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1. MAGNETO-SPECTROSCOPY AND DETERMINATION OF GATE COU-

PLINGS

In this section, we discuss the calculation of the gate couplings αL and αR defined as the

ratio between the gate capacitance Cg1(2) and the total capacitance CΣ1(2) for the left (right)

dot. This can be done by looking at an absolute energy scale of the system, for example, the

Zeeman splitting. In our case, we use magneto-spectroscopy [1]. We monitor the position

in top-gate voltage of the (10)-(11) dot-to-sea transition (DST) shown in Fig. 1(c) in the

main text, while sweeping the magnetic field [Fig. S1]. The shift in the peak location, ∆VTG,

towards a lower top-gate voltage, as a function of the magnetic field B, gives a calibration

of the top-gate coupling to the right dot, αR = gµBB/∆VTG = 0.86, where g is the electron

g-factor and µB is the Bohr magneton. To obtain the top-gate coupling to the left dot,

αL, we use the fact that, in the multi-passage LZSM regime, interference fringes appear at

equidistant values of the top-gate voltage given by the equation δVTG = hfmw/2eα− [as seen

in Fig. 3(c) in the main text]. We obtain αL = 0.96. This calculation also enables us to

calibrate to energy the ε0 axis in Fig. 2(b), for example. We also calibrate the microwave

source voltage output Vmw, to microwave energy amplitude Amw, using the condition that,

at the edge of the LZSM interference region in Fig. 3(c) in the main text, Amw = ε0.
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FIG. S1. Peak position in top-gate voltage plotted against the magnetic field energy [assuming

g = 2 (black hollow circles)] and linear fit to the data (blue solid line).
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2. CALCULATION OF THE ENERGY SPECTRUM

We calculate the energy spectrum of the double quantum dot system ∆E(N1, N2), where

N1 and N2 are the charges in the left and right dot respectively, extending the results from

Ref. [2]
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where the various parameters of the double-dot system are described by the simplified circuit

diagram shown in Fig. S2. In Eq. 1, EC1, EC1 and ECm correspond to the charging energy

of the left dot, right dot and mutual energy, respectively.
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FIG. S2. Circuit diagram for a double quantum dot system, with gate couplings modelled as

capacitances. Here, N1 and N2 indicate the electron number in each dot, respectively. The applied

voltages are indicated with a V , with an appropriate subscript.

In order to simplify the expression, we define several new variables. We introduce the

reduced top-gate and back-gate voltages, nt and nb, respectively,
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|e|
.

(2)

Additionally, we consider the following approximate charging energy relation

EC = EC1 = EC2 = mECm, (3)

where m accounts for the ratio between the charging energy and mutual energy. Moreover,

we may introduce the asymmetry in the gate couplings a defined by:

a =
2 |α−|

max(αL, αR)
. (4)

where α− = (αL − αR)/2. We can now express the ratio of the DQD energies to the total

charging energy as
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We find that the reduced back-gate voltage value at which we perform the experiment –

the middle of the ICT line – corresponds to n0
b = 0.25. Finally, we calculate the reduced-

energy diagram of the DQD across the nb = 0.25 line, as shown in Fig. 2(a) in the main text.

We do so by plotting ∆E/EC(N1, N2) for N1, N2 = 0, 1 as a function of reduced detuning

ε0/EC = 2α−nt/αL, for m = 10 and a = 0.1, as in the case of the experiment. We use a

tunnel coupling ∆c = EC/150.

3. FREQUENCY DEPENDENCE OF THE LZSM INTERFERENCE PATTERN

The microwave frequency used to drive the LZSM experiment can have a significant

effect on the interference pattern, depending on the qubit timescales. If the microwave
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frequency is lowered below the electron phase coherence time T2, the system goes into the

incoherent regime, where the electron phase coherence is lost before two consecutive passages

are performed. In our double quantum dot, T2 can therefore be studied by performing a

microwave-frequency dependence of the LZSM interferometry pattern. Figure S3 shows the

LZSM interferometry results obtained using two different microwave frequencies (4.72 GHz

and 4 GHz). In (a), taken at 4.72 GHz, we observe a few lines of interference in the double-

passage region, indicating that f−1
mw is approaching T2. In (b), taken at 4 GHz, there are

almost no visible interference fringes indicating f−1
mw ' T2. Below 4 GHz the interference

pattern disappears, indicating that we have an upper limit of T2 ' 250 ps.
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FIG. S3. (a) Resonator phase response as a function of detuning ε0 and the microwave amplitude

at (a) 4.72 GHz (b) In-phase component of the resonator response at 4 GHz, showing the decline

and disappearance of the LZSM interference pattern.

4. STUCKELBERG PHASE FOR THE DOUBLE-PASSAGE EXPERIMENT

The Stückelberg phase, φSt, that encapsulates the phase difference acquired after the

first passage, can be derived in the adiabatic-impulse model by considering a driven two-

level system [3]. In the fast-passage limit (∆2
c/Amwω < 1), the upper-level probability after

two passages reads,

5



Pdoub ' 2π
∆2

c

Amwω

(
1− ε2

0

A2
mw

)−1/2

sin2 φSt, (6)

φSt = −ε0

ω
arccos

(
ε0

Amw

)
+
Amw

ω

(
1− ε2

0

A2
mw

)1/2

− π

4
(7)

where ω = 2πfmw. Equation (6) can be simplified in leading order with ε0/Amw:
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Finally, we use this expression to calculate the dispersive response of the resonator in

Fig. 4(c) in the main text. We note that both the amplitude and frequency dependence in

Eq. (8) is in agreement with the result of Ref. [4] in the linear approximation. And this

didactic result comes as a nice surprise, since the latter result was obtained in the assumption

of small ∆c and fast and strong driving, while the former result was obtained in the LZSM

picture of adiabatic-impulse model, with impulse-type transitions between adiabatic energy

levels.

5. INCOHERENT REGIME

In this section, we calculate the resonator response ∆ϕ in the incoherent regime, when

single-electrons are exchanged at microwave frequencies between the left (or right) QD and

the source and drain reservoirs. This scenario can be accurately described by a fast-driven

two-level system [5, 6]. In this situation, we calculate the parametric capacitance of a single

QD, given by the expression,

Cpm = − (eαL)2 ∂P1(t)

∂ε0

. (9)

where P1 is the average probability of having one excess electron in the left QD. Also, P1 can

be calculated from the time-dependent expression of the probability subject to a sinusoidal

change in energy detuning ε(t) = ε0 +Amwsin(2πfmwt) induced by a microwave electric field

with amplitude Amw and frequency fmw around an energy detuning offset ε0,

P1(t) ' 1

1 + exp
(

ε(t)
kBT

) (10)
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FIG. S4. Resonator phase response ∆ϕ as a function of reduced detuning ε0/kBT and reduced

microwave amplitude Amw/kBT

where kB is the Boltzmann constant and T the electron temperature. In Fig S4, we present

the resonator phase response as a function of ε0 and Amw, for a resonator quality factor

Q = 42, αL = 0.96, and T = 100 mK. The calculation matches well the data in Fig.

2(b) (blue-star regions). Particularly, it captures the enhancement of the phase signal at

ε0 = Amw.

6. RELAXATION RATES FOR THE DOT-TO-LEAD TRANSITIONS

In this section, we provide a quantitative analysis of the relaxation rates between the left

(right) dot and the electron reservoirs, ΓL (ΓR). As discussed in the main text, the difference

in these relaxation rates results in relaxation occurring primarily at the (01)-(11) and (00)-

(10) DSTs rather than at the (00)-(01) and (10)-(11) transitions when operating the system

in the strong driving regime. This can be directly observed in Fig. 2(b) of the main text,

where no additional observable change in ∆ϕ appears in the regions Amw <
∣∣ε0 − ε00−01

0

∣∣
and Amw <

∣∣ε0 − ε10−11
0

∣∣, where ε00−01
0 and ε10−11

0 correspond to the position in detuning of

the (00)-(01) and (10)-(11) crossings, respectively. In the following, we provide additional

experimental evidence demonstrating that ΓL � ΓR.
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First, we extract ΓL. For the (01)-(11) DST, the probability of an electron in the left dot

to relax into the source-drain reservoir is given by PSD = 1− exp (−ΓL∆t), where the ∆t is

the time the electron spends at a value of detuning larger than the position of the (01)-(11)

crossing (ε01−11
0 ). It can be shown that
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PSD = 1− exp

{
−ΓL

ω

[
π − 2 sin−1

(
ε01−11

0 − ε0

Amw

)]}
. (12)

Since in the double-passage regime, the probability P11 is proportional to PSD, we fit

Eq. (12) to the envelope of the oscillations (which decay along detuning axis as predicted

by the equation), as shown in Fig. S5(a), for a trace taken at fmw = 15 GHz. The fit gives a

tunnel rate of ΓL ≈ 50 GHz.

To extract ΓR, we perform an analysis of the temperature dependence of (10)-(11) DTS.

In Fig. S5, we show the FWHM of the ∆ϕ peak as a function of the temperature of the

mixing chamber. As we lower the temperature, we see a linear decrease of the FWHM

until 700 mK. Decreasing the temperature further leads to a saturation of the FHWM to

100 µeV below 200 mK. The mechanism that can lead to saturation of the FWHM can be

originated by either electron-phonon decoupling or lifetime broadening [7]. In the case of

electron-phonon decoupling, the saturation occurs at FWHM= 3.5kBT and in the case of

lifetime-broadening FWHM= 2hΓR. From the data, we are unable to distinguish the exact

mechanism that causes saturation but we can extract an upper bound for ΓR < 12 GHz.
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FIG. S5. (a) Resonator phase response as a function of top gate voltage VTG, with a fit to the

envelope of the oscillations as given by Eq. 12. (b) Full width at half maximum of the DST peak

with varying mixing chamber temperature. The blue dashed line shows the saturation of the peak

FWHM at low temperature.
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