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Coherent dynamics of a photon-dressed qubit
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We consider the dynamics and stationary regime of a capacitively shunted transmon-type qubit in front of
a mirror. The qubit is affected by probe and dressing signals. By varying the parameters of these signals and
then analyzing the probe signal (reflected by the “atom plus mirror” system), it is possible to explore the system
dynamics, which can be described by the Bloch equation. The obtained time-dependent occupation probabilities
are related to the experimentally measured reflection coefficient. The study of this type of dynamics opens up
new horizons for better understanding the “qubit plus mirror” circuit properties and the underlying physical
processes, such as Landau-Zener-Stückelberg-Majorana transitions.
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I. INTRODUCTION

Topics related to quantum computing are attracting con-
siderable attention [1–5]. One of the most promising building
blocks of such devices are superconducting qubits (see,
e.g., [6–8]). These can be operated at nanosecond scales
with millisecond coherence times [9], are controlled by mi-
crowaves, and have lithographic scalability [10]. Therefore,
investigations of superconducting qubits could help in the
development of quantum computers.

A superconducting qubit in a semi-infinite transmission
line [11] is important for quantum electrodynamics, especially
waveguide quantum electrodynamics (WQED) [12–14]. For
example, in Ref. [15] it was found that a transmon qubit
embedded at the end of a transmission line can amplify a
probe signal with an amplitude gain of up to 7%, while a
single quantum dot [16] and natural atoms [17] show the
signal amplifications at much lower levels: 0.005% and 0.4%,
respectively. The investigation of our system can also address
interesting physics issues in WQED, including dynamics in
atomlike mirrors [18], collective Lamb shift [19], genera-
tion of nonclassical microwaves [20], the dynamical Casimir
effect [21], the cross-Kerr effect [22], photon routing [23],
probabilistic motional averaging [24], etc.

Driven quantum systems can be described in terms
of Landau-Zener-Stückelberg-Majorana (LZSM) tran-
sitions [25–28]. If driven periodically, they experience
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interference. The corresponding LZSM interferometry is
important both for studying fundamental quantum phenomena
and as a convenient tool for characterizing quantum systems.
The use of LZSM interferometry to control quantum
dynamics was studied in Refs. [28–34]. Quantum logic
gates can also be implemented using LZSM dynamics [35].

In a preceding work [36], we explored LZSM interferom-
etry spectroscopically, i.e., in the frequency domain. Taking
advantage of the strong coupling between propagating fields
and qubits, as well as the ease of fabrication, circuits with
superconducting qubits in front of a mirror provide a versatile
platform to study the dynamics of LZSM interference com-
pared with other quantum two-level systems.

The rest of this paper is organized as follows. Section II is
devoted to the description of the experiment. In Sec. III the
theoretical aspects of the problem are described; we introduce
the Hamiltonian of the system and the equation of motion
which was solved to obtain the quantities shown. Section IV
presents our results: a comparison of the theory and the ex-
periment is given, and the general patterns of the system are
described and explained. Additional results are given in the
Appendix. In Sec. V we present our conclusions.

II. EXPERIMENT

Our device consists of a transmon qubit, embedded at a dis-
tance (L � 33 mm, where the resonant frequency corresponds
to 1.84λ), of a finite quasi-one-dimensional transmission
line with characteristic impedance Z0 � 50 �, as shown in
Figs. 1(a) and 1(b). The transmission line allows the forma-
tion of standing electromagnetic waves along the transmission
line; therefore, the voltage field strength experienced by the
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FIG. 1. Device and its characterization. (a) Conceptual sketch of the device: a two-level atom, a pointlike object (denoted by Q), is coupled
to a semi-infinite transmission line waveguide. The atom is located at a distance L � 33 mm (1.84λ, indicated by the red curve, and 1.75λnode,
indicated by the blue curve) away from the mirror (capacitance). A pump tone with frequency ωpump is applied to modulate the transition
frequency of the two-level atom. A weak probe tone with frequency ωp is applied to the atom-mirror system to measure the reflection coefficient.
(b) Micrographs of the device. The magnification of the active qubit is shown to the left, where the superconducting qubit is intentionally
designed to be weakly coupled to the transmission line. The weak coupling enables us to measure the temporal dynamics with a nanosecond
digitizer. This is the main difference between this work and a previous one [36], which focused on the stationary regime. A capacitor to ground,
which creates an antinode voltage field at the end of the transmission line and acts as a mirror, is shown to the right. The transmission line
ends in another qubit, which is designed for another experiment and is not participating in the experiment (because it is far detuned). (c) A
scanning-electron-microscope picture of the qubit dc SQUID which enables flux tunability. (d) The experimental setup shows the probe tone
and pump tone being applied to the atom-mirror system. (e) The vector network analyzer (VNA) and signal generator show the setup for
Figs. 2 and 3, and (f) the arbitrary wave form generator (AWG), local oscillator (LO), and analog-to-digital converter (ADC) show the setup
for Figs. 4–7.

qubit can be controlled by the location of the qubit in the
transmission line, as illustrated in Fig. 1(a). In principle, we
could have used a short instead of an open end for the trans-
mission line. However, this changes the boundary conditions.
In particular, the phase of the incident wave acquires a π

phase shift, instead of a zero phase shift. And the voltage
at the end of transmission line would be at the node instead
of at the antinode. Figure 1(c) contains a scanning-electron-
microscope picture of the qubit dc superconducting quantum
interference device (SQUID) which enables flux tunability.
We consider only the two lowest energy levels of the trans-
mon and neglect all the higher levels. The energy splitting
of the two-level atom is h̄ω10(�) ≈ √

8E J(�)EC − EC, with
charging energy EC (which is approximately equal to the an-
harmonicity), EC = e2/2C� , where e is the elementary charge
and C� is the total capacitance of the transmon, and the
Josephson energy EJ, which can be tuned by the external
magnetic flux � of a magnetic coil. The detailed measurement

setup is presented in Fig. 1(d). Here ωp is the probing fre-
quency (indicated in red in Fig. 1 (b, e, f)), a continuous wave
created by the vector network analyzer or the microwave pulse
from the arbitrary wave generator; we input the continuous
wave with pump frequency ωpump by the RF source (indicated
in purple in Fig. 1 (b, e, f)).

A. Characterizing the qubit by single-tone scattering
with a weak probe

We characterize our qubit by single-tone scattering with
a weak probe (see Fig. 2). Fitting the magnitude and phase
response of the reflection coefficient r by using the circle fit
equation (1) [38], one could extract the resonant frequency
ω10, the relaxation rate �1, and the decoherence rate �2:

r = 1 − �1

�2 + i(ωp − ω10)
, (1)
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FIG. 2. Reflection coefficient (magnitude response in red and
phase response in black) as a function of probe frequency ωp for
a weak probe (−166 dBm); see Fig. 1(e) with pump off. Data are
shown by circles, and the solid curves are the fit, using a fitting
method similar to that in Ref. [37].

where r is defined as the reflected field amplitude divided by
the incoming field amplitude. The extracted values are as fol-
lows: ω10/2π = 5 GHz, �1/2π = 0.28 MHz, and �2/2π =

0.75 MHz. These parameters will be used in the theory later.
Note that we assume the incoming amplitude is the same
as the reflected amplitude when the qubit is detuned. By
using two-tone spectroscopy, we know that EC/h (anhar-
monicity) = 220 MHz (data not shown), which is much larger
than any Rabi frequency in this work, and our two-level atom
assumption is valid. From ω10 and EC, we know that EJ/h =
15.5 GHz.

B. Reflection coefficient versus pump
power and probe frequency

We apply both probe and dressing (pump) signals to the
transmission line and the on-chip flux line (which modulates
the transition frequency of the qubit), respectively. We then
measure the reflection coefficient r in the (steady-state) fre-
quency domain [see Fig. 1(e)]. Both frequency and power for
the pump tone and probe tone are all tunable. Here we scan
the frequency of the probe ωp, frequency of the pump ωpump,
and power of the pump Ppump and measure the reflection
coefficient |r| with a fixed power of the weak probe tone.

The results are shown in Fig. 3. In each plot in Fig. 3,
we fix the pump frequency and vary the pump power (y axis)
and probe frequency (x axis). We see a LZSM interferometry
pattern, where we clearly observe multiphoton resonances,
which occur at ωp − ω10 ≡ 	ω = kωpump, where k is an inte-

FIG. 3. LZSM interferograms. (a)–(c) These are shown via the dependence of the reflection coefficient |r| on the pump power Ppump

and probe frequency ωp at fixed pump frequency ωpump for a weak probe Pp = −152 dBm for the experimental measurements. (d)–(f) show
the theoretically calculated upper-level occupation probability P1 as a function of the probe frequency ωp and the pump amplitude δ for
G(ωp/2π = 5 GHz) = 2π × 0.7 MHz. The qubit is irradiated by a pump with frequency (a) ωpump/2π = 1 MHz, (b) ωpump/2π = 5 MHz,
and (c) ωpump/2π = 10 MHz. In (c), the drift on multiphoton resonance at high power is due to flux drift.
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TABLE I. Comparison between parameters in this work and Ref. [36].

Parameter Description Value in Ref. [36] Current value

ωnode Node frequency 2π × 4.75 GHz 2π × 4.38 GHz
ω10 Qubit frequency �ωnode 2π × 5 GHz
δ Pump amplitude ∼2π × 0.1 GHz <2π × 40 MHz
ωpump Pump frequency <2π × 0.1 GHz 2π × 1 ∼ 15 MHz
ωp Probe frequency �ωnode 2π × 5 GHz
�1 Relaxation rate <2π × 5 MHz 2π × 0.28 MHz
�φ Pure dephasing rate ∼2π × 3 MHz 2π × 0.61 MHz
�2 = �1/2 + �φ Decoherence rate ∼2π × 5.5 MHz 2π × 0.75 MHz

ger number. From the experimental and theory plots, one can
calibrate the Rabi frequency and the pump power. In addition,
from these plots it is possible to extract qubit parameters,
such as the relaxation rate �1, pure dephasing rate �φ , and
decoherence rate �2. The parameters obtained are shown in
Table I. Note that the k = 0 transition is observed because
we tune the qubit frequency away from the node frequency,
similar to Fig. 5(c) in Ref. [36]. If the qubit is at a node,
then a transition for k = 0 is not observed (see Fig. 5(b) in
Ref. [36]).

As shown in Fig. 3(b), the higher pump powers allow
us to resolve more sidebands, visible there up to k = ±5.
The experimental LZSM interferometry pattern shown in
Figs. 3(a)–3(c) matches very well the theory in Figs. 3(d)–
3(f). Also one can see the drift on the multiphoton resonance
at high power in Fig. 3(c), which is due to flux drift (caused
by environmental background flux), because the resonance
frequency is controlled by the flux. Detailed calculations are
shown in Sec. III. Since we are using a weak probe, the
upper-level occupation probability P1 is low.

C. LZSM interferometry of the system in the stationary regime

In this section we give a brief comparison of the current re-
sults with previous related research [36]. The main difference
between these two studies is that in the previous experiment
the qubit was located in the node [blue curve in Fig. 1(a)];
thus, it was “hidden” or “decoupled” from the transmission
line. In other words, the qubit was exposed to the electric
field but could not experience the electric field because the
qubit was located at the node. By tuning the qubit to the node
frequency, we could decouple the k = 0 sideband and see the
other sidebands.

In this work, we tuned slightly away from the node fre-
quency [red curve in Fig. 1(a)], and we see the time dynamics
of the k = 0 photon-dressed resonance. The advantage of
shifting slightly away from the node frequency is in obtain-
ing a long coherence time, T2 = 1/�2 ∼ 1/2π × 0.75 MHz ∼
212 ns (see Table I), which is important to observe the time
dynamics of the photon-dressed resonance using a finite-time-
resolution digitizer.

Time domain measurements were not made in Ref. [36]
because the relaxation rate and pure dephasing rate were much
higher than in the current work, where the qubit-transmission-
line coupling is intentionally designed to be weak. Regarding
the relaxation time and pure dephasing time in Ref. [36], we

could not resolve them with a finite bandwidth digitizer (5 ns
resolution) because the dynamics was too fast.

Also, compared to the preceding work, the coupling ca-
pacitor to the transmission line is decreased because of the
intended and desired weak coupling, where the relaxation rate
is smaller and the coherence time is larger. This allows us to
reveal the dynamics with a nanosecond digitizer. In order to
keep the same charging energy, which determines the anhar-
monicity, we have to increase the shunt capacitance to keep
the same total capacitance.

D. Temporal dynamics of the atom-mirror under both pump
and probe signals

We study the time dynamics of the atom-mirror system
under both probe and dressing (pump) signals. In particular,
we send a probe square pulse (Gaussian rise ∼10 ns) to the
transmission line and a continuous sinusoidal wave pump to
the on-chip flux line [see Fig. 1(f)]. We measure the reflection
coefficient as a function of time and probe the frequency for
a weak probe under the influence of fixed pump power and
fixed pump frequency.

In Fig. 4, each plot is taken at fixed pump power Ppump =
−78.5 dBm and pump frequency. Note that ωpump/2π =
5 MHz for Figs. 4(a) and 4(d), ωpump/2π = 10 MHz for
Figs. 4(b) and 4(e), and ωpump/2π = 15 MHz for Figs. 4(c)
and 4(f). The probe pulse starts at the beginning of the plot
at t = 0. In Figs. 4(a)–4(c) the reflection coefficient reveals a
transient dynamics starting at t = 0. This transient dynamics,
affected by the initial conditions, ends up in a stationary solu-
tion, determined by the competition of driving and relaxation.
In addition, we see the time dynamics of the multiphoton
resonances, which occur at 	ω = kωpump, labeled by k =
−2,−1, 0,+1,+2. The multiphoton resonances are slightly
asymmetric around k = 0. All of these features are consistent
with the theory described in Sec. III.

In Fig. 5, by taking line cuts of Fig. 4, we show detailed
features of the transient dynamics at various fixed pump fre-
quencies ωpump. Moreover, in Fig. 6, we also fix the pump
frequency to 10 MHz and vary the pump power in Figs. 6(a)–
6(c). We see the multiphoton resonances, occurring at k =
−1,+1, becoming weaker and weaker from Figs. 6(a) to 6(c),
as the pump power decreases.

In Fig. 5, we can see the line cut along Fig. 4 at ωp/2π =
5 GHz. For a clearer comparison between theory and exper-
iment, the y axis for the theoretical plots was cropped and
inverted. We see the transient dynamics (oscillations with fre-
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FIG. 4. Coherent dynamics of the transmon qubit: dependence of the reflection coefficient |r| (the upper-level occupation probability P1)
using the probe power Pp = −146 dBm [G(ωp/2π = 5 GHz) = 2π × 1.4 MHz] and the pump power Ppump = −78.5 dBm (δ = 10 MHz) on
the probe frequency ωp and time t . (a)–(c) present experimental results, and (d)–(f) show plots built by data computed theoretically. The
qubit is irradiated by a pump with frequency (a) ωpump/2π = 5 MHz, (b) ωpump/2π = 10 MHz, and (c) ωpump/2π = 15 MHz. (d)–(f) show the
corresponding data computed theoretically for the qubit upper-level occupation probabilities P1.

FIG. 5. Line cut of Fig. 4 along ωp/2π = 5 GHz. Coherent dynamics of the transmon qubit: dependence of the reflection coefficient |r|
(the upper-level occupation probability P1) on the time t at fixed pump frequency ωpump with ωp/2π = 5 GHz, Pp = −146 dBm [G(ωp/2π =
5 GHz) = 2π × 1.4 MHz], and Ppump = −78.5 dBm (δ = 10 MHz). (a)–(c) present experimental results, while (d)–(f) show plots computed
theoretically. The qubit is irradiated by a signal with frequency (a) ωpump/2π = 5 MHz, (b) ωpump/2π = 10 MHz, and (c) ωpump/2π = 15 MHz.
(d)–(f) show the corresponding data computed theoretically for the qubit upper-level occupation probabilities P1. For a clearer comparison
between theory and experiments, the y axis of the theoretical plots in (d)–(f) were cropped and inverted.
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FIG. 6. Coherent dynamics of the transmon qubit: dependence of the reflection coefficient |r| (the upper-level occupation probability
P1) versus time t , using the probe power Pp = −146 dBm [G(ωp/2π = 5 GHz) = 2π × 1.4 MHz for the theory] on the probe frequency
ωp/2π . (a)–(c) present experimental results, while (d)–(f) show plots built by data computed theoretically. The qubit is irradiated by a pump
signal with frequency ωpump/2π = 10 MHz and power (a) Ppump = −74.1 dBm, (b) Ppump = −78.5 dBm, and (c) Ppump = −101 dBm. The
theoretical results from the qubit upper-level occupation probability P1 are shown for δ = 16.6 MHz in (d), for δ = 10 MHz in (e), and for
δ = 0.75 MHz in (f).

quency inversely proportional to the pump frequency ωpump)
around T2 = 1/�2 ∼ 212 ns for ωpump/2π = 15 MHz, where
T2 > 2π/ωpump in Fig. 5(c). When T2 ∼ 2π/ωpump, the tran-
sient dynamics is not clear, as shown in Fig. 5(a). In the steady
state, the period of oscillations is the inverse of the pump
frequency, as expected. The theory plots show the upper-level
occupation probability P1, where the transient dynamics is
around T1 = 1/�1 ∼ 568 ns. Also, for a better understanding
of the qubit dynamics formation driven by the flux pump, we
show the case when the pump is off. From this, we learn that
the features at k = ±1 disappear. The corresponding plots are
presented in Fig. 7 in the Appendix.

III. THEORETICAL DESCRIPTION

In Ref. [36], the experimentally measured reflection co-
efficient |r| is associated with the theoretically calculated
probability of an upper-level occupation P1 (increasing P1

corresponds to decreasing |r|). The computations were done
in the diabatic (charge) basis. Here we use the same cor-
respondence between theory and experiment and make our
calculations in the diabatic basis. The system can be described
by the Hamiltonian

H = −Bz

2
σz − Bx

2
σx, (2)

where the diagonal part corresponds to the energy-level mod-
ulation,

Bz/h̄ = ω10 + δ sin ωpumpt, (3)

and the off-diagonal part characterizes the coupling to the
probe signal,

Bx/h̄ = G sin ωpt . (4)

To remove the fast driving from the Hamiltonian, Ref. [36]
considered the unitary transformation U = exp(−iωpσzt/2)
and the rotating-wave approximation [39,40] to obtain the new
Hamiltonian

H1 = − h̄	̃ω

2
σz + h̄G

2
σx, (5)

where

	̃ω = 	ω + f (t ), (6)

	ω = ωp − ω10, (7)

f (t ) = δ sin ωpumpt . (8)

Here δ is the amplitude of the energy-level modulation, and G
characterizes the coupling to the probe signal (Rabi frequency
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of the probe signal). According to Ref. [36],

G = ωp − ωnode

ωnode
G0, (9)

where ωnode describes the qubit position in a semi-infinite
transmission line [corresponding to the blue curve in Fig. 1(a)]
and G0 is proportional to the probe signal amplitude. Such a
dependence causes the asymmetry about the line ωp/2π =
5 GHz in Figs. 3, and 4 6. For the current experiment
ωnode/2π = 4.38 GHz. For any multiphoton resonance close
to the node frequency, the linewidth will be narrower. The
closer it is, the narrower it is. Therefore, it gives the asymme-
try about the qubit resonance at ωp/2π = 5 GHz. Moreover,
one can see that if ωp = ωnode, the qubit is hidden or decou-
pled from the transmission line, with G = 0.

In order to describe the qubit dynamics, we use the
Lindblad equation, which in the diabatic basis with the Hamil-
tonian (5) has the form

dρ

dt
= − i

h̄
[Ĥ1, ρ] +

∑
α

L̆α[ρ], (10)

where ρ = (ρ00 ρ01
ρ∗

01 1 − ρ00
) is the density matrix, such that P1 =

1 − ρ00. The Lindblad superoperator L̆α characterizes the sys-
tem relaxation caused by interactions with the environment,

L̆α[ρ] = LαρL+
α − 1

2 {L+
α Lα, ρ}, (11)

where {a, b} = ab + ba is the anticommutator. For a qubit
there are two possible relaxation channels: energy relaxation
(described by Lrelax) and dephasing (described by Lφ). The
corresponding operators can be expressed in the following
form:

Lrelax =
√

�1σ
+, Lφ =

√
�φ

2
σz, (12)

where σ+ = (0 1
0 0), σz = (1 0

0 −1), �1 is the qubit relaxation,
�2 = �1/2 + �φ is the decoherence rate, and �φ is the pure
dephasing rate.

IV. INTERFEROMETRY AND DYNAMICS

By solving Eq. (10) we obtain P1 as a function of time
t , pump frequency ωpump, pump power Ppump (which cor-
responds to δ in theory), probe frequency ωp, and probe
power Pp (which corresponds to G in theory). The occupa-
tion probability is the function of all these parameters, P1 =
P1(t, ωpump, ωp, δ, G). The dependence obtained allows us to
build, for instance, P1 = P1(ωp, t ). Also we can compute the
dependences for P1 in a stationary regime by time averaging
the results.

Figure 3 shows a time-averaged interferogram, where P1

is a function of δ and ωp. We use the extracted parame-
ters in Fig. 2 and select G(ωp/2π = 5 GHz) = 2π × 0.7 MHz
in Fig. 3; G(ωp/2π = 5 GHz) = 2π × 1.4 MHz in Figs. 4–7
(the calibration between Rabi frequency and power, data not
shown) for the theory plots.

To obtain time-averaged values, we analyzed the curve
P1 = P1(t ) to extract the minimal time tmin after which the

oscillation amplitude has no change and then applied averag-
ing for the interval [tmin, tfinal], where tfinal corresponds to the
time of the pulse turning off. We determined that for our case
tmin = 1.5μs and tfinal = 2.0μs.

Such interferograms not only are useful for obtaining the
fitting parameters but also play a key role in characterizing
the system:

(i) Particularly, these kinds of figures allow us to estimate
the decoherence time of the system. Consider the cases in
Figs. 3(a) and 3(b). We see that for the case in Fig. 3(b)
the peaks are separated, while in Fig. 3(a) they are not dis-
tinguishable. The maximal frequency ωpump for which we
have a blurred picture (when individual resonances are not
distinguishable) corresponds to the system decoherence time.
So we can conclude that �2/2π � 1 MHz.

(ii) They also provide a tool for power calibration by in-
terrelating the unknown distance between the zeros along the
vertical axis in the experiment with the zeros of the Bessel
function in theory.

(iii) Finally, they provide novel opportunities for multipho-
ton spectroscopy. The resonances appear when ωp = ω10 ±
kωpump, where k is an integer number. In other words, the
system is resonantly excited when the dressed qubit energy
gap is equal to the energy of k photons, kh̄ωpump [36].

In order to see the qubit dynamics we built the dependence
P1 = P1(ωp, t ) for different pump frequencies ωpump/2π =
5 MHz, 10 MHz, 15 MHz in Fig. 4. As expected, for the
stationary case, the resonances are observed at ωp = ω10 ±
kωpump, and the value of the reflection coefficient |r| (occupa-
tion probability P1) oscillates with period T = 2π/ωpump.

All theoretical plots were built by solving the Lindblad
equation within the framework QUTIP (Quantum Toolbox in
PYTHON) [41,42]. The function mesolve(H , ρ0, cops, . . . ) from
this library takes the Hamiltonian H in a matrix form (in our
case H = H1), the initial state of the system ρ0 (we assume
that, initially, the system is in the ground state |0〉), the set
of collapse operators cops which are related to the Lindblad
superoperators (11), and some other parameters. The function
mesolve(H , ρ0, cops, . . . ) returns elements of the density ma-
trix ρ dependent on time.

V. CONCLUSIONS

We considered the dynamics and stationary regime of a
capacitively shunted transmon-type qubit in front of a mir-
ror, affected by two signals: probe and dressing (pump)
signals. The multiphoton resonance dynamics, occurring at
ωp = ω10 ± kωpump, consists of two temporal regimes: tran-
sient and stationary. In particular, we observed the dynamics
of k = 0,±1,±2 multiphoton resonances because the node
frequency is away from those resonances. The occupation
probability P1 obtained with the Lindblad equation and the
experimentally measured reflection coefficient |r| agree well
with each other. Taking advantage of the strong coupling
between the propagating field and qubit and the ease of fab-
rication, superconducting qubits in front of a mirror provide
a clear platform to study the dynamics of LZSM interference
compared with other quantum two-level system [43].

195441-7



M. P. LIUL et al. PHYSICAL REVIEW B 107, 195441 (2023)

ACKNOWLEDGMENTS

I.-C.H. acknowledges financial support from the Research
Grants Council of Hong Kong (Grant No. 11312322). J.C.C.
acknowledges financial support from the NSTC of Tai-
wan under Projects No. 110-2112-M-007-022-MY3 and No.
111-2119-M-007-008. P.Y.W. acknowledges financial support
from the NSTC of Taiwan under Project No. 110-2112-M-
194-006-MY3. M.P.L. and S.N.S. were supported by the
Army Research Office (ARO; Grant No. W911NF2010261).
F.N. is supported in part by Nippon Telegraph and Telephone
Corporation (NTT) Research, the Japan Science and Technol-
ogy Agency [JST; via the Quantum Leap Flagship Program
(Q-LEAP) and Moonshot R&D Grant No. JPMJMS2061],
the Asian Office of Aerospace Research and Development
(AOARD; via Grant No. FA2386-20-1-4069), and the Foun-
dational Questions Institute Fund (FQXi) via Grant No.
FQXi-IAF19-06.

APPENDIX: TIME DYNAMICS OF AN ATOM-MIRROR
SYSTEM IRRADIATED BY PROBE AND DRESSING

(PUMP) SIGNALS

Here we consider one more case of studying the time
dynamics of the atom-mirror system irradiated by probe and
dressing (pump) signals. One possible approach involves
fixing the probe frequency ωp and analyzing the reflection
coefficient |r| as a function of time t , as shown in Fig. 5.

The measurements and calculations were done for various
values of the pump frequency, ωpump/2π = 5 MHz, 10 MHz,
15 MHz, with ωp/2π = 5 GHz. From the analysis of the plots
we can conclude the following:

(i) The probability and the reflection coefficient oscillate
with period T = 2π/ωpump.

(ii) For the pumping frequency, ωpump/2π = 5 MHz, there
are two kinds of peaks: high and low ones.

(iii) The system dynamics consists of two regimes: station-
ary and transient ones. The stationary regime is observed after
t = 1.5 μs for all the cases considered.

Figure 6 shows the dependence of the reflection coefficient
|r| as a function of the probe frequency ωp and time t . The
measurements and calculations were done for various values
of the pump power Ppump (δ in the theory) and fixed pump fre-
quency ωpump/2π = 10 MHz. From the plots we can deduce
that increasing the pump power amplifies the resonances.

To understand better the influence of the pump signal on
the system dynamics, we also show the plots with no flux
pump. The corresponding results with δ = 0 and ω10/2π =
5.002 GHz (in this case ω10 is slightly changed due to a
slightly different flux bias) are shown in Fig. 7. Figure 7(a)
shows the dependence of the reflection coefficient |r| on time
t and probe frequency ωp, and Fig. 7(c) is the correspond-
ing theoretical result; Fig. 7(b) is the line cut of Fig. 7(a)
at ωp/2π = 5.002 GHz, and Fig. 7(d) is the corresponding
theoretical curve.

FIG. 7. Coherent dynamics of the transmon qubit: dependence of the reflection coefficient |r| (the upper-level occupation probability
P1) with pump off on the probe frequency ωp and time t for a weak probe Pp = −146 dBm [G(ωp/2π = 5 GHz) = 2π × 1.4 MHz] and
ω10/2π = 5.002 GHz. (a) and (b) present experimental results, while (c) and (d) show plots computed theoretically. (b) and (d) are line cuts of
the experimental and theoretical plots in (a) and (c), respectively, at ωp/2π = 5.002 GHz.
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