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Space-time dual quantum Zeno effect: Interferometric engineering of open
quantum system dynamics

Jhen-Dong Lin,1,2,* Ching-Yu Huang,1,2 Neill Lambert ,3 Guang-Yin Chen ,4 Franco Nori ,3,5,6 and Yueh-Nan Chen 1,2,†

1Department of Physics, National Cheng Kung University, 701 Tainan, Taiwan
2Center for Quantum Frontiers of Research & Technology, NCKU, 70101 Tainan, Taiwan

3Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
4Department of Physics, National Chung Hsing University, Taichung 402, Taiwan

5RIKEN Center for Quantum Computing (RQC), Wakoshi, Saitama 351-0198, Japan
6Department of Physics, The University of Michigan, Ann Arbor, 48109-1040 Michigan, USA

(Received 17 March 2022; accepted 8 August 2022; published 22 August 2022)

Superposition of trajectories, which modify quantum evolutions by superposing paths through interferom-
etry, has been utilized to enhance various quantum communication tasks. However, little is known about its
impact from the viewpoint of open quantum systems. Thus we examine this subject from the perspective of
system-environment interactions. We show that the superposition of multiple trajectories can result in quantum
state freezing, suggesting a space-time dual to the quantum Zeno effect. Moreover, nontrivial Dicke-like
super(sub)radiance can be triggered without utilizing multiatom correlations.
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I. INTRODUCTION

Controlling quantum dynamics is an essential part of
quantum information science, which becomes richer and
more challenging when considering dissipative open systems.
In this regime, several unique control, or engineering, ap-
proaches are available. For example, (i) quantum reservoir
engineering, which steers open system dynamics by directly
manipulating an artificial environment [1–9]; (ii) feedback-
based control [10–15], where the dynamics is modified by
closed-loop controls; (iii) dynamical decoupling [16–24],
which is an open-loop design to counter the effect of system-
environment couplings; and (iv) the quantum Zeno effect
[25–38], where dissipation can be suppressed through fre-
quent measurements on the open system.

Recently, an interferometric scheme known as superposed
trajectories has drawn considerable research interest [39–51].
This approach utilizes a quantum control of evolution paths to
let the target system to go through different evolution paths
in a quantum superposition. In principle, the superposition
of paths can be implemented by a Mach-Zehnder type in-
terferometer [52–58], as illustrated in Fig. 1. The quantum
interference between different evolution paths can reduce the
noise effect. Thus it is beneficial for quantum communication
[39–45], quantum metrology [59], and quantum thermody-
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namics [60]. Also, it has potential applications in relativistic
quantum theory [46–48]. The ability to mitigate quantum
decoherence has also stimulated the quantum open-system
community to investigate the concept of superposed trajec-
tories in more detail [49–51]; however, various questions
remain. For instance, in many previous works, only two paths
were considered, which may limit the utility of the quantum
interference effect. Further, these works only consider what
we call the independent-environments scenario, where the
environments inside the interferometer are considered to be
separated and independent from each other. This simplified
scenario may deviate from real-world considerations; for in-
stance, these environments could either be correlated or be
different regions of a single environment.

Here, we explore both open questions. First, we extend
the exploration of the independent-environments scenario to
multiple evolution paths. Our primary result here is revealing
an unexpected connection between superposed trajectories
and the quantum Zeno effect. For concreteness, we consider
the dissipative and the pure dephasing spin-boson models
[61]. We find that quantum state freezing occurs when the
number of superposed evolution paths reaches infinity. More-
over, we show that the effective decay can be, in general,
characterized by the overlap-integral expression, which serves
as a universal tool to study the quantum Zeno effect [27]
and noise spectroscopy [62–65]. Our result could also open a
novel alternative approach to investigate the space-time “dual”
quantum Zeno effect [66,67], because we replace the temporal
sequence of measurements performed at one location (of the
atom) with a single measurement done on the multiple paths
followed by the atom in the interferometer. In other words,
a temporal sequence of measurements in one location is re-
placed by a single measurement at one time, but over many
paths (i.e., many locations).
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FIG. 1. Superposed quantum dynamics achieved by a multiarm interferometer. To produce superposition of paths, the qubit is first sent
into the multiport beam splitter (MBS1) such that the path of the qubit is prepared in |χC〉 =∑N

i=1 |iC〉/√N . Thus the qubit can travel through
(a) different independent environments {Ei} or (b), different positions {ri} of a single environment in a quantum superposition. One can further
manipulate the interference effect between the evolution paths by using the other beam splitter (MBS2) along with phase shifters labeled
by {φi}. The modified dynamics can be obtained through a post-selection, as illustrated by the trash cans. For the independent-environments
scenario, one can obtain a space-time dual to (c), usual quantum Zeno effect induced by a temporal sequence of measurements. For the
indefinite-position scenario, one can obtain a collective decay akin to (d): the Dicke effect that can be observed by an ensemble of qubits
embedded in a common environment.

Second, we consider an indefinite-position scenario,
wherein an initially excited two-level atom is placed inside
a bosonic vacuum where its position is indefinite because of
the superposition of paths. The modified decay can exhibit
signatures of both the superradiant and subradiant emission
effects [68–76]. It is well known that Dicke first proposed the
idea of the superradiance effect induced by an ensemble of
correlated atoms [68], wherein the quantum correlations make
them behave like a giant dipole moment. Our result implies
that the formation of a giant dipole moment can be emulated
by only one atom with superposed trajectories. We expect that
this single-atom collective effect can be utilized to design new
Dicke quantum batteries [77,78] and heat engines [79].

II. INDEPENDENT-ENVIRONMENTS SCENARIO

We formalize the scenario depicted in Fig. 1(a). We
consider that the path of a traveling qubit Q inside the in-
terferometer is characterized by a quantum system C. More
specifically, we introduce N orthonormal states {|iC〉}i=1,...,N

to describe N possible paths for the qubit. When C is prepared
in the state |iC〉, the qubit goes through the path labeled by i
and interacts with the environment Ei. One can also prepare
C in a superposition state, i.e., a superposition of paths, by
sending the qubit into a multiport beam splitter [the MBS1
in Fig. 1(a)], such that Q interacts with all environments {Ei}
as a coherent superposition. Therefore C acts as a quantum
control to determine which environment for Q to interact with.
Further, we assume that C does not directly interact with
these environments. Thus, inside the interferometer, the total
Hamiltonian of C, Q, and {Ei}i=1,...,N can be written as

Htot =
N∑

i=1

|iC〉〈iC | ⊗ HQEi , (1)

where HQEi represents the interaction Hamiltonian of the qubit
Q and the environment Ei.

The initial states of Q and {Ei} are ρQ(0) and {ρEi (0)},
respectively. Also, by using MBS1, C is prepared in

|χC〉 =
N∑

i=1

|iC〉/
√

N . (2)

Thus, after passing through these environments, the reduced
dynamics of CQ complex is

ρCQ(t ) = 1

N

N∑
i, j=1

|iC〉〈 jC | ⊗ ρQ,i, j (t ) with

ρQ,i, j (t ) = tr{Ek}

[
e−iHQEi t ρQ(0)

N⊗
l=1

ρEl (0) eiHQE j t

]
. (3)

Terms with i = j describe the reduced dynamics obtained
from sending the qubit into a single path with the label i, i.e.,
the single-path dynamics; while, the terms with i �= j (i.e., the
off-diagonal terms) capture the quantum interference between
the paths i and j.

Before discarding C, one should perform another selective
measurement on it to harness the quantum interference effect
[42,43]. As shown in Fig. 1(a), this can be achieved by ap-
plying the second multiport beam splitter (MBS2) with the
phase shifters {φi} and selecting one of the output beams of
the qubit. To illustrate this idea, we consider that the selective
measurement is characterized by a projector

PC,φ = |χC,φ〉〈χC,φ| with

|χC,φ〉 =
N∑

i=1

exp(iφi)|iC〉/
√

N . (4)
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The post-measurement state of Q then reads

ρ̃Q,φ(t ) = 〈χC,φ|ρCQ(t )|χC,φ〉

= 1

N2

∑
i, j

e−i(φi−φ j )ρQ,i, j (t )

= 1

N
ρQ,avg(t ) + 1

N2

∑
i �= j

[e−i(φi−φ j )ρQ,i, j (t )]. (5)

Here, ρQ,avg(t ) =∑i ρQ,i,i(t )/N denotes the incoherent mix-
ture of the single-path dynamics [80–84]. Note that the
normalized post-measured state is written as

ρQ,φ(t ) = ρ̃Q,φ(t )/tr[ρ̃Q,φ(t )]. (6)

Equation (5) suggests that the interferometry-modification of
the qubit dynamics originates from both the incoherent mixing
of single-path dynamics and the interference effects, i.e., the
off diagonal terms ρQ,i, j (t ) with i �= j and the phase shifts
{φi}.

To simplify the following discussions, we introduce two
additional assumptions. First, we assume that all single-path
dynamics are identical; that is, ρQ(t ) = ρ

avg
Q (t ) = ρQ,i,i(t ) ∀i

and β(t ) = ρQ,i, j (t ) ∀i �= j. In this case, the incoherent mix-
ing does not yield a new dynamical process; thus, the
modification is totally determined by the interference effect.
This assumption holds when all of the environments are
prepared in the same state and all of the qubit-environment
interactions are identical. Second, we consider that each φi

is either 0 or π ; and, hence, the projector associated with the
selective measurement can be written as PC,φn

= |χC,φn
〉〈χC,φn

|
with n being the number of phase shifts that take the value π .
The post-measurement unnormalized state of Q can then be
simplified as

ρ̃Q,φn
(t ) = ρQ(t )/N + (RN,n − 1/N )β(t ) with

RN,n = (N − n/N )2. (7)

One can find that ρQ,φN/2−k
(t ) = ρQ,φN/2+k

(t ) for k =
0, 1, . . . , N/2 − 1. Note that at t = 0, we have

ρQ,φn
(0) =

{
ρQ(0) for n �= N

2

0 for n = N
2

. (8)

When n = N/2, one obtains a null result because of the
completely destructive interference, i.e., 〈χφ0

|χφN/2
〉 = 0, and

thus, we naturally exclude this scenario from the rest of the
discussions.

III. SPACE-TIME DUAL QUANTUM ZENO EFFECT FOR
THE DISSIPATIVE AND THE PURE DEPHASING MODELS

We now focus on two different types of spin-boson interac-
tions, the dissipative and the pure dephasing models. Without
loss of generality, we work within the interaction picture; the
interaction Hamiltonians are

Hdiss
QEi

(t ) =
∑

k

gkei(ωq−ωk )tσ+ai,k + g∗
ke−i(ωq−ωk )σ−a†

i,k,

Hdeph
QEi

(t ) = σz

∑
k

(gke−iωkt ai,k + g∗
keiωkt a†

i,k ). (9)

Here, ωq denotes the energy gap between the excited state
|e〉 and the ground state |g〉 of the qubit, σz = |e〉〈e| − |g〉〈g|,
σ+ = |e〉〈g| (σ− = |g〉〈e|) represents the qubit raising (low-
ering) operator, and ai,k (a†

i,k) stands for the annihilation
(creation) of the mode k for the environment Ei. Let us assume
that the initial state of the total system is

ρtot(0) = |χC〉〈χC | ⊗ ρQ(0) ⊗ |vac〉〈vac|, (10)

where |vac〉 =⊗N
i=1 |vaci〉, with ai,k|vaci〉 = 0. The associ-

ated reduced dynamics can be obtained analytically; detailed
derivations can be found in Appendix A. As pointed out
in Refs. [49–51], superposed trajectories can modulate the
quantum non-Markovian effect. Tunability also holds in our
models; we discuss this in detail in Appendix B.

If we now prepare the qubit state in |ψdiss
Q (0)〉 = |e〉 and

|ψdeph
Q (0)〉 = (|e〉 + |g〉)/

√
2 for the dissipative and the pure

dephasing models, respectively, then

lim
N→∞

ρdiss
Q,φn

(t ) = ∣∣ψdiss
Q (0)

〉〈
ψdiss

Q (0)
∣∣,

lim
N→∞

ρ
deph
Q,φn

(t ) = ∣∣ψdeph
Q (0)

〉〈
ψ

deph
Q (0)

∣∣ ∀t (11)

with n being a finite positive integer. That is, the quantum
states of the qubit are frozen when the number of paths goes
to infinity.

To gain a deeper insight, we introduce the survival proba-
bility defined as

p(t ) = tr
[|ψQ(0)〉〈ψQ(0)| ρQ,φn

(t )
]
. (12)

We also consider the decay factor γ (t ) associated with the
survival probability p(t ) = exp[−γ (t )], or equivalently,

γ (t ) = − ln p(t ). (13)

Within leading order in perturbation, the decay factor can be
described by an overlap integral in a similar manner with the
traditional quantum Zeno effect [27–32]; namely,

γ (t ) =
∫

dω J (ω)F (ω, t, N, n). (14)

Here, J (ω) denotes the system-environment coupling spec-
tral density, and the filter function F (ω, t, N, n) can be
expressed as

Fdiss(ω, t, N, n) = N

(N − 2n)2
t2sinc2

[
(ω − ωq)

2
t

]
,

Fdeph(ω, t, N, n) = 1

2

N

(N − 2n)2

1 − cos(ωt )

ω2
. (15)

Note that sinc(x) = sin(x)/x. Equations (14) and (15) show
that one can modify the decay by either introducing different
number of paths N or modulating the phase shifts, i.e., chang-
ing the value n.

We emphasize that this overlap-integral expression can be
derived for a more general class of open-system models with-
out imposing the two assumptions mentioned earlier, namely,
(1) all environments are identical, and (2) each φi is either
0 or π (see Appendix C for detailed derivations). The only
requirement for the validity of such an expression is the weak
system-environment couplings, such that the reduced dynam-
ics can be perturbatively approximated.
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FIG. 2. Effective decay within a given time t = ωq/5 of the
dissipative model for superposed trajectories and the usual quantum
Zeno effect, which are described by a spectral density and the filter
functions. F diss(N ), given by Eq. (15), is the filter function with N
superposed trajectories with n = 0. F̃ (Ñ ) is the filter function for the
Zeno effect induced by Ñ periodic measurements of the qubit energy;
it can be obtained by replacing N with Ñ and sinc2[(ω − ωq )t/2]
with sinc2[(ω − ωq )t/2Ñ] in F (N ). J (ω) = exp[−(ω − ωM )2/�]
represents a given spectral density with ωM = 3ωq/2 and � = ωq/5.
The qualitative difference between the traditional Zeno effect and
the space-time dual Zeno effect induced by superposed trajectories
is that F̃ (Ñ ) smears out, whereas F (N ) remains localized when
increasing Ñ and N , respectively.

One distinct feature of the traditional Zeno effect is that
frequent measurements broaden the filter functions, as shown
in Fig. 2. For dissipative processes, the broadening has been
interpreted as a consequence of energy-time uncertainty [27]
because the system energy is measured frequently. Super-
posed trajectories only modify the overall magnitude of the
filter function without broadening. This is physically reason-
able because the open system is not measured frequently in the
superposed trajectories scenario, and therefore, the energy-
time uncertainty does not occur.

IV. INDEFINITE-POSITION SCENARIO AND
SINGLE-ATOM DICKE-LIKE DECAY

We now consider a scenario that generates behavior nor-
mally observed under the Dicke effect. The simplest model
to illustrate the Dicke effect is that of two identical two-level
atoms, with an energy gap ωq, embedded in a bosonic vac-
uum (see, e.g., Refs. [74,76] for instance). By utilizing either
Fermi’s golden rule or the master equation approach, one can
predict two split decay rates, �± = �0[1 ± sinc(qd )], where
�0 represents the single-atom spontaneous decay rate, d is the
distance between two atoms and q = ωq/c, with c being the
speed of light in vacuum. The factor sinc(qd ) can be inter-
preted as the collective effect for this two-atom model. Here,
�+ > �0 (�− < �0), which is known as Dicke superradiance
(subradiance), if sinc(qd ) > 0.

Inspired by this model, we consider that a single qubit Q
interacts with a single bosonic vacuum, where the location of
Q is coherently controlled by C, as depicted by Fig. 1(b). We

model the total Hamiltonian as

H̃tot =
N∑

i=1

|iC〉〈iC | ⊗ H̃ (ri ) with

H̃ (ri ) = ωqσz/2 +
∑

k

ωka†
kak

+ σx

∑
k

gk(akeik·ri + a†
ke−ik·ri ). (16)

Here, {ri} denotes the possible positions of Q that are
controlled by C. By taking Born–Markov and secular approx-
imations, the time evolution of the CQ complex is governed
by the following master equation:

∂ρCQ(t )

∂t
= �0

N∑
i=1

LiρCQ(t )L†
i − 1

2
{L†

i Li, ρCQ(t )}

+ �0

∑
i �= j

sinc(q|ri − r j |)LiρCQ(t )L†
j . (17)

Here, Li = |i〉〈i| ⊗ σ−. The evolution governed by the Lamb-
shifted Hamiltonian is neglected for simplicity. In Eq. (17), we
observe the emergence of the factor sinc(q|ri − r j |), which is
present in the above two-atom example, and this suggests that
a Dicke-like collective effect also plays a nontrivial role.

We initialize the state of systems C and Q as ρCQ(0) =
|χC〉〈χC | ⊗ |e〉〈e| to investigate the effective population decay
of Q modified by the superposed trajectories. For simplicity,
we consider |ri − r j | = d, ∀i �= j. That is, the position vec-
tors {ri} form an equilateral triangle for N = 3 or a regular
tetrahedron for N = 4 with the edge length d . Following the
procedure described in the previous sections, we perform the
projective measurement Pχφn

on C so that the effective dynam-
ics of the excited state population after the post-selection can
be expressed as

Pe(t, N, n) =
〈
χφn

∣∣〈e|ρCQ(t )
∣∣χφn

〉|e〉
tr
[〈
χφn

∣∣〈e|ρCQ(t )
∣∣χφn

〉|e〉]
= RN,ne−�0t

1
N + (RN,n − 1

N

)
[e−�0t + sinc(qd )(1 − e−�0t )]

.

(18)

Therefore the effective decay of Q depends on the factors
(N, n), which are determined by the superposed trajectories
setup, and most importantly, the collective factor sinc(qd ).
In Fig. 3, we present a comparison between the two-atom
super(sub)radiant decay with distance d such that sinc(qd ),
and a single-atom effective decay from three superposed
trajectories. We consider that the position vectors form an
equilateral triangle with edge length d . We set the spontaneous
emission rate �0/ωq as 0.01. The single-atom effective decay
can either be greater than the two-qubit superradiance, i.e.,
(N = 3, n = 1), or less than the two-atom subradiance, i.e.,
(N = 3, n = 0).

For the experimental realization, a Young’s experiment
(as illustrated in Fig. 3), which has been applied to large
molecules [55], can be considered as a natural test-bed for
such superposed trajectories. A beam of atoms passes through
a plate pierced by two or three slits, and therefore, the atom
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FIG. 3. Comparison of the two-atom super(sub)radiance, with
qubits’ distance d , with the single-atom decay modified by three
superposed trajectories, where the position vectors form an equi-
lateral triangle with edge length d . This can be implemented by a
Young’s type triple-slit experiment. One can place the atom detectors
at certain positions and perform quantum state tomography to verify
the super(sub)radiant dynamics. Here, we set the collective factor
sinc(qd ) = 1/6 and the spontaneous emission rate �0/ωq = 0.01.

may interact with the environment at different locations. Atom
detectors can be placed at different positions (on the right-
hand side) to verify the super(sub)radiant effective dynamics.
This is equivalent to performing a measurement on the path
degrees of freedom and selecting the associated atoms. The
modified dynamics can then be obtained by performing quan-
tum state tomography on the selected atoms.

Although the effective decay can be modified similarly
with the traditional Dicke effect, there exist nontrivial dif-
ferences between these two distinct results. First, quantum
correlations between multiple atoms, which is the most im-
portant ingredient for the traditional Dicke effect, are not
present in the superposed trajectories because there is only
one atom in the system. Second, it is known that the strongest
superradiant effect for the traditional Dicke effect occurs in
the so-called small sample limit, i.e., q|ri − r j | � 1, ∀ i, j.
However, this is not the case for superposed trajectories. The
equation for H̃tot indicates that the superposition of paths
cannot create the indefiniteness of the qubit position when
all position vectors are identical, i.e., |ri − r j | = 0, ∀ i, j;
therefore, lim{q|ri−r j |→0}i, j Pe(t, N, n) = exp(−�0t ), ∀ N, n.

V. SUMMARY AND OUTLOOK

We studied the effects of superposed trajectories from
the perspective of open quantum systems. We demonstrate
a space-time dual Zeno effect when introducing multiple su-
perposed trajectories for independent-environments scenario.
More specifically, we find that it is possible to express the

effective decay in terms of an overlap integral. This result pro-
vides a novel physical intuition to the problem, and we expect
that it could be applicable to dynamical control [85] and noise
spectroscopy [62–65], which is also based on overlap inte-
grals. Moreover, it would be interesting to investigate whether
the proposed interferometric setup can trigger a space-time
dual of measurement-induced phase transitions [66,67], which
is an application of the quantum Zeno effect to many-body
physics. We leave this as a promising future work.

We also considered an indefinite-position scenario and
demonstrated that the Dicke-like superradiant (subradiant)
decay, usually observed by an ensemble of atoms, can be
generated by only one atom with multiple superposed trajecto-
ries. One can naturally ask whether it is possible to induce an
effective superabsorption [86,87], which could then open new
possibilities to design quantum batteries [77,78] or quantum
heat engines [79].

On the other hand, there exists another type of quantum-
controlled evolution that induces indefinite causal order
[88–91] of quantum processes. The investigation of this ap-
proach from the perspective of open systems is still an open
question.
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APPENDIX A: DERIVATIONS OF THE SPIN-BOSON
MODELS

1. The dissipative model

The Hamiltonian of the dissipative spin-boson model is
described by

Hdiss
QEi

(t ) =
∑

k

gkei(ωq−ωk )tσ+ai,k + g∗
ke−i(ωq−ωk )σ−a†

i,k . (A1)

Here, ωq denotes the energy gap between the excited state
|e〉 and the ground state |g〉 for the qubit Q, σ+ = |e〉〈g|
(σ− = |g〉〈e|) represents the qubit raising (lowering) operator,
and ai,k (a†

i,k) stands for the annihilation (creation) of the mode
k for the environment Ei.
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This model can be solved analytically in the single-
excitation subspace spanned by the following basis states:

{|ψi,g〉 = |iC〉 ⊗ |g〉 ⊗ |vac〉, |ψi,e〉 = |iC〉 ⊗ |e〉 ⊗ |vac〉∣∣ψi,k j

〉 = |iC〉 ⊗ |g〉 ⊗ |k j〉
}

i, j=1,...,N , (A2)

where |vac〉 =⊗N
i=1 |vaci〉 with ai,k|vaci〉 = 0 and |k j〉 =

a†
j,k|vac〉. Whenever the initial state of the total system is

expanded by the aforementioned bases, the quantum state at
time t can be written as

∣∣�diss
tot (t )

〉 =∑
i

⎡
⎣ci,g(t )|ψi,g〉 + ci,e(t )|ψi,e〉

+
∑

j,k

ci,k j (t )|ψi,k j 〉
⎤
⎦. (A3)

Further, the amplitudes satisfy the following coupled differen-
tial equations:

˙ci,g(t ) = 0

˙ci,e(t ) = −i
∑

k gkei(ωq−ωk )t ci,ki (t ) for i, j = 1, . . . , N.

˙ci,k j (t ) = −iδi, jg∗
ke−i(ωq−ωk )t ci,e(t )

(A4)

Assuming that the environments are initially prepared in the
vacuum state, i.e., ci,k j (0) = 0, ∀i, j, Eq. (A4) can be analyt-
ically solved by Laplace transformation as

ci,g(t ) = ci,g(0)

ci,e(t ) = ci,e(0)G(t )

ci,k j (t ) = −iδi, jg∗
k

∫ t
0 dt ′e−i(ωq−ωk )t ′

ci,e(t ′)

with G(t ) = L−1

[
1

s + f̂ (s)

]

and f̂ (s) = L
[∫ ∞

0
dω J (ω)ei(ωq−ω)t

]
. (A5)

Here, G(t ) = L−1[ 1
s+ f̂ (s)

] coincides with the dissipation
function for the single-path dynamics, wherein J (ω) =∑

k |gk|2δ(ω − ωk ) represents the spectral density function,
and L and L−1 denote the Laplace and inverse Laplace trans-
formations, respectively.

Assuming that the initial state of the total system is written
as

∣∣�diss
tot (0)

〉 = |χC〉 ⊗ (cg(0)|g〉 + ce(0)|e〉) ⊗ |vac〉

=
N∑

i=1

1√
N

(cg(0)|ψi,g〉 + ce(0)|ψi,e〉), (A6)

where |χC〉 =∑N
i=1 |iC〉/√N . The reduced dynamics of sys-

tems C and Q can then be written as

ρdiss
CQ (t )

= 1

N

∑
i, j

|iC〉〈 jC | ⊗ (|cg(0)|2|g〉〈g| + cg(0)ce(t )∗|g〉〈e|

+ ce(t )cg(0)∗|e〉〈g| + |ce(t )|2|e〉〈e|)
+
∑

i

|iC〉〈iC | ⊗ |ci,ki (t )|2|g〉〈g|, (A7)

with ce(t ) = ce(0)G(t ). Consequently, the unnormalized post-
measurement state will be

ρ̃diss
Q,φn

(t ) = 〈χC,φn

∣∣ρdiss
CQ (t )

∣∣χC,φn

〉
=
[

RN,n|cg(0)|2 + 1

N
|ce(0)|2(1 − |G(t )|2)

]
|g〉〈g|

+ RN,nG∗(t )cg(0)c∗
e (0)|g〉〈e|

+ RN,nG(t )ce(0)cg(0)∗|e〉〈g|
+ RN,n|G(t )|2|ce(0)|2|e〉〈e| (A8)

with RN,n = (N − 2n)2/N2.

2. The pure dephasing model

Let us now consider the pure dephasing model, for which
the interaction Hamiltonian is described as

Hdeph
QEi

(t ) = σz ⊗
∑

k

(gke−iωkt ai,k + g∗
keiωkt a†

i,k ), (A9)

where σz = |e〉〈e| − |g〉〈g|. For this model, the unitary opera-
tor of the total system can be analytically derived as

U deph
tot (t ) = T+ exp

[
−i
∫ t

0
Hdeph

tot (t ′)dt ′
]

=
N∑

i=1

|i〉〈i| ⊗ U deph
QEi

(t ). (A10)

Here,

U deph
QEi

(t ) = exp[i f (t )]
∏

k

[|e〉〈e| ⊗ Di(αk )

+ |g〉〈g| ⊗ Di(−αk )], (A11)

where Di(αk ) = exp(αka†
i,k − α∗

k ai,k ) denotes the bosonic
displacement operator with αk = g∗

k (1 − eiωkt )/ωk , and

f (t ) = − ∫ t
0 dt ′

1

∫ t ′
1

0 dt ′
2

∑
k |gk|2 sin[ωk (t ′

2 − t ′
1)] characterizes

an unimportant global phase.
In the main text, we stated that the environments are pre-

pared in the vacuum states. However, this model can be solved
when the environments are prepared in thermal equilibrium
states as well. Therefore we now consider the initial state of
the total system as

ρ
deph
tot (0) = |χC〉〈χC | ⊗ ρQ(0)

N⊗
i=1

ρEi,T with

ρEi,T =
∏

k

[1 − e−ωk/kBT ]e−ωka†
i,kai,k/kBT , (A12)
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where kB and T denote the Boltzmann constant and the tem-
perature of the environments, respectively.

After tracing out the environments, the reduced state of the
systems C and Q can be obtained as

ρ
deph
CQ (t ) = 1

N

[
N∑

i=1

|iC〉〈iC | ⊗ ρQ(t )

+
∑
i �= j

|iC〉〈 jC | ⊗
√

φT (t )ρQ(0)

]
, (A13)

where

〈e|ρQ(t )|e〉 = 〈e|ρQ(0)|e〉,
〈g|ρQ(t )|g〉 = 〈g|ρQ(0)|g〉, (A14)

〈e|ρQ(t )|g〉 = 〈e|ρQ(0)|g〉φT (t ) = (〈g|ρQ(t )|e〉)∗.

Here, φT (t ) = 4
∫∞

0 dωJ (ω)
ω2 coth(ω/2kBT )[1 − cos(ωt )] rep-

resents the dephasing factor for the single-path dynamics. The
unnormalized post-measurement state can be written as

ρ̃
deph
Q,φn

(t ) = 〈χC,φn

∣∣ρdeph
CQ (t )

∣∣χC,φn

〉
= 1

N
ρQ(t ) +

(
RN,n − 1

N

)√
φT (t )ρQ(0). (A15)

The normalized state retains a pure dephasing dynamics for
the pure dephasing model with a dephasing function modified
as

�(t, N, n) = φT (t ) + [(N − 1) − 4n
N (N − n)

]√
φT (t )

1 + [(N − 1) − 4n
N (N − n)

]√
φT (t )

.

(A16)

APPENDIX B: FULL-TIME DYNAMICS AND QUANTUM
NON-MARKOVIAN EFFECTS

We now discuss the full-time dynamics and associated
non-Markovian effects. A well-known indicator of quan-
tum non-Markovianty is the nonmonotonic behavior of the
trace distance [92,93], which quantifies the distinguishability
between quantum states. We consider an initial state pair
[ρQ,+(0), ρQ,−(0)], where

ρQ,+(0) = 1
2 (|e〉 + |g〉)(〈e| + 〈g|),

ρQ,−(0) = 1
2 (|e〉 − |g〉)(〈e| − 〈g|). (B1)

The time evolutions of the trace distances for the dissipative
and pure dephasing models can be derived as

D
[
ρdiss

Q,φn,+(t ), ρdiss
Q,φn,−(t )

]
= 2(N − 2n)2|G(t )|2

[(N − 2n)2 − N]|G(t )|2 + (N − 2n)2 + N
(B2)

and
D
[
ρ

deph
Q,φn,+(t ), ρdeph

Q,φn,−(t )
] = |�(t, N, n)|, (B3)

where D(A, B) denotes the trace distance between A and B.
Taking the time derivative shows that the trace distances

monotonically decrease whenever |G(t )|2 and |�(t, N, n)|2
are also monotonic decreasing functions. For the dissipative
model, the criterion of the monotonically decrease for the
superposed trajectories coincides with that of the single-path

FIG. 4. Time evolutions of the trace distance for different factors
(N, n). (a) For the dissipative model, we consider the Lorentzian
spectral density given by Eq. (B4) with λ/γ0 = 0.1. For the pure
dephasing model, we consider a family of Ohmic spectral densities
given by Eq. (B5) with η = 1/3 and ωc = 1. (b) We present re-
sult for s = 1 (Ohmic), where the single-path evolution experiences
Markovian monotonic dephasing. (c) Further, we present result for
s = 4 (super-Ohmic), where nonmonotonic behavior and coherence
trapping can be observed for single-path dynamics.

dynamics (i.e., d|G(t )|2/dt � 0). Therefore nonmonotonic
behavior cannot be activated by superposed dynamics when-
ever the single-path dynamics are monotonic decreasing.

We present the numerical results for the non-Markovian
dynamics in Fig. 4. For the dissipative model, we consider the
Lorentzian spectral density expressed as

JL(ω) = 1

2π

γ0λ
2

(ωq − ω)2 + λ2
(B4)

with the width λ and the coupling strength γ0. The dynam-
ics of the trace distance shows oscillating behavior when
γ0 > λ/2; this criterion also holds for superposed trajectories.
In Fig. 4(a), we consider λ = 0.1γ0, for which oscillations
can be observed. The magnitude of the oscillations, i.e., the
strength of the non-Markovian effect, can either be enhanced
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TABLE I. Comparison of usual quantum Zeno effect and the space-time dual Zeno effect proposed in this work.

Usual quantum Zeno effect Space-time dual Zeno effect

Setup A temporal sequence of measurements Only one measurement on N paths
on one atom. taken by the atom in an interferometer.

Behavior of the filter functions The filter functions smear out The filter functions remain localized
when increasing the measurement frequency. when increasing the number of paths.

or suppressed based on the factors (N, n) in comparison with
the single-path dynamics, i.e., (N = 1, n = 0).

Let us now consider the pure dephasing model. Here, we
consider a family of Ohmic spectral density parameterized as

JOhmic(s, ω) = ηωsω1−s
c exp

(
− ω

ωc

)
(B5)

with the coupling strength η = 1/3, Ohmicity s, and the cut-
off frequency ωc = 1. We present the results for s = 1 and s =
4, which show single-path Markovian and non-Markovian
dephasing, respectively. In the single-path Markovian regime
(s = 1), we find that the interferometric engineering miti-
gates the dephasing process for (N = 3, n = 0). Further,
the nonmonotonic behavior for (N = 3, n = 1) implies that
superposed trajectories can lead to non-Markovian dynamics
even when single-path dynamics is Markovian (in contrast to
the dissipative case). The trace distance (or equivalently the
modified dephasing function) experiences a sudden death, and
a sudden revival during the dephasing process. For the case
s = 4, the dephasing process is mitigated when (N = 3, n =
0) and sudden death (revival) occurs when (N = 3, n = 1). In
addition, one can also find that the superposed trajectories can
enhance another signature of non-Markovian effect known as
coherence trapping [94], where the coherence saturates to a
finite value.

Quantum Markovianity is usually defined through the di-
visibility of dynamics characterized by a family of completely
positive and trace-preserving (CPTP) maps. For the pure de-
phasing model, the concept of (non-)Markovianity can be
applied directly because the effective dynamics of the post-
measurement state remains a pure dephasing process that can
be described by CPTP maps. However, for the dissipative
model, the dynamics cannot be characterized by CPTP maps,
because tr[ρdiss

Q,φn
(t )] is dependent on the initial state of the

qubit Q. Nevertheless, the dynamics of the unnormalized post-
measurement state ρ̃diss

Q,φn
(t ) is characterized by a family of

completely positive and trace nonincreasing (CPTNI) maps.
These maps are CP divisible when d|G(t )|2/dt � 0, which
coincides with the criterion for the monotonic decrease of
the trace distance. Therefore the trace distance is still a valid
indicator of quantum (non-)Markovianity in the general sense
of CPTNI maps. Similar discussions can also be found in
Ref. [51].

We now derive the divisible criterion for the dissipative
model in terms of completely-positive and trace nonincreasing
maps. A dynamical map is usually considered as a collections
of CPTP maps �(t ; 0), where �(t ; 0) is CP divisible if for all
t, τ � 0 when �(t + τ ; 0) can be decomposed as

�(t + τ ; 0) = �(t + τ ; t )�(t ; 0), (B6)

where �(t + τ ; t ) is also a CPTP map. We relax the trace-
preserving condition for this definition of CP divisibility
because the dynamics for the dissipative model is described by
CPTNI maps. According to Eq. (A8), the Choi representation
of map �diss

φn
(t + τ ; t ) can be derived as

Mdiss
φn

(t + τ ; t )

=

⎛
⎜⎜⎜⎝

1 0 0 G(t+τ )∗
G(t )∗

0 N̄
[
1 − ∣∣G(t+τ )

G(t )

∣∣2] 0 0
0 0 0 0

G(t+τ )
G(t ) 0 0

∣∣G(t+τ )
G(t )

∣∣2

⎞
⎟⎟⎟⎠, (B7)

where N̄ = N
(N−2n)2 . Then, �diss

φn
(t + τ ; t ) is CP if and only if

|G(t + τ )|2 � |G(t )|2. Therefore �diss
φn

(t + τ ; 0) is CP divisi-
ble (in a sense of CPTNI maps) if and only if

d|G(t )|2
dt

� 0. (B8)

APPENDIX C: GENERAL EXPRESSION FOR THE
OVERLAP-INTEGRAL EXPRESSION

In the main text, we propose a space-time dual to quantum
Zeno effect (see in Table I) and show that the correspond-
ing decay factors for the dissipative and the pure dephasing
models can be characterized by an overlap integral. We now
provide a general expression of the decay factor.

In general, the Hamiltonian for the qubit Q and the envi-
ronment Ei can be written as

HQEi = HQ + HEi + HI
QEi

with

HI
QEi

=
∑

α

Ai,α ⊗ Bi,α. (C1)

Here, HQ and HE,i respectively represent the free Hamiltoni-
ans for the qubit and the environment Ei, and HI

QEi
denotes the

interaction Hamiltonian, where Ai,α = A†
i,α and Bi,α = B†

i,α are
the operators for Q and Ei, respectively. Within the interaction
picture, the interaction Hamiltonian reads

V I
QEi

(t ) =
∑

α

Ai,α (t ) ⊗ Bi,α (t ) with

Ai,α (t ) = eiHQt Ai,αe−iHQt ,

Bi,α (t ) = eiHEi t Bi,αe−iHEi t . (C2)

The propagator that governs the single-path time evolution
can be written as

UQEi (t ) = T+ exp

[
−i
∫ t

0
dt ′V I

QEi
(t ′)
]
. (C3)
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We now assume that the propagator can be approximated to the second-order perturbation such that

UQEi (t ) ≈ 1 + UQEi,1(t ) + UQEi,2(t ), (C4)

where

UQEi,1(t ) = −i
∫ t

0
dt1V

I
QEi

(t1) and

UQEi,2(t ) = −
∫ t

0
dt1

∫ t1

0
dt2V

I
QEi

(t1)V I
QEi

(t2). (C5)

The time-dependent terms ρQ,i, j (t ) described in Eq. (5) can then be expanded to the second order, i.e.,

ρQ,i, j (t ) ≈ ρQ(0) + ρQ,i, j,1(t ) + ρQ,i, j,2(t ). (C6)

Here, ρQ,i, j,k (t ) characterizes the k − th order correction, wherein

ρQ,i, j,1(t ) = tr{Ek}

[
UQEi,1(t )ρQ(0)

N⊗
l=1

ρEl (0) + ρQ(0)
N⊗

l=1

ρEl (0)U †
QE j ,1

(t )

]

= trEi

[
UQEi,1(t )ρEi (0)

]
ρQ(0) + ρQ(0)trE j

[
ρE j (0)U †

QE j ,1
(t )
]

= − i
∑
α,β

∫ t

0
dt1{Ai,α (t1)ρQ(0)tr[Bi,α (t1)ρEi (0)] − ρQ(0)Aj,β (t1)tr[ρE j (0)Bj,β (t1)]},

ρQ,i, j,2(t ) = tr{Ek}

[
UQEi,2(t )ρQ(0)

N⊗
l=1

ρEl (0) + ρQ(0)
N⊗

l=1

ρEl (0)U †
QE j ,2

(t ) + UQEi,1(t )ρQ(0)
N⊗

l=1

ρEl (0)U †
QE j ,1

(t )

]

= −
∑
α,β

∫ t

0
dt1

∫ t1

0
dt2

{
Ai,α (t1)Aj,β (t2)ρQ(0)tr{Ek}

[
Bi,α (t1)Bj,β (t2)

N⊗
l=1

ρEl (0)

]

+ ρQ(0)Aj,β (t2)Ai,α (t1)tr{Ek}

[
N⊗

l=1

ρEl (0)Bj,β (t2)Bi,α (t1)

]}

+
∑
α,β

∫ t

0
dt1

∫ t

0
dt2 Ai,α (t1)ρQ(0)Aj,β (t2)tr{Ei}

[
Bi,α (t1)

N⊗
l=1

ρEl (0)Bj,β (t2)

]
. (C7)

For a large class of open-system models, the terms tr[Bi,α (t )ρEi (0)] vanish, which implies ρQ,i, j,1(t ) = 0 and

ρQ,i, j,2(t ) = δi, j

∑
α,β

∫ t

0
dt1

∫ t1

0
dt2{[Ai,β (t2)ρQ(0)Ai,α (t1) − Ai,α (t1)Ai,β (t2)]Ci,α,β (t1, t2) + H.c.}. (C8)

Here, H.c. denotes the Hermitian conjugate, and Ci,α,β (t1, t2) = tr[Bi,α (t1)Bi,β (t2)ρEi (0)] represents the two-point correlation
function of the environment Ei. Thus we have

ρ̃Q,φ(t ) = 1

N2

∑
i, j

e−i(φi−φ j )ρQ,i, j (t )

≈ 1

N2

{∑
i, j

e−i(φi−φ j )ρQ(0) +
∑
i,α,β

∫ t

0
dt1

∫ t1

0
dt2{[Ai,β (t2)ρQ(0)Ai,α (t1) − Ai,α (t1)Ai,β (t2)ρQ(0)]Ci,α,β (t1, t2) + H.c.}

}

(C9)

We assume that the corrections are sufficiently small, i.e., ||ρQ,i, j (t )||tr � 1, so that tr[ρ̃Q,φ(t )] ≈∑i, j e−i(φi−φ j )/N2. Further,
the correlation function usually takes the form Ci,α,β (t1, t2) = ∫ dωJi(ω) fi,α,β (ω, t1, t2), where Ji(ω) denotes the coupling
spectral density between the qubit and the environment Ei, and fi,α,β (ω, t1, t2) summarizes the remaining information about
the correlation function. Suppose that the initial qubit state is ρQ(0) = |ψ〉〈ψ |. One can then express the decay factor in terms
of averaging N overlap integrals, namely,

1

N

N∑
i=1

∫
dωJi(ω)Fi(ω, t, N,φ), (C10)
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with the filter function

Fi(ω, t, N, n) = 2N∑
k,l e−i(φk−φl )

Re

{∑
α,β

∫ t

0
dt1

∫ t1

0
dt2 fi,α,β (ω, t1, t2)tr[Pψ⊥Ai,β (t2)ρQ(0)Ai,α (t1)]

}
. (C11)

Here, Pψ⊥ denotes a projector that projects onto the subspace orthogonal to |ψ〉〈ψ |.
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