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A conventional realization of quantum logic gates and control is based on resonant Rabi oscillations
of the occupation probability of the system. This approach has certain limitations and complications, like
counter-rotating terms. We study an alternative paradigm for implementing quantum logic gates based on
Landau-Zener-Stückelberg-Majorana (LZSM) interferometry with nonresonant driving and the alternation of
adiabatic evolution and nonadiabatic transitions. Compared to Rabi oscillations, the main differences are a
nonresonant driving frequency and a small number of periods in the external driving. We explore the dynamics
of a multilevel quantum system under LZSM drives and optimize the parameters for increasing the gate speed.
We define the parameters of the external driving required for implementing a specific quantum logic gate using
the adiabatic-impulse model. In particular, we demonstrate the implementations of single-qubit X, Y, Hadamard
gates, and two-qubit iSWAP and CNOT gates using the LZSM transitions. The considered LZSM approach for
implementing arbitrary quantum logic gates can be applied to a large variety of multilevel quantum systems and
external driving.
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I. INTRODUCTION

The conventional way of qubit state control is realized
with resonant driving, resulting in Rabi oscillations (see, e.g.,
Refs. [1–4]). There, the Rabi frequency is determined by
the driving amplitude; thus increasing the driving amplitude
increases the speed of operation. This presents several chal-
lenges [5,6], including leakage to levels that lie outside the
qubit subspace, breakdown of the rotating-wave approxima-
tion, and increased environmental noise. Instead of discussing
the technological complications of the Rabi approach, let us
consider here an alternative approach, based on a different
paradigm of driving quantum systems.

When a quantum system exhibits an avoided-level crossing
and is strongly driven, it can be described by the model origi-
nally developped in several publications in 1932 and known as
Landau-Zener-Stükelbeg-Majorana (LZSM) transitions (see,
e.g., Refs. [7–12] and references therein). Effectively, the
model can be split into two evolution stages: nonadiabatic
transitions between the energy levels in the vicinity of the
anticrossing and adiabatic evolution far from the anticrossing.

The energy-level occupation probabilities, as well as the
relative phase between them, can be chosen by varying the
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driving parameters (the driving frequency and amplitude),
providing a different paradigm for qubit state control [8,13].

LZSM transitions provide an alternative to conventional
gates based on resonant driving [14,15]. The avoided energy
level crossing of a single qubit or two coupled qubits al-
lows to controllably change states of such systems [16–19]
and to realize single- and two-qubit logic operations [6]. Re-
cently, it was studied theoretically [20–23] and demonstrated
experimentally [6,24–30] that the LZSM model has several
advantages over conventional gates based on Rabi oscilla-
tions. These advantages include ultrafast speed of operation
[24,31], robustness [21], using baseband pulses (alleviating
the need for pulsed-microwave control signals) [6], and re-
ducing the effect of environmental noise [26].

In this work, we further develop the paradigm of LZSM-
based quantum logic gates. We investigate the single- and
two-qubit systems’ dynamics under an external drive by nu-
merically solving the Liouville-von Neumann equation using
the QuTiP [32,33]. We explore ways of finding the parameters
for any arbitrary quantum logic gate with LZSM transitions
and optimize the composition of the speed and fidelity of the
quantum logic gates. We demonstrate the implementation of
single-qubit X, Y, Hadamard gates, and two-qubit iSWAP and
CNOT gates using LZSM transitions.

This paper is organized as follows. In Sec. II, we describe
the qubit Hamiltonian and its two main bases. In Sec. III, we
demonstrate the X, Y, Hadamard, and phase gates implemen-
tations using both Rabi oscillations and LZSM transitions.
We compare the speed and fidelities achieved with both
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paradigms. We explore the way of increasing the gate speed
and fidelity of the LZSM gates by using multiple transitions.
In Sec. IV, we generalize the considered paradigm of using
the adiabatic-impulse model to realize quantum logic gates for
multilevel quantum systems, and describe the realization of a
two-qubit iSWAP gate with two LZSM transitions. The details
for implementing other two-qubit gates, in particular a CNOT

gate, are provided in Appendices A and B. Section V presents
the conclusions.

II. HAMILTONIAN AND BASES

Consider the typical Hamiltonian for a driven quantum
two-level system

H (t ) = �

2
σx + ε(t )

2
σz = 1

2

(
ε(t ) �

� −ε(t )

)
, (1)

where ε(t ) is the driving signal and � is the minimal energy
gap between the two levels. Here we consider the harmonic
driving signal

ε(t ) = A sin ωt . (2)

The wave function is a superposition of two states of a quan-
tum two-level system:

|ψ〉 = α(t )|0〉 + β(t )|1〉 =
(

α(t )
β(t )

)
. (3)

The two main bases are: the diabatic one, with diabatic energy
levels {|0〉, |1〉}, where the Hamiltonian becomes diagonalized
when � = 0, and the adiabatic basis |E±〉, representing the
eigenvalues of the total Hamiltonian, see Fig. 1. The relation
between these bases is given by

|E±(t )〉 = γ∓|0〉 ∓ γ±|1〉, (4a)

where

γ± = 1√
2

√
1 ± ε(t )

�E (t )
. (4b)

Hereafter, all the matrices of quantum logic gates, rotations
Rx,y,z, matrices of adiabatic evolution U , and diabatic tran-
sition N are represented in the adiabatic basis; while the
Hamiltonians are represented in the diabatic one. Specifi-
cally, in Secs. II and III, the Hamiltonian of a single qubit
is defined in the diabatic basis {|1〉, |0〉}, and the matrices
are represented in the adiabatic basis {|E+〉, |E−〉} with the
energies in descending order. In Sec. IV, Appendices A and
B, the Hamiltonian of two qubits is defined in the diabatic
basis {|00〉, |01〉, |10〉, |11〉}, and the matrices are represented
in the adiabatic basis {|E0〉, |E1〉, |E2〉, |E3〉} with the energies
in ascending order. The order of the basis vectors is important,
as it determines the matrix representation of a given operator
in this basis.

The dynamics of the quantum system with relaxation and
dephasing can be described by the Lindblad equation. For
simplicity, we consider the dynamics without relaxation and
dephasing, described by the Liouville-von Neumann equation

dρ

dt
= − i

h̄
[H (t ), ρ], (5)

FIG. 1. Energy diagram of a quantum two-level system under a
periodic drive ε(t ). Energy levels structure with two crossed diabatic
levels |0〉, |1〉 and two adiabatic levels |E±〉 with the an avoided
crossing as a function of an energy detuning ε(t ).

which coincides with the Bloch equations in the case of a two-
level system.

III. SINGLE-QUBIT GATES

We will describe a basic set of single-qubit gates
(Sec. III A) and then explain how these can be performed
using both the Rabi approach (Sec. III B) and the LZSM
approach (Sec. III C).

A. Basic set of single-qubit gates. Phase gate Rz(φ)

We consider different gates [34]: X,Y, Z gates, phase gate
Rz(φ), and the Hadamard gate H ; which we write down here:

X = σx = Rx(π ) =
(

0 1
1 0

)
, (6)

Y = σy = Ry(π ) =
(

0 − i
i 0

)
⇔ Rz(π )Rx(π ), (7)

Z = σz = Rz(π ) =
(

1 0
0 − 1

)
, (8)

P(φ) ≡ Rz(φ) =
(

1 0

0 eiφ

)
⇔
(

e−iφ/2 0

0 eiφ/2

)
, (9)

H = Ry(π/2)Rz(π ) =
√

Y Z = 1√
2

(
1 1
1 − 1

)
, (10)
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where Rx,y,z describes the rotations around the respective axes:

Rx,y,z(φ) = exp

(
−iσx,y,z

φ

2

)

= cos

(
φ

2

)
I + i sin

(
φ

2

)
X,Y, Z. (11)

Since the global phase of the density matrix ρ is irrelevant and
the dynamics is invariant to the multiplication of the density
matrix ρ by any complex number from the unit circle eiϕ , the
gate operator eiϕG is equivalent to the gate operator G, which
we denote as

eiϕG ⇔ G. (12)

The first gate we consider is the phase gate Rz(φ) in Eq. (9),
which corresponds to a rotation around the z axis by an angle
φ. Similarly to a spin rotating in a magnetic field (the Larmor
precession with frequency �L), there is a free natural rotation
of the Bloch vector around the z axis. The frequency of this
free rotation is proportional to the distance between the energy
levels

h̄�L = �E =
√

ε(t )2 + �2. (13)

After a period of time

tRz (φ) = φ

�L
. (14)

the Bloch vector rotates by an angle φ, and effectively the
qubit performs the phase gate Rz(φ). There is no need of a
drive to perform this gate: ε = const.

In the Rabi-based approach, the energy detuning of the
qubit during the phase gate is at the level anticrossing ε =
0. While in the LZSM-based approach, it can be far away
from the anticrossing. Therefore the time of the phase gate
in the LZSM-based approach can be reduced. This difference
in duration of the phase gates is demonstrated in Figs. 2(a)
and 3(a).

B. Rabi-based single-qubit gates

1. Rectagnular-shaped pulses

To perform any quantum logic gate with changing level
occupation probability, the qubit should be excited by a
time-dependent energy detuning ε(t ). A conventional way to
achieve this is via Rabi oscillations with small amplitude A �
� and with the qubit resonant frequency (h̄ω = �), which
we will compare to LZSM transitions with large amplitude
A > � and nonresonant driving frequency ω.

Here we describe how the single-qubit operations are
implemented with Rabi oscillations and demonstrate the dy-
namics of the Bloch sphere coordinates for several logic gates
in Fig. 2. Rabi oscillations occur during the resonant driving
at δω = ω − ωq � ω (where ωq = �E/h̄ ≈ �/h̄ is the qubit
resonant frequency) with small amplitude A � �, and har-
monic driving signal, Eq. (2).

The Rabi oscillations lead to a periodic change of the level
occupation with Rabi frequency

�R = A�

2h̄�E
≈ A

2h̄
. (15)

Note that this differs from the common value for the Rabi
frequency �R ≈ A/h̄ (see Refs. [7,35]). During the oscilla-
tions, the z component of the Bloch vector changes as z(t ) =
cos �Rt , when the initial state is the ground state |E−〉. While
the state probability is evolving, a phase change also occurs
with frequency

h̄�L ≈ �. (16)

We define the Rabi oscillations evolution as a combination of
two rotations

URabi(t ) = Rz(�Lt )Rx(�Rt ). (17)

Using Eq. (15), we can rewrite it as

URabi(t ) = Rz(�Lt )Rx

(
A

2h̄
t

)
= Rz(�Lt )Rx

(
S

2h̄

)
, (18)

which shows that the angle of rotation around the x-axis is
proportional to the area S = At under the envelope of the Rabi
pulse.

When there is no phase difference between rotations,
�Lt = �Rt + 2πn, we obtain

URabi(t ) = Rz(�Lt )Rx(�Rt ) = Ry(�Rt ), (19)

and the Rabi evolution results in a rotation around the y axis.
To perform an X operation, we drive the system by Rabi

pulses during a time TR, so that the area under the envelope is

S = ATR = 2π h̄. (20)

In order for the driving to end at zero amplitude, we take an
integer number of periods of the sine.

After that, we need to change the phase to obtain an X
operation from a Y rotation, so we perform the Rz rotation
by idling the drive for a time TI with the condition

�L(TI + TR) = 2πn, (21)

then finally the X gate is realized as

Rz(�LTI )URabi(TR) = Rz(�LTI )Rz(�LTR)Rx(�RTR)

= Rx(π ) = X, (22)

see Fig. 2(c). To perform the Hadamard gate, we need to apply
the Rabi pulse with its duration twice shorter than for the X
gate, TR = π/�R, with the condition on the idling time TI:

�L(TI + TR) = π + 2πn. (23)

As a result, we obtain the Hadamard gate as

Rz(�LTI )URabi(TR) = Rz(�LTI )Rz(�LTR)Rx(�RTR)

= Rz(π )Rx(π/2) = H, (24)

which is shown in Fig. 2(b).

2. Gaussian-shaped optimized pulses

Since the Rabi-oscillations model assumes small ampli-
tudes of the driving signal, to increase the gate fidelity, a
small amplitude at the start and end points should be used. To
achieve a high gate speed, a large driving amplitude A between
these points should be used. Hence, to increase the gate speed,
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FIG. 2. Rabi-based single-qubit operations. Dynamics of the
Bloch vector components in the adiabatic basis, obtained by solving
the Liouville-von Neumann Eq. (5). (a) Phase operation Rz(3π/4)
with the superposition initial state ψ (t = 0) = (|E−〉 + |E+〉)/

√
2.

(b) Hadamard operation H with the same superposition initial state.
(c) X operation with the ground-state initial conditions. (d) Y op-
eration with the superposition initial state. For (b)–(d), the driving
frequency is resonant h̄ω = �, the amplitude is small A = 0.1�. For
(b), the number of periods of the resonant drive is Ne = 5, for (c) and
(d) Ne = 10. Here, the amplitude is defined by the number of periods
of the external drive, for (b) A = �/2Ne, for (c) and (d) A = �/Ne.

now we use a Gaussian-shaped envelope A(t ) for the driving
signal

ε(t ) = A(t ) sin ωt . (25)

We now consider a Rabi pulse with duration TR and envelope
in the form

A(t ) =
⎧⎨
⎩A0 exp

[
− (t−τ )2

2σ 2
G

]
, t < TR

0, t > TR

(26)

with the tails of the Gaussian distribution truncated at
some distance G from the peak, normalized to the standard
deviation σG,

G = TR

2σG
(27)

and the peak of the distribution at time

τ = TR

2
. (28)
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FIG. 3. LZSM-based single-qubit operations. Dynamics of the
Bloch vector components in the adiabatic basis, obtained by solving
the Liouville-von Neumann Eq. (5). (a) Phase operation Rz(3π/4)
with the superposition initial state ψ (t = 0) = (|E−〉 + |E+〉)/

√
2

and the energy detuning ε = 3.8872�. (b) Hadamard operation H
with superposition initial state. (c) X operation with ground-state
initial conditions. (d) Y operation with the superposition initial state.
For (b)–(d), the parameters are chosen so that P = 0.5. For (b), the
amplitude A = 4.31�, for (c) and (d) A = 3.8872�. Compared with
the respective gates based on Rabi oscillations, Fig. 2, the LZSM-
based gates are much faster.

The angle of rotation around the x axis in Eq. (18) is
determined by the area under the envelope of the Rabi pulse.
For the X operation it is given by Eq. (20). So the area under
the truncated Gaussian distribution should be the same as for
the original signal with constant amplitude and rectangular
shape of the pulse. This condition determines the amplitude
of the distribution as

A0 =
√

2π

σGSG
, (29)

where SG is the normalized area of the truncated Gaussian
distribution

SG = 1√
2π

∫ G

−G
e− x2

2 dx. (30)

C. Single-qubit gates based on LZSM transitions

Here we describe how to implement single-qubit opera-
tions based on LZSM transitions using the adiabatic-impulse
model (AIM), also known as the transfer-matrix method. We
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demonstrate the dynamics of the Bloch sphere coordinates for
several logic gates in Fig. 3, that can be compared with the
dynamics of the same gates realized with Rabi oscillations
in Fig. 2. For the diabatic LZSM transitions, we need the
following approximations: A > � and 2π/ω < ttrans, where
ttrans is the transition time. After that time, the result of
the adiabatic-impulse model will asymptotically coincide with
the exact dynamics [8,36].

1. Adiabatic-impulse model. Single-passage drive

In the adiabatic-impulse model, the time evolution is con-
sidered as a combination of adiabatic (nontransition) and
diabatic (transition) evolutions. The adiabatic evolution is
described by the adiabatic time-evolution operator, which in
the adiabatic basis {|E+〉, |E−〉} is represented by the matrix

U (ti, t j ) =
(

e−iζ (ti,t j ) 0

0 eiζ (ti,t j )

)
= e−iζσz = Rz(2ζ ), (31)

where ζ (ti, t j ) is the phase accumulated during the adiabatic
evolution

ζ (ti, t j ) = 1

2h̄

∫ t j

ti

�E (t ) dt = 1

2h̄

∫ t j

ti

√
ε(t )2 + �2dt,

(32)
and �E (t ) = E+(t ) − E−(t ). Then, the diabatic evolution
(transition) operator for a passage in the direction of the en-
ergy detuning ε(t ) increase is represented by the matrix

N =
(

Re−iφS −T
T ReiφS

)
= Rz(φS)Rx(θ )Rz(φS), (33)

where

T =
√
P, R = √

1 − P (34)

are the transition and reflection coefficients,

P = exp (−2πδ) (35)

is the LZSM probability of excitation of the qubit with a single
transition from the ground state |E−〉, δ = �2/4v is the adia-
baticity parameter, v = ε′(0) is the speed of the anticrossing
passage and

φS = π

4
+ δ(ln δ − 1) + Arg[�(1 − iδ)] (36)

is the Stokes phase [8]. The θ angle can be found from the
equation

sin2(θ/2) = P . (37)

The transition matrix for a passage when the energy detun-
ing ε(t ) decreases, which we denote as the inverse transition
matrix, can be written as

N inv = N
 =
(

Re−iφS T
−T ReiφS

)
⇔
(

Re−i(φS−π ) −T
T Rei(φS−π )

)
.

(38)

The single transition evolution matrix in the general case with
adiabatic evolution matrix before the transition U1 and after
the transition U2 is given by

ULZSM = U2N1U1 =
(

U ′
11 U ′

12

−U ′∗
12 U ′∗

11

)
, (39)

where

U ′
11 = R1 exp [−i(φS1 + ζ1 + ζ2)],

U ′
12 = −T1 exp [i(ζ1 − ζ2)],

ζ1 = ζ (0, tN1),

ζ2 = ζ (tN1, tfinal ).

Here, tN1 is the time of the level anticrossing passage, tfinal is
the end time of the drive.

Then, we consider the same adiabatic evolution before and
after the transition ζ = 2ζ1 = 2ζ2. In that case, a single LZSM
transition gate can be represented [37,38] as a combination of
rotations

ULZSM(P, φtotal ) = Rz(φtotal )Rx(θ )Rz(φtotal ),

U inv
LZSM (P, φtotal ) = ULZSM(P, φtotal − π ), (40)

where φtotal = φS + ζ , and U inv
LZSM corresponds to the inverse

transition. Using this LZSM gate, we can define a basic set of
gates.

For an X gate, the two-level system needs to perform a tran-
sition with probability P = exp (−2πδ) = 1; which means
that the adiabaticity parameter δ = �2/4v → 0, requiring an
infinite speed of the anticrossing passage v = ε′(0) → ∞ or
a zero energy splitting �. Hence, it is difficult to implement
the X operation with high fidelity using only a single passage.
Therefore at least two transitions are needed for implementing
the X gate with sufficient fidelity.

For the LZSM transition, we need to start and finish
the evolution far from the anticrossing region. So we now
consider the harmonic driving signal ε(t ) = −A cos ωt , t ∈
[0, π/ω]. This signal is linear in the anticrossing region

dε

dt

∣∣∣∣
ε≈0

≈ Aω = const. (41)

We obtain a relation between the amplitude A and the fre-
quency ω for certain LZSM probability P

P = exp

[
− 2π

�2

4Aωh̄

]
→ ω = −π�2

2Ah̄ lnP . (42)

Then, we find an amplitude which satisfies some values of
φtotal and P ,

φtotal = π

4
+ δ(ln δ − 1) + Arg[�(1 − iδ)]

+ 1

2h̄

∫ π
ω

0

√
ε(t )2 + �2dt, (43)

δ = − lnP
2π

, (44)

where we used that the harmonic driving satisfies the initial
conditions far from the anticrossing region.

A single LZSM transition is convenient for implementing
rotations to any angle θ < π , for example θ = π/2, which
is needed for the Hadamard gate. Following Eq. (37), the
angle θ = π/2 corresponds to the target probability of a single
LZSM transition

P = sin2
(π

4

)
= 1

2
. (45)
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This LZSM transition is noninstantaneous: the probability
oscillates for some time after the transition, and the value of
the upper-level occupation obtained from the formulas cannot
be exactly reached until the end of the oscillations [36]. The
parameters for the Hadamard gate implementation can be
found from Eq. (39) by equating ULZSM to the matrix of the
gate (10), and solving the system of equations

P = 1

2
→ T = R = 1√

2
,

ζ1 − ζ2 = π

2
+ πn1,

φS + ζ1 + ζ2 = π

2
+ πn2. (46)

From this system, we obtain the total phase

φtotal = πn, (47)

so the Hadamard gate can be presented as

H = Ry(π/2)Rz(π ) = ULZSM(1/2, 2πn)Rz(π )

= Rz(π )ULZSM(1/2, π + 2πn), (48)

where n is an integer. The dynamics of the Hadamard gate is
shown in Fig. 3(b).

How to find the driving amplitude A and frequency ω re-
quired for certain P and φtotal is described in Sec. III C 3. After
the transition is completed, to perform some rotation around
the z axis (phase gate), we need to apply a constant signal
with the same energy detuning ε as we had after completing
the previous operation.

Alternatively, LZSM gates can also be realized with the
position of the energy detuning before and after the gate at the
level anticrossing ε = 0 [6].

2. Double-passage drive

Consider now an arbitrary external drive ε(t ) with two
passages through the energy-level anticrossing, linear in the
anticrossing region. The adiabatic energy levels as a function
of time are illustrated in Fig. 4(a).

We obtain the double transition evolution matrix in the
general case:

� = U3N2U2N inv
1 U1 = U inv

LZSM(1)ULZSM(2) =
(

�11 �12

−�∗
12 �∗

11

)
,

(49)

where

�11 = (R1R2e−i(φS1+φS2+2ζ2 ) + T1T2)ei(ζ2−ζ1−ζ3 ),

�12 = (R1T2 − T1R2e−i(φS1+φS2+2ζ2 ) )ei(φS1+ζ1+ζ2−ζ3 ),

ζ1 = ζ (0, tN1),

ζ2 = ζ (tN1, tN2),

ζ3 = ζ (tN2, tfinal ).

Here, tN1 and tN2 are the times of the first and second
passages of the level anticrossing respectively, tfinal is the end
time of the drive, see Fig. 4.

By equating this evolution matrix to the matrix of the
required quantum gate, one can find the parameters of the

FIG. 4. Energy levels dynamics for a drive with two passages
of the level anticrossing. (a) Adiabatic energy levels versus time.
(b) The energy detuning ε versus time. Here, Pi is the value of the
LZSM probability of the diabatic transition Ni during the passage of
the level anticrossing at time tN (i). Here, ζi is the phase accumulation
gained during the corresponding adiabatic evolution interval.

driving signal that implements this gate. For example, for an
X gate, the driving signal should satisfy the conditions

P1 + P2 = 1 → T1 = R2,

φS1 + φS2 + 2ζ2 = π + 2πn1,

φS2 − ζ1 + ζ2 + ζ3 = π/2 + 2πn2. (50)

To simplify the result, we consider a periodic driving with the
same slope in the anticrossing region during each transition
ε(0) ≈ vt , which means P1 = P2 = 1/2, T1 = T2 = R1 =
R2 = 1/

√
2, and with the same adiabatic evolution between

transitions ζ = ζ1 = ζ2/2 = ζ3. After this simplification, we
obtain a matrix of the double transitions with only two param-
eters [8]: adiabatic phase gain ζ and excitation probability P ,
with

� ≡ √
U2N invU1N

√
U2 =

(
�11 �12

−�∗
12 �∗

11

)
, (51a)

where

�11 = −R2e−2i�St − T 2, (51b)

�12 = −�∗
12 = −2iRT sin(�St ), (51c)

�St ≡ φS + ζ , (51d)

and �St is a Stückelberg phase. For the symmetric drive
with P1 = P2 and ζ = ζ1 = ζ2/2 = ζ3, �St = φtotal. For the
X operation, shown in Fig. 3(c), we used the drive ε(t ) =
−A cos ωt , t ∈ [0, 2π/ω] with two LZSM transitions with
LZSM probability P = 1/2, and total phase for each
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transition

φtotal = π

2
+ πn, (52)

which is the condition for a constructive interference (see,
e.g., Ref. [8]). Indeed, using Eq. (40),

U inv
LZSM(π/2 + πn, 1/2)ULZSM(π/2 + πn, 1/2) = Rx(π ) = X.

(53)

In principle, a double LZSM transition drive, in conjunction
with a rotation around the z axis, can implement any single-
qubit gate.

For the Hadamard gate implemented by two LZSM tran-
sitions with the same slope in the anticrossing region during
each transition (P1 = P2), the driving signal should satisfy the
conditions

P = 2 ± √
2

4
,

φS + ζ2 = π

2
+ 2πn1,

ζ1 + ζ2 + ζ3 = π

2
+ 2πn2,

ζ1 − ζ3 = 2πn3. (54)

3. Optimization to speed up gates: multiple passage drive

To speed up the gate, multiple LZSM transitions can be
used. We consider the simplest drive

ε(t ) =

⎧⎪⎪⎨
⎪⎪⎩

−A, 0 < t < tpre,

−A cos ωt, tpre < t < tpre + 2πk
ω

,

−A, tpre + 2πk
ω

< t < tpre + 2πk
ω

+ tafter,

(55)

with an even number 2k of successive LZSM transitions with
the same probability of LZSM transition P , and Stückelberg
phase �St, and the idling periods with phase accumulation
at the start and end of the drive with durations tpre and tafter,
respectively. Here, k = 1, 2, . . . is the number of periods of
the cosine.

For the case of four LZSM transitions, the evolution ma-
trix of the harmonic part of the drive, ε(t ) = −A cos ωt , can
be found as the multiplication of two evolution matrices for
double passage (51):

�Q = �2 =
(

�Q11 �Q12

−�∗
Q12 �∗

Q11

)
, (56a)

where

�Q11 = R4e−4i�St + T 4 + 2R2T 2[e−2i�St − 2 sin2(�St)],

(56b)

�Q12 = 4iRT sin(�St)[R
2 cos(2�St) + T 2]. (56c)

Since T = √
P and R = √

1 − P , the evolution matrix
depends on two parameters of the drive: the probability of a
single LZSM transitions P , and the Stückelberg phase �St.
The idling periods before and after the main part of the drive
result in the phase-shift gates Rz(φpre) and Rz(φafter ), respec-
tively [see Eq. (9)].

FIG. 5. Graphical demonstration of finding the values of a single
LZSM transition probability P and Stückelberg phase �St, for the
implementation of the Hadamard gate H with four LZSM transitions.
Red curve: maximum possible final occupation probability after four
transitions Pfinal depending on P . Blue curve: dependence of the final
occupation probability after four transitions Pfinal on the Stückelberg
phase gain during single-transition �St. The orange horizontal line
shows Pfinal = Ptarget.

The parameters of the drive are found by equating the
total evolution matrix of the driven qubit to the matrix of
the required operation, multiplied by the factor eiϕ with an
arbitrary ϕ, as it does not affect the dynamics of the system
[see Eq. (12)]:

Rz(φpre)�QRz(φafter ) = eiϕH. (57)

Here we describe an algorithm for finding the optimal
parameters (P , �St, A, ω, tpre, tafter) of the drive with four
LZSM transitions that implements the Hadamard gate H .

The occupation probability of the excited state of the qubit
|E+〉 after applying the drive with four LZSM transitions to
the qubit in the ground state |E−〉 is given by

Pfinal = |�Q12|2. (58)

(1) First, we find the possible values of a single LZSM
transition probability P that provide the target final up-
per energy-level occupation probability after four transitions
Pfinal = Ptarget. These can be found as the crossings of the red
curve and orange horizontal line in Fig. 5. The red curve
shows the maximum possible final upper energy-level occu-
pation after four LZSM transitions Pfinal, after varying through
all possible values of �St ∈ [0, π ] using Eqs. (56c) and (58).
The orange horizontal line shows Pfinal = Ptarget. For the H
operation, the target final upper energy-level occupation of
the qubit Ptarget = 1/2. Larger values of P provide shorter
transition durations and shorter gate durations, so the largest
possible value of P is selected. For the H operation real-
ized with four LZSM transitions, the largest possible value
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FIG. 6. Graphical procedure of finding possible values of the
amplitude A of the drive with four LZSM transitions for the imple-
mentation of the Hadamard gate H . The dependence of 2{�St/2π}
on the amplitude A of the drive for P = P∗. Here, �St is the Stück-
elberg phase for the given value of the amplitude A; while �

target
St

is the required value of the Stückelberg phase of the drive, found
in the previous step, and {} is the fractional part. Red dots represent
the possible values of the amplitude A of the drive with four LZSM
transitions that implement the Hadamard operation H .

P∗ ≈ 0.962. For the X operation with four LZSM transi-
tions, P∗ = (2 + √

2)/4 coincides with the LZSM transition
probability for the H operation, realized with two LZSM
transitions, see Eq. (54).

(2) At the second step, we find the Stückelberg phase �St

that provides the target final transition probability Pfinal =
Ptarget given the obtained value of P using the blue curve in
Fig. 5. For the H operation, the solution is given by

�St = π

2
+ πn, (59)

where n is an integer. This is also a condition for the construc-
tive interference between the LZSM transitions.

(3) After finding P and �St, at the third step, we find the
amplitude A and frequency ω of the signal (55). Equation (42)
defines the relation between the frequency ω and the ampli-
tude A for a certain P . Using Eqs. (42), , (36), (44), and
(32), we produce Fig. 6 and find the possible values of the
amplitude A of the signal that provides the required value of
the Stückelberg phase �

target
St , found in the previous step for

the previously found P = P∗.
(4) Finally, at the fourth step we determine the required

idling durations before and after the main part of the drive
with LZSM transitions, tpre and tafter. Substitution of the ob-
tained evolution matrix of the main part of the drive �Q to
Eq. (57) allows to find the required accumulated phases φpre

and φafter. Then using Eqs. (13) and (14) we determine the
durations tpre and tafter. In the example considered here, the
accumulated phases φpre = φafter = π/2, and the durations tpre

and tafter depend on the choice of the amplitude A in the
previous step of the algorithm.

This algorithm of finding the parameters of the drive (55)
with an even number of LZSM transitions for the implemen-
tation of any single-qubit operation can be summarized as
follows.

(1) Find the probability of a single LZSM transition
P which provides the desired final upper-level occupation
probability Pfinal = Ptarget. See the red curve crossing the or-
ange horizontal line in Fig. 5.

(2) Find the required Stückelberg phase �St. See the blue
curve in Fig. 5.

(3) Find the combination of the amplitude A and the fre-
quency ω that provides the required values of P and �St. See
Fig. 6.

(4) Determine the idling times, tpre and tafter, before and
after the main part of the drive with LZSM transitions.

This algorithm allows to find the optimal parameters of
the drive with an arbitrary even number of LZSM transitions.
Here we consider only a two-level quantum system, but real
quantum systems are usually multilevel. The LZSM transi-
tions during the passage of nearest level anticrossings with
different energy levels will influence the dynamics, so it is
important to limit the amplitude of the drive, so that the next
nearest anticrossings are not reached.

D. Fidelity

The relaxation and dephasing are not considered in this pa-
per. Thus the infidelities of the gates arise because the theories
of RWA and AIM that are used to obtain the parameters of
the driving signals are approximate. The infidelities due to
numerical solution errors are negligible in comparison with
infidelities due to approximations in the theories.

The fidelities are found using quantum tomography [39],
which consists in applying the gate for many different initial
states, which span the Hilbert space, and then calculating the
average fidelity between the obtained states and the target state
using [40]

F (ρ, ρt ) =
(

tr
√√

ρρt
√

ρ

)2

. (60)

Here, ρ is the density matrix obtained by numerical sim-
ulation of the qubit dynamics by solving the Liouville-von
Neumann equation Eq. (5), and ρt = UρinU † is the target
state, obtained by applying the gate operator U to the initial
density matrix ρin. Then we calculate the averaged fidelity
for different equidistant initial conditions on the Bloch sphere
F̄ =∑N

n=1 F (ρn, ρtn )/N . To better compare the difference be-
tween Rabi and LZSM approaches we will use the error rate
D = 1 − F̄ .

The LZSM probability formula P = exp (−2πδ) is de-
rived for a linear drive with an infinite time, ε(t ) = vt ,
t ∈ (−∞,∞), leading to an infinite amplitude of the driv-
ing signal. Thus, for the considered nonlinear drive ε(t ) =
−A cos ωt with finite amplitude A, the fidelity of the LZSM
gate increases with the amplitude of the drive A. Considering
Eq. (42), the amplitude of the drive is proportional to the du-
ration of the gate, A ∼ 1/ω ∼ T . So the fidelity of the LZSM
gate increases with its duration, the gate error D decreases,
and a satisfactory balance between the fidelity and speed of
the gate should be found. Figure 7 illustrates that the gate error
rate D using the LZSM implementation decreases much faster
with time than using the usual Rabi approach.

For an arbitrary nonlinear drive, the accuracy of the LZSM
formula (35), and thus the fidelity of the gate, increases
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FIG. 7. Comparison of error rates for Rabi and LZSM ap-
proaches for single-qubit gate implementations. The error rates
(1 − F̄ ) for Rabi and LZSM approaches for single-qubit Y gate
implementation calculated for different gate durations t�/h. For the
Rabi implementation, the gate duration equals an integer number of
periods of a resonant driving (from 1 to 14). The Gaussian envelope
is cut at G = 2.7, see Eq. (27). For the LZSM implementation, the
gate durations are built for different workpoints using Fig. 6 and
the analogous figures built for higher number of LZSM transitions.
Increasing the gate duration, the error for the LZSM approach de-
creases much faster than for the Rabi approach.

with the linearity of the drive in the anticrossing region, and
increases with the distance between the anticrossing region
and the starting and final energy detunings ε of the drive.

An alternative method to determine the gates fidelity is
Randomized benchmarking [4], which considers how the
fidelity decreases with increasing the number of applied oper-
ations. Here we only used the quantum tomography method,
as a simpler one for numerical calculations.

In experiments, there are methods of improving the gate
fidelity based on the back-response loop, also known as quan-
tum control or robust control, for example gradient ascent or
Krotov’s method [41–44].

IV. TWO-QUBIT GATES

A. Hamiltonian and bases

Now we consider a Hamiltonian of two coupled qubits [1]

H = − 1

2

∑
i=1,2

(
�iσ

(i)
x + εi(t )σ (i)

z

)− g

4

(
σ (1)

x σ (2)
x + σ (1)

y σ (2)
y

)

− J

4
σ (1)

z σ (2)
z , (61)

with the external drive of the second qubit which results in the
driving ε2(t ). The energy levels of this Hamiltonian normal-
ized to the coupling strength g are shown in Fig. 8(a).

FIG. 8. (a) Adiabatic energy levels of a two-qubit system with
Hamiltonian (61) as a function of the driving parameter ε2. In
the regions far from the level anticrossings, the energies of the
adiabatic levels |Ei〉 asymptotically coincide with the energies of
the diabatic levels |mn〉. The parameters of the Hamiltonian used
here are: �1/g = 0.3, �2/g = 1, ε1/g = 16.6, and J/g = 10.
(b) Time dependence of the driving parameter ε2(t ) for the iSWAP

gate implementation.

Although other choices for the interaction part of the
Hamiltonian are possible, we will now consider a transverse
coupling with XY interaction

HXY
int = −g

4

(
σ (1)

x σ (2)
x + σ (1)

y σ (2)
y

)
, (62)

resulting in a splitting between the E1 and E2 adiabatic energy
levels versus g at the crossing of the |01〉 and |10〉 diabatic
energy levels, and longitudial couplings with ZZ-interaction
term

HZZ
int = −J

4
σ (1)

z σ (2)
z , (63)

resulting in a shift between the (E0 − E1) and (E2 − E3)
adiabatic energy-level anticrossings on the value of J [see
Fig. 8(a)]. The JJ or Heisenberg interaction is the particular
case when both terms are present and J = g.

The difficulty of generating a particular operation depends
on the available coupling terms. On the other hand, for each
type of coupling there are two-qubit gates which can be im-
plemented in a straightforward manner [45].

The transfer matrix S between the diabatic ba-
sis {|00〉, |01〉, |10〉, |11〉} and the adiabatic one
{|E0〉, |E1〉, |E2〉, |E3〉} for the four-level quantum system
is constructed as a composition of the eigenvectors of the
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FIG. 9. Dependence of the adiabatic energy levels Ei, (a), and
the driving energy detuning ε2, (b), versus time for the drive (66)
for implementing the iSWAP gate. For each diabatic transition Ni

during the level anticrossing at time tN (i), the value of the LZSM
probability Pi is introduced. For each adiabatic evolution interval,
the phase gains ζ

(i j)
k between various adiabatic levels Ei and Ej can

be represented as areas between the levels.

Hamiltonian in the diabatic basis (61), so that the Hamiltonian
in the adiabatic basis H (adb) is diagonal with the adiabatic
energy levels (the eigenvalues of the Hamiltonian in the
diabatic basis) in the ascending order:

S†HS = H (adb) = diag{E0, E1, E2, E3}. (64)

In this section, the transfer matrix S and the adiabatic energy
levels Ei are calculated numerically.

B. iSWAP gate

One of the simplest natural two-qubit operations when the
XY -type of coupling is present, is an iSWAP gate

iSWAP =

⎛
⎜⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎟⎠. (65)

Its LZSM implementation should involve passages of the
anticrossing between the adiabatic levels E1 and E2, located
at ε2 = ε1. For simplicity, here we demonstrate an LZSM
realization of the iSWAP gate for the Hamiltonian (61) with
only an XY -interaction term, when J = 0 and the (E0 − E1)
and (E2 − E3) anticrossings are both located at ε2 = 0 [see
Fig. 8(a)].

As in the case of the X gate, it is impossible to implement
an LZSM transition with an arbitrary P with high fidelity
by only one passage, so at least two passages are required.
Thus, we consider a drive ε2(t ) with the following form [see

Figs. 8(b) and 9(b)]:

ε2(t ) =

⎧⎪⎨
⎪⎩

ε1 − A cos ωt, 0 < t < t1,
ε1 + A, t1 < t < t2,
ε1 + A cos ω(t − t2), t2 < t < t3,

(66)

where

t1 = Tc

2
, t2 = Tc

2
+ T1, t3 = Tc + T1.

It consists of two half-periods of cosine with period Tc =
2π/ω and amplitude A, separated in the middle by an idling
period with time T1. For the simpler form of a signal without
the idling, we would obtain a system of three equations on the
signal parameters with only two parameters present, A and Tc.
So an additional degree of freedom, like an idling time T1,
would be needed.

As in the case of a single qubit, we build the dependence of
the adiabatic energy levels on time in Fig. 9(a), introduce all
values of the transition probabilities Pi for each diabatic tran-
sition Ni, and define the phase gains ζ

(i j)
k between adiabatic

levels Ei and Ej for various periods of the adiabatic evolution
as

ζ
(i j)
k = 1

2h̄

∫ tN (k)

tN (k−1)

[Ej (t ) − Ei(t )]dt, (67)

where tN0 = 0, and tN3 = t3.
Generally, for a multilevel quantum system, the operator of

the diabatic (LZSM) transition between the adiabatic energy
levels |Ei〉 and |Ej〉 ( j = i + 1) with the LZSM probability P
in the adiabatic basis is defined as

N = ReiφS |Ei〉〈Ei| + Re−iφS |Ej〉〈Ej |
+ αT |Ei〉〈Ej | − αT |Ej〉〈Ei| +

∑
k �=i, j

|Ek〉〈Ek|, (68)

where the transition and reflection coefficients, T and R,
and the Stokes phase φS are determined by the LZSM
probability P , see Eqs. (34) and (36). The sign α = ±1
depends on the direction of the passage of the adiabatic en-
ergy levels anticrossing. Far from the anticrossing region,
the energies of the adiabatic states |Ei〉 and |Ej〉 asymptoti-
cally approach the energies of some diabatic states |Dm〉 and
|Dn〉, where m < n. Here, we assume that the diabatic basis
{. . . , |Dm〉, . . . , |Dn〉, . . . } is the one in which the Hamiltonian
is defined. If before the passage of the adiabatic energy levels
anticrossing the energy of the lower adiabatic level |Ei〉 is
asymptotically close to the energy of the diabatic level with
the lower sequence number |Dm〉, then α = 1; if before the
passage |Ei〉 is asymptotically close to |Dn〉, then α = −1.

For the considered Hamiltonian (61), defined in the di-
abatic basis {|00〉, |01〉, |10〉, |11〉}, and the drive (66), the
operators of the diabatic transitions in the adiabatic basis
{|E0〉, |E1〉, |E2〉, |E3〉} are represented by the matrices

Nk =

⎛
⎜⎜⎜⎝

1 0 0 0
0 RkeiφS(k) αkTk 0
0 −αkTk Rke−iφS(k) 0
0 0 0 1

⎞
⎟⎟⎟⎠, (69)
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where k = 1, 2, α1 = 1, α2 = −1. Here, Ti, Ri, φS(i) are the
transition, reflection coefficients, and the Stokes phase for the
diabatic transition Ni, all determined by the corresponding
transition probability Pi [see Eqs. (34), (35), and (36)].

For an N-level quantum system, the operator of the adiab-
atic evolution in the adiabatic basis is diagonal and given by

U =
N−1∑
k=0

exp

⎧⎨
⎩i

N−2∑
j=0

β jkζ
( j, j+1)

⎫⎬
⎭|Ek〉〈Ek|,

β jk = 2θ ( j − k) − 1, (70)

where k = 0, 1, . . . , N − 1, and θ is the Heaviside step func-
tion. The rule of the sign β jk = ±1 determination can be
summarized as the following: if the area of the phase ac-
cumulation, corresponding to the ζ ( j, j+1) term is below the
adiabatic energy level Ek , then β jk = −1; if above it, then
β jk = 1.

For the four-level quantum system, the operator of the
adiabatic evolution Un for the interval of evolution n = 1, 2, 3
in the adiabatic basis {|E0〉, |E1〉, |E2〉, |E3〉} is represented by
a diagonal matrix with the components

U(n)00 = exp
[
i
(
ζ (01)

n + ζ (12)
n + ζ (23)

n

)]
,

U(n)11 = exp
[
i
(− ζ (01)

n + ζ (12)
n + ζ (23)

n

)]
,

U(n)22 = exp
[
i
(− ζ (01)

n − ζ (12)
n + ζ (23)

n

)]
,

U(n)33 = exp
[−i
(
ζ (01)

n + ζ (12)
n + ζ (23)

n

)]
. (71)

Considering the different order of the basis vectors for the
two-level quantum system with |D0〉 = |1〉 and |D1〉 = |0〉
(see Sec. II), the operators of the diabatic transition (68) and
adiabatic evolution (70) are also consistent with the matrices
of the diabatic transitions (33), (38) and adiabatic evolution
(31) for a single qubit.

The evolution matrix for the whole drive becomes

� = U3N2U2N1U1. (72)
After simplifying by

ζ (01) = ζ
(01)
1 + ζ

(01)
2 + ζ

(01)
3 , ζ (23) = ζ

(23)
1 + ζ

(23)
2 + ζ

(23)
3 ,

(73)

taking the common phase eiϕ out of the matrix and neglecting
it [see Eq. (12)], we obtain the evolution matrix

� =

⎛
⎜⎜⎜⎝

1 0 0 0
0 u11 u12 0
0 u21 u22 0
0 0 0 eiφ3

⎞
⎟⎟⎟⎠, (74)

that depends on the values P1, P2, ζ (01), ζ
(12)
i , ζ (23). Equating

it to the matrix of a required two-qubit iSWAP gate allows to
determine the parameters of the external drive which imple-
ment this gate:

P1 + P2 = 1,

φS1 + φS2 + 2ζ
(12)
2 = π + 2πn1,

φS1 + 2
(
ζ (01) + ζ

(12)
1 + ζ

(12)
2

) = π

2
+ 2πn2,

φS2 + 2
(
ζ (01) + ζ

(12)
2 + ζ

(12)
3

) = π

2
+ 2πn3. (75)

FIG. 10. The dynamics of the iSWAP gate implemented with two
LZSM transitions. The occupation probabilities Pi of each adiabatic
level Ei as function of time are obtained by two methods: the numer-
ical solution of the Liouville-von Neumann equation, shown by solid
lines, and by the adiabatic-impulse model, indicated by dashed lines.
The final occupation probabilities, found by the adiabatic-impulse
model, represent the expected occupation probabilities of the gate.
The iSWAP gate results in the swap of occupation probabilities be-
tween the E1 and E2 adiabatic energy levels.

For the considered signal (66) with P1 = P2 = P , re-
sulting in ζ

(12)
1 = ζ

(12)
3 , and in the case when only the

XY -interaction is present (J = 0), resulting in ζ (01) = ζ (23),
the conditions simplify to

P = 1

2
,

φS + ζ
(12)
2 = π

2
+ πn1,

φS + 2
(
ζ (01) + ζ

(12)
1 + ζ

(12)
2

) = π

2
+ 2πn2. (76)

The first equation results in a linear dependence between A
and Tc:

A = g2

4h̄ ln 2
Tc. (77)

Then we numerically solve two other equations on two param-
eters of the signal Tc and T1. In Fig. 10, we show the dynamics
of the iSWAP gate for a particular solution with gTc/h = 1.517,
gT1/h = 0.125, and A/g = 3.438 for the Hamiltonian (61),
with the parameters �1/g = 0.3, �2/g = 1, ε1/g = 16.6, J =
0; and compare the approximate solution obtained by the
adiabatic-impulse model with the numerical solution of the
Schrödinger equation. The same parameters of the Hamilto-
nian and drive were used for Fig. 9, with the exception of the
larger amplitude A/g = 9.

The fidelity criteria for a single-qubit gate, described in
Sec. III D can be extended on the multilevel quantum systems
with several energy level anticrossings. Firstly, the fidelity
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of the gate increases with the linearity of the external drive
εi(t ) of the ith qubit in all regions of the adiabatic level
anticrossings, which are passed during the driving. Secondly,
it increases with distance increase between both starting and
final energy detunings εi to the nearest passed energy level
anticrossing region, given that the starting and final energy
detunings are still far from the other nonpassed anticrossings.
The detailed conditions depend on the exact time dependence
εi(t ) of the drive. For the considered signal (66), the fidelity
of the iSWAP gate increases with the amplitude of the signal A,
as long as the starting and final detunings ε2 are not close to
the region of the E2 and E3 levels anticrossing (see Fig. 8).

Considering Eq. (77), the duration of the gate also in-
creases with the increase of amplitude of the drive A, so as in
the single-qubit case, the fidelity of the iSWAP gate increases
with its duration, and a satisfactory balance between the fi-
delity and speed of the gate should be found.

Note that the system of equations for implementing a re-
quired single- or two-qubit gate [e.g., Eqs. (46), (50), (54),
(75), and (76), the systems of equations for other two-qubit
gates in Appendices A and B] does not depend on the specific
analytical definition of the external drive ε2(t ) [e.g., Eq. (66)]
and is valid for any drive with a similar shape, which has the
identical combination of passages of the adiabatic level anti-
crossings, providing a topologically similar time dependence
of the adiabatic energy levels (see, e.g., Fig. 9).

Generally, for an N-level quantum system, if the quantum
logic gates are considered in the adiabatic basis, the drive with
the passages of the anticrossing of the adiabatic energy levels
Ei and Ej (where j = i + 1) allows to implement the gates
with the generalized matrix

� = uii|Ei〉〈Ei| + ui j |Ei〉〈Ej | + u ji|Ej〉〈Ei|
+ u j j |Ej〉〈Ej | +

∑
k �=i, j

eiφk |Ek〉〈Ek|

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiφ0 0 . . . . . . . . . 0

0 . . .
...

... uii ui j
...

... u ji u j j
...

...
. . . 0

0 . . . . . . . . . 0 eiφN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (78)

which represents the evolution operator for this drive in the
adiabatic basis.

V. CONCLUSIONS

We further developed the paradigm of alternative quantum
logic gates, based on LZSM transitions. We demonstrated how
the adiabatic-impulse model can be used for implementing
single- and two-qubit quantum logic gates, in particular X,
Y, Hadamard, iSWAP and CNOT gates, demonstrated how to
increase the gate speed, and the technique of finding the trade-
off and balance between speed and fidelity of the gates. We
also demonstrated the comparison of the theoretical error rate
for conventional Rabi-based gates and alternative LZSM gates
for various logic gate durations.

The adiabatic-impulse model is applicable for any quan-
tum multilevel systems with two conditions. Firstly, it works
well for a large drive amplitude, A > �. In terms of the
requirements for a quantum system, this means that for the
considered level anticrossing, its minimal energy splitting �

should be much less than the distance to the nearest level
anticrossings. Secondly, the time between the LZSM transi-
tions should be larger than the time needed for the transition
process. This condition limits the maximal frequency of the
driving signal in the multipassage implementation, and the
minimal gate duration, respectively.

An arbitrary single-qubit quantum logic gate can be
performed with only two LZSM transitions. However,
the considered option of gate implementation with multi-
ple LZSM transitions provide a better combination of gate
duration and fidelity. We demonstrated the technique of im-
plementing an arbitrary single-qubit quantum logic gate with
an arbitrary number of LZSM transitions.

The considered general method of implementing quantum
logic gates with LZSM transitions using the adiabatic-impulse
model is applicable to a large variety of multilevel quantum
systems. This method is the following: choose the shape of
the driving signal so that it passes the required level anticross-
ings for a given gate. For the considered signal compute the
dependence of the adiabatic energy levels of the system on
time. Introduce the transition probabilities Pi for each diabatic
transition and phase gains ζ

(i j)
k between all pairs of succes-

sive adiabatic levels Ei and Ej for each period of adiabatic
evolution. Using them, compose all matrices of the diabatic
transition Ni and adiabatic evolution Ui, multiply them, and
obtain the total evolution matrix. Equating it to the matrix
of the required quantum logic gate multiplied by an arbitrary
phase term eiϕ allows to determine the required parameters of
the driving signal, that implements this logic gate.
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APPENDIX A: GENERALIZED SWAP GATES

The passages of the anticrossing between the adiabatic
energy levels E1 and E2 at ε2 = ε1 [see Fig. 8(a)] allow to
implement generalized two-qubit swap gates with the matrix
(74), including the SWAP,

√
SWAP,

√
iSWAP, SWAPα , fermionic

simulation UfSim(θ, φ) gates, etc. In this Appendix, the vari-
ables Pi, φS(i), ζ

(i j)
k refer to Sec. IV B and Fig. 9(a).
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1. SWAP and iSWAP gates

The system of equations (75) written for the SWAP gate is
not compatible. Thus, the SWAP gate cannot be implemented
by only two passages of the (E1 − E2) adiabatic energy-level
anticrossing for the Hamiltonian (61) with only XY coupling.
It can, however, be implemented when ζ (01) �= ζ (23), in case
both XY and ZZ interactions are present, as in Fig. 8(a). The
corresponding conditions are written as

P1 + P2 = 1,

φS1 + φS2 + 2ζ
(12)
2 = π + 2πn1,

φS1 + 2
(
ζ (01) + ζ

(12)
1 + ζ

(12)
2

) = (1 + λ)
π

2
+ 2πn2,

φS2 + 2
(
ζ (01) + ζ

(12)
2 + ζ

(12)
3

) = (1 + λ)
π

2
+ 2πn3,

ζ (01) + ζ
(12)
1 + ζ

(12)
2 + ζ

(12)
3 + ζ (23) = πn4, (A1)

where λ = 1 for the SWAP gate and λ = 0 for the iSWAP gate.

2.
√

SWAP and
√

iSWAP gates

The
√

SWAP and
√

iSWAP gates do not provide a full swap of
the occupation probabilities between the adiabatic energy lev-
els E1 and E2 when P = 1; so they could be also implemented
by a single passage of the (E1 − E2) level anticrossing. For the
simplest drive ε2(t ) with only one passage of the (E1 − E2)
level anticrossing at ε2 = ε1 [see Fig. 8(a)] in the direction of
the energy detuning ε2 increase, the evolution matrix is given
by

� = U2N1U1, (A2)

where the diabatic transition N1 and adiabatic evolution Uk

matrices are defined by (69) and (71). After the simplification
(73), taking the common phase eiϕ out of the matrix and
neglecting it [see Eq. (12)], equating the evolution matrix to
the matrix of the required quantum logic gate provide the
conditions for the drive, which implement this gate:

P1 = 1

2
,

ζ
(01)
1 + ζ

(01)
2 = −1 + λ

2

π

8
+ φS1

2
+ πn1,

ζ
(12)
1 = λ

π

4
− φS1

2
+ πn2,

ζ
(12)
2 = −λ

π

4
− φS1

2
+ πn3,

ζ
(23)
1 + ζ

(23)
2 = φS1

2
+ πn4, (A3)

where λ = 1 for the
√

SWAP gate and λ = −1 for the
√

iSWAP

gate.

APPENDIX B: GENERALIZED CONTROLLED-U GATES

When the ZZ coupling is present, the passages of the
anticrossing between adiabatic energy levels E2 and E3 at
ε2 = J/2 [see Fig. 8(a)] allow to implement two-qubit gates

FIG. 11. Dependence of the adiabatic energy levels Ei, (a), and
the driving parameter, energy detuning ε2, (b), versus time for the
drive (B2) for implementing the CNOT gate. For each diabatic tran-
sition Ni during the level anticrossing at time tN (i), the value of the
LZSM probability Pi is introduced. For each adiabatic evolution
interval, the phase gains ζ

(i j)
k between various adiabatic levels Ei and

Ej , represented as areas between the levels.

with the matrix

� =

⎛
⎜⎜⎝

1 0 0 0
0 eiφ1 0 0
0 0 u22 u23

0 0 u32 u33

⎞
⎟⎟⎠, (B1)

in particular the controlled-U gates when u11 = eiφ1 = 1.
These include the CNOT, CPhase(φ), CZ, CS gates, etc.

1. CNOT gate

Here we demonstrate an LZSM realization of the CNOT

gate for the Hamiltonian (61) with both XY and ZZ couplings,
although only ZZ is required. As for the X gate, it is impossi-
ble to implement an LZSM transition with an arbitrary P with
high fidelity by only one passage; so at least two passages are
required. We now consider a drive ε2(t ) in the following form
[see Fig. 11(b)]:

ε2(t ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

J/2 − A, 0 < t < t1,
J/2 − A cos ω(t − t1), t1 < t < t2,
J/2 + A, t2 < t < t3,
J/2 + A cos ω(t − t3), t3 < t < t4,
J/2 − A, t4 < t < t5,

(B2)

where

t1 = T1, t2 = T1 + Tc

2
, t3 = T1 + Tc

2
+ T2,

t4 = T1 + Tc + T2, t5 = 2T1 + Tc + T2.
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FIG. 12. The dynamics of the CNOT gate implemented with two
LZSM transitions. The occupation probabilities Pi of each adiabatic
level Ei as function of time are obtained by two methods: the numer-
ical solution of the Liouville-von Neumann equation, shown by solid
lines, and by the adiabatic-impulse model, shown by dashed lines.
The final occupation probabilities, found by the adiabtic-impulse
model, represent the expected occupation probabilities of the gate.
The CNOT gate results in the swap of occupation probabilities be-
tween the E2 and E3 adiabatic energy levels.

As in the case of the single-qubit and iSWAP gates, we com-
pute the time dependence of the adiabatic energy levels [see
Fig. 11(a)], introduce the values of the transition probabilities
Pi for each diabatic transition Ni, and define all phase gains
ζ

(i j)
k (67) between adiabatic levels Ei and Ej for the various

periods of the adiabatic evolution.
The operators of the diabatic transitions (68) are repre-

sented b y the matrices

Nk =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 RkeiφSk −αkTk

0 0 αkTk Rke−iφSk

⎞
⎟⎟⎟⎠, (B3)

where k = 1, 2, α1 = 1, α2 = −1. The matrix of the adiabatic
evolution is given by Eq. (71). The evolution matrix for the
whole drive can be found as (72). After simplifying by

ζ (01) = ζ
(01)
1 + ζ

(01)
2 + ζ

(01)
3 , ζ (12) = ζ

(12)
1 + ζ

(12)
2 + ζ

(12)
3 ,

(B4)

taking the common phase eiϕ out of the matrix and ne-
glecting it [see Eq. (12)], we obtain the evolution matrix in
the form (B1), which depends on the values P1, P2, ζ (01),
ζ (02), ζ

(23)
i . Equating it to the matrix of a required two-qubit

CNOT gate

CNOT =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ (B5)

allows to determine the parameters of the external drive which
implement this gate:

P1 + P2 = 1,

ζ (01) = πn1,

φS1 + φS2 + 2ζ
(23)
2 = π + 2πn2,

φS1 + 2ζ (12) + 2ζ
(23)
1 + 2ζ

(23)
2 = 2πn3,

φS2 + 2ζ (12) + 2ζ
(23)
2 + 2ζ

(23)
3 = 2πn4. (B6)

For the considered signal (B2) with P1 = P2 = P and ζ
(23)
1 =

ζ
(23)
3 , the conditions simplify to

P = 1

2
,

ζ (01) = πn1,

φS + ζ
(23)
2 = π

2
+ πn2,

φS + 2ζ (12) + 2ζ
(23)
1 + 2ζ

(23)
2 = 2πn3. (B7)

In Fig. 12, we illustrate the dynamics of the CNOT gate for a
particular solution with �2Tc/h = 2.0394, �2T1/h = 0.0109,
�2T2/h = 0.0288, A/�2 = 4.6217 for the Hamiltonian (61)
with the parameters �1/g = 0.3, �2/g = 1, ε1/g = 16.6,
J/g = 10, and compare the approximate solution obtained by
the adiabatic-impulse model with the numerical solution of
the Liouville-von Neumann equation. The same parameters
of the Hamiltonian and drive were used for Fig. 11.

2. CPhase(φ), CZ, CS gates

Equating the evolution matrix (B1) for the external drive
ε2(t ) with the shape (B2) to the matrix of the CPhase(φ) gate

CPhase(φ) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

⎞
⎟⎟⎠ (B8)

provides the conditions for the external drive which imple-
ments this gate:

P1 = P2 = P,

ζ (01) = πn1,

φS + ζ
(23)
2 = πn2,

ζ (12) + ζ
(23)
2 = πn3

ζ (12) + ζ
(23)
1 + ζ

(23)
3 = −φ

2
+ πn4. (B9)

Here, the variables Pi, φS, ζ
(i j)
k refer to Appendix B1 and

Fig. 11(a). The particular cases of the CPhase(φ) gate are the
CZ (φ = π ) and CS (φ = π/2) gates.
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[41] M. Kuzmanović, I. Björkman, J. J. McCord, S. Dogra, and
G. S. Paraoanu, High-fidelity robust qubit control by phase-
modulated pulses, Phys. Rev. Res. 6, 013188 (2024).

[42] T. Araki, F. Nori, and C. Gneiting, Robust quantum control with
disorder-dressed evolution, Phys. Rev. A 107, 032609 (2023).

[43] S.-Y. Huang and H.-S. Goan, Optimal control for fast and high-
fidelity quantum gates in coupled superconducting flux qubits,
Phys. Rev. A 90, 012318 (2014).

[44] B. Li, S. Ahmed, S. Saraogi, N. Lambert, F. Nori, A. Pitchford,
and N. Shammah, Pulse-level noisy quantum circuits with
QuTiP, Quantum 6, 630 (2022).

[45] N. Schuch and J. Siewert, Natural two-qubit gate for quantum
computation using the XY interaction, Phys. Rev. A 67, 032301
(2003).

033340-16

https://doi.org/10.1103/PhysRevA.59.4580
https://doi.org/10.1103/PhysRevLett.96.187002
https://doi.org/10.1007/s10909-006-9262-0
https://doi.org/10.1088/1367-2630/ab6a38
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1103/PhysRevResearch.6.013188
https://doi.org/10.1103/PhysRevA.107.032609
https://doi.org/10.1103/PhysRevA.90.012318
https://doi.org/10.22331/q-2022-01-24-630
https://doi.org/10.1103/PhysRevA.67.032301

