiment indicates a viable
scheme for the quantum interference capacitor and enables
understanding the different timescales of the system from the
shape of the capacitance curves.

V. CONCLUSIONS

In this paper, we have introduced the idea of a capacitor
that obtains its functionality from quantum interference in
a system with discrete charge states. We have demonstrated
a particular implementation using a single-electron double
quantum dot coupled to an electron reservoir under the effect
of a strong MW driving field. The system shows an oscillatory
behavior of the capacitance as a function of the QD energy
level detuning, whose amplitude is determined by the charge
relaxation time T1, coherence time T2, and tunneling time
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to the reservoir TR. The voltage period of the capacitance
oscillations is directly proportional to the frequency of the
MW excitation. Our model, based on a semiclassical master-
equation formalism, captures the dynamics of the system and
enables predicting the capacitive response of a DQD in the
double-passage LZSM regime. Our work opens up an oppor-
tunity to use the nonlinear capacitance of double quantum dots
to design devices with enhanced functionality.
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