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We propose a protocol to realize nonadiabatic geometric quantum computation of small-amplitude

Schrodinger cat qubits via invariant-based reverse engineering. We consider a system with a two-photon driven
Kerr nonlinearity, which can generate a pair of dressed even and odd coherent states (i.e., Schrodinger cat states)
for fault-tolerant quantum computations. An additional coherent field is applied to linearly drive a cavity mode,
to induce oscillations between dressed cat states. By designing this linear drive with invariant-based reverse
engineering, we show how to implement nonadiabatic geometric quantum computation with cat qubits. The
performance of the protocol is estimated by taking into account the influence of systematic errors, additive white
Gaussian noise, 1/ f noise, and decoherence including photon loss and dephasing. Numerical results demonstrate
that our protocol is robust against these negative factors. Therefore, this protocol may provide a feasible method
for nonadiabatic geometric quantum computation in bosonic systems.
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I. INTRODUCTION

Quantum coherence and quantum entanglement are ar-
guably the most fascinating properties of quantum mechanics
[1-4]. These are the main resources for quantum information
processing [1,5] and quantum technologies of second gener-
ation [6]. Their recent applications include: demonstrations
of quantum advantage using superconducting programmable
processors [7] or boson sampling with squeezed states of pho-
tons [4], a quantum communication network over 4 600 km
[8], and quantum-enhanced gravitational-wave detectors us-
ing squeezed vacuum [9-12]. As a very important subfield of
quantum information processing, quantum computation has
shown a potentially great power in solving many specific
problems [13,14]. In a practical implementation of quantum
computation, quantum algorithms are usually (but not al-
ways, e.g., in quantum annealing) designed as a sequence
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of quantum gates. Therefore, high-fidelity quantum gates are
essential elements of quantum computation. Unfortunately,
experimental imperfections, including operational errors, pa-
rameter fluctuations, and environment-induced decoherence,
may affect the desired dynamics, limiting the fidelities of
quantum gates. The problem how to overcome these experi-
mental imperfections has to be solved for the constructions of
practical quantum computers.

Because geometric phases are determined by the global
geometric properties of the evolution paths, geometric quan-
tum computation [15,16] has shown robustness against local
parameter fluctuations over a cyclic evolution [16-18]. As
an extension of geometric quantum computation, holonomic
quantum computation [19-21] based on non-Abelian geo-
metric phases can be used to construct a universal set of
single-qubit gates and several two-qubit entangling gates.
Early implementations of geometric quantum computation
involve adiabatic evolutions to suppress transitions between
different eigenvectors of the Hamiltonian. This makes the
evolution slow, and decoherence may destroy these geometric
gates [22-26].

To speed up the evolution, nonadiabatic geometric quan-
tum computation (NGQC) [27-29] was proposed. Note that
NGQC is also enabled by geometric phases, thus inheriting
robustness against local parameter fluctuations. Moreover,
compared with adiabatic geometric quantum computation
[19-21], NGQC is faster because the evolution is beyond the
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adiabatic limit. In addition, NGQC is compatible with vari-
ous quantum optimized control techniques, such as reverse
engineering [30-33] and single-shot-shaped pulses [34-36].
Such techniques provide flexible ways in designing evolution
paths for NGQC, reducing the number of auxiliary levels and
sensitivity to certain types of control errors [37]. Because of
the above advantages of NGQC, in the past decades, robust
quantum computation has been discussed in theory [38—40]
and successfully demonstrated in experiments [41-—43].

Recent research has shown [44-46] that encoding quantum
information in logical qubits is promising to protect quantum
computation from errors. For the realization of logical qubits,
bosonic systems are promising candidates, which can be con-
structed by quantized fields in, e.g., resonators, mechanical
oscillators, and superconducting Josephson junctions [47-51].
The Schrodinger cat states of bosons [52] have shown appli-
cations in quantum computation in the early 2000s [53,54].
Subsequently, it has been shown that the Schrédinger cat
states [55-60] can be used to construct types of useful error-
correction codes [61-75], providing protection against cavity
dephasing [62,66], and thus have attracted much interest.

Recently, based on cat codes, various protocols
[47-51,59,73] for preparing, stabilizing, and manipulating
cat qubits have been put forward. Moreover, quantum
computation [50] and adiabatic geometric quantum control
[66] of cat qubits have also been considered. However, so
far, only a few protocols [66,76] have been proposed to
implement geometric computation using cat qubits. Because
of the difficulty to arbitrarily manipulate a bosonic mode, it
is still a challenge to realize NGQC using bosonic cat qubits,
which are both robust and fault tolerant.

In this manuscript, we propose to use cat qubits to im-
plement NGQC via invariant-based reverse engineering. To
construct cat qubits, a two-photon driven Kerr nonlinearity is
used to restrict the evolution of cavity modes to a subspace
spanned by a pair of cat states. We apply an additional co-
herent field to linearly drive a cavity mode in order to induce
oscillations between dressed cat states. With the control fields
designed by invariant-based reverse engineering, the system
can have a cycling evolution, which acquire only pure geomet-
ric phases. Hence, NGQC with cat qubits can be implemented.

An amplitude-amplification method, using light squeezing
[77,78], is applied to increase the distinguishability of differ-
ent cat states, so that it can be easier to detect input and output
states in practice. Moreover, two-qubit quantum gates of cat
qubits are also considered by using couplings between two
cavity modes. Controlled two-qubit geometric quantum gates
can be implemented almost perfectly.

Finally, the performance of the protocol in the pres-
ence of systematic errors, additive white Gaussian noise
(AWGN), 1/ f noise, and decoherence (including photon loss
and dephasing) are investigated via numerical simulations.
Our results indicate that the protocol is robust against these
negative factors.

The article is organized as follows. In Sec. II, we briefly
introduce the basic theory for invariant-based NGQC. In
Sec. III, we describe how to implement single- and two-qubit
NGQC with cat qubits. In Sec. IV, we consider experimental
imperfections and estimate the performance of the proto-
col via numerical simulations. In Sec. V, we introduce an

amplification method based on quadrature squeezing for the
amplitudes of cat states, so that the detection of input and
output states can be performed easily. In Sec. VI, we discuss
a possible implementation of our protocol using a supercon-
ducting quantum parametron. Finally, our conclusions are
given in Sec. VII. Appendix includes a derivation of a dy-
namic invariant and the choice of parameters for eliminating
dynamical phases.

II. NONADIABATIC GEOMETRIC QUANTUM
COMPUTATION BASED ON A DYNAMIC INVARIANT

For details, we first recall the Lewis-Riesenfeld invariant
theory [79]. Assuming that a physical system is described by
a Hamiltonian H(¢), a Hermitian operator /(¢) satisfies the
following equation (i = 1):

a
igl(t)—[H(t)J(t)]=0- ey

For a nondegenerate eigenvector |¢;(¢)) of I(t), |Y;(t)) =
explioy(¢)] |¢(¢)) is a solution of the time-dependent
Schrodinger equation i|1ﬁ(t)) = H(@®)|y(t)). Here, o; (¢) is the
Lewis-Riesenfeld phase defined as

! 0
(1) = / <¢>1<r>|[ia——H(r)}wz(r))dr. P
0 T

To realize NGQC, one can select a set of time-dependent
vectors, {|¢;(t))}, spanning a computational subspace S.
According to Ref. [80], {|¢;(¢))} should satisfy the three con-
ditions: (i) the cyclic evolution condition |¢;(0)) = |¢;(T))
with T being the total operation time; (ii) the von Neumann
equation

Ei(t) = —ilH (), Ei(0)], 3)
with E;(¢) = |¢;(¢))(¢;(¢)|; and (iii) annihilation of the dy-

namical phase

T
0i(T) = —fo (pr(OIH @)1 (1)) dt = 0. “

When satisfying the three conditions, the evolution in sub-
space S can be described by

U(T,0) =) expli®(T)] E(0), (5)
I
with a pure geometric phase

r 9
O/(T) =/0 (¢1(l)|i§|¢1(1)>dl- (6)

Reference [81] has shown that, a nondegenerate eigenvector
|¢;(2)) of an invariant obeys the von Neumann equation given
in Eq. (3). Therefore, when the parameters of /(¢ ) are designed
with the cycling boundary conditions and the dynamical part
of the Lewis-Riesenfeld phase is eliminated, the three con-
ditions are satisfied. In this case, one can implement NGQC
with a dynamic invariant 7(¢).
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III. NONADIABATIC GEOMETRIC QUANTUM
COMPUTATION OF CAT QUBITS

A. Arbitrary single-qubit gates
1. Hamiltonian and evolution operator of a single resonator

We consider a resonant single-mode two-photon (i.e.,
quadrature) squeezing drive applied to a Kerr-nonlinear res-
onator. In the frame rotating at the resonator frequency w;,
the system is described by the Hamiltonian [49,51]

H., = —Kafza% + e (emaj2 + efma%), @)

where K is the Kerr nonlinearity, a; (aI) is the annihilation
(creation) operator of the resonator (cavity) mode, €, is the
strength of the two-photon drive assumed here to be real, and &
is its phase. The coherent states | & )1 (where @ = /€, /Ke*
is the complex amplitude) are two degenerate eigenstates of
H.,;. Therefore, the even (|C.);) and odd (JC_);) coherent
states, often referred to as Schrodinger cat states, which are
defined as

1
VN

are two orthonormal degenerate eigenstates of H.,, where
Ni =2[1 £ exp(—2|a|?)] are the normalized coefficients.
The total Hamiltonian

ICsh = (Ja)1 £ = a)1), ®)

Hlot(t) = Hcat + Hcv (9)
includes a control Hamiltonian defined as [51]
H(t) = x()ajar + e(t)a] + €*(t)ay, (10)

with x (¢) and €(¢) being the detuning and strength of a single-
photon drive, respectively.

When the energy gap E,,, between the cat states |C); and
their nearest eigenstate of H, is much larger than y (¢) and
€(t), the system can be restricted to the subspace S spanned
by |C+)1. We can accordingly use the cat states to define the
Pauli matrices as

oy=04+0_, oy, =i(o- —04),

0, =040_—0_04, G =(0y,0y,0;), (11)

in terms of the raising (o) and lowering (o) qubit operators,

op =Cii(C-], o- =1C_)i(Chl. 12)

Then, the Hamiltonian of the system can be simplified
to H.(t) = Q) - &, where, Q1) = [Q:(t), Q,(2), Q.(1)] is
a set of driving amplitudes to be determined. We find
that I(t) = E (t)-& is a dynamic invariant, where E )=
[£c(), &y(2), £ (¢)] is the three-dim_ensional time-dependent
vector satisfying the conditions E ) = ZQ(t) X E(t) and
|E(t)| = const (see Appendix for details). The three compo-
nents [, (1), ¢,(t), £, (¢)] of E(t) denote the projections of the
dynamic invariant /(¢) along the directions (o, oy, 0;) in the
SU(2) algebra.

By introducing two time-dependent dimensionless
parameters n and W, we can parametrize Z(t) as
(sinnpsinu, cosnsinu,cos) and the eigenvectors of

the dynamic invariant /(¢) can be derived as
1 . . .M
|+ (2)) = cos 5|C+)1 + iexp(—in)sin EICJl,

(1)) = i exp(in) sin §|c+>1 + cos %|c_>1. (13)

We can design the parameters €(¢) and x (¢) as

Re[e(t), £] = Y 8* : :*(Qx cos & 4 2 Q, sin€),
[07
Im[e(z), ] = Rele(t), & — /2],
. . 2
() = (1 sin® WNLN_ (14)

T INVZ = AD)ePT
with effective driving amplitudes (see Appendix for details)
Q, = 1[nsinnsin(2p) — 2t cos 7],
Q, = %[r'; cosnsin(2u) + 2 sin ). (15)

Both dynamical phases, acquired by the eigenvectors shown
in Eq. (13), vanish due to (¢4 (¢)|H.(¢)|¢+(¢)) = 0, while the
geometric phases acquired by |¢+(?)), defined in Eq. (13), are

! ad
CHOES /(¢i(f)|i—a lp+(T))dT
0 T

S /Otf;sinz (%)dr. (16)

According to Eq. (5), the evolution of the system in the sub-
space S, after a cycling evolution with period T, is calculated
as

U,(T. 0) = explifZ (0) - 5]

| cos@ +icospgsind exp(ing) sin wo sin 6
T | —exp(—ing)sin upsin®  cosh — icos posiné |’
17

where 6 = fOT i) sin®(u/2)dt is the final geometric phase of
the cycling evolution, and g (179) is the initial value of u
(7). The evolution operator Us(T, 0) represents a rotation on
the Bloch sphere that can generate arbitrary single-qubit gates
[82,83]. For a cycling evolution, the parameters can be inter-
polated by trigonometric functions as

Tt
s (),
m = o+ Asin T
t
n=no+ n[l — cos (”7)] (18)

where A is an auxiliary parameter to be determined according
to the requirements of different gates.

2. Examples of single-qubit-gate implementations

‘We now discuss how to use the evolution operator U(T, 0),
given in Eq. (17), to realize:

(1) the NOT gate, Unor = 0y

(i) the Hadamard gate, Uy = (o0, + 0y)/ V2;

(iii) the arbitrary phase gate, Upnase(0) = cos% -1 4
isin £ - 0., where 1 is the identity operator acting on the cat

2
qubit.
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TABLE 1. Parameters for our implementations of single-qubit
gates.

Gate Ho 1o 0 A

Unor /2 /2 /2 0.8089
Un /4 /2 /2 0.3859
Ubphase (77) 0 0 /2 1.4669

To determine the initial values of 1 and 7y, we can exploit
the evolution operator Uy (T, 0) shown in Eq. (17). Because
the system evolves through a cycling evolution [|¢+(T)) =
|$+(0))], the evolution operator only relies on the acquired
geometric phase 6 and the initial values of wo and 7o. For
example, to implement the NOT gate, we should make the di-
agonal elements of the evolution operator Us(T, 0) in Eq. (17)
to become zeros. Therefore, we set 6 = o = /2. In addi-
tion, the off-diagonal elements of Uy (T, 0) should be equal to
1. Thus, we select no = 7 /2. Dropping a global phase 7 /2,
U(T, 0) becomes the NOT gate

Usor = [(1’ (1)} (19)

Moreover, to implement the Hadamard gate, the matrix for
U(T, 0) should be equal to

111
%ZUJI—J' (20)

Comparing Uy and U(T, 0) in Eq. (17), we find that py =
/4 and ny = 0 = /2. In this case, up to a global phase 77 /2,
U(T, 0) becomes the Hadamard gate.

Finally, for the m-phase gate, the off-diagonal elements
of Uy(T, 0) should vanish. Therefore, we set 1o = 0. In this
case, Uy(T, 0) is independent of the value of 7y, so that we
can choose 7y = 0 for simplicity. Omitting the global phase
6, Uy(T, 0) becomes

sz[} eéw} @1

Then, the m-phase gate can be realized with 6 = w /2. For
the sake of clarity, the corresponding parameters to realize the
three gates for 8 = 7 /2 are listed in Table 1.

According to the parameters given in Table I, on the Bloch
sphere in Fig. 1, we plot the trajectories of the eigenvectors

lp+(1)), 1.e.,
Fi(t) = Z Tr[|¢p+ (1)) (P (1)lok ey, (22)

k=x,y,z

where &, is the unit direction vector along the k-axis. As
shown in each panel of Fig. 1, both vectors |¢.(¢)) evolve
along their cycling paths individually, and the geometric
phases acquired by them are equal to half of the solid angles of
the areas surrounded by the corresponding paths. In addition,
the solid angles of the paths of 7.(¢) have opposite signs,
because the paths are on the upper and lower half spheres,
respectively. These numerical results are in agreement with
the theoretical results in Eq. (16).

1 194+(0)) —>— | ¢ (1))
1 [¢-(0)) —— |p_(1))

FIG. 1. Trajectories of the eigenvectors |¢ (7)) (red-solid curve)
and |¢_(2)), defined in Eq. (13), on the Bloch sphere in the imple-
mentations of (a) the NOT gate, (b) the Hadamard gate, and (c) the
m-phase gate. Parameters are listed in Table I.

The average fidelity of the gates over all possible initial
states in the subspace S can be calculated by [84,85]

Fg [Tr(MM") 4 |Tr(M)|*], (23)

1
“DD+1)
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FIG. 2. (a) Infidelity (1 — Fyor) vs the amplitude o and the Kerr
nonlinearity K for our implementation of the NOT gate. (b) Time
variations of the parameters y (¢), Re[e(?)], and Im[e(?)], defined in
Eq. (14). Parameters are listed in Table I.

with M = PCUCT;U 1P., while P, and D are the projector and
dimension of the computational subspace, respectively. The
subscript “G” denotes the desired gate, e.g., G = NOT when
one wants to implement the NOT gate. Figure 2(a) shows
the infidelity (1 — Fyor) versus the amplitude « and the Kerr
nonlinearity K for the NOT gate, as an example.

We find that the average fidelity Fyor decreases sharply
when the amplitude o« increases. This effect can be under-
stood because the control parameters y (¢) and e(¢) increase
with exp(|oc|2) according to Eq. (14). Consequently, the ratio
between the energy gap and parameters of H,(t) reduces, and
the leakage to other eigenstates of H., becomes significant.
To manipulate the cat qubit with a larger «, one may increase
the Kerr-nonlinearity K and the strength €, of the squeezing
drive, but we should notice that K and €, both have their upper
limits in experiments [51]. We can also consider a longer in-
teraction time 7 to reduce values of the parameters in Hygq(?),

but such a long-time evolution may increase the influence of
decoherence.

For a realistic value of the Kerr nonlinearity K = 2w x
12.5 MHz [51] (Egsp = 161 MHz), the parameters x (t) and
€(t) are shown in Fig. 2(b), when the total interaction time
T =1 us and the amplitude of coherent states is |«| = 0.5.
With these parameters, we obtain Fyor = 0.9997, indicating
that the NOT gate can be implemented almost perfectly. To
show the performance of different types of quantum gates, we
plot the populations of different output states with different
input states in the implementation of the NOT, Hadamard, and
the 7 -phase gates in Figs. 3(a), 3(b), and 3(c), respectively. As
shown, the populations of the output states are all very close
to the ideal values of the theoretical results, and the leakage to
unwanted levels is negligible.

For example, we calculate the final fidelities Fiy(7') of the
Hadamard gate with different input states. For the input state
|C.), we obtain

(C4|Un(T)IC) = 0.6773 +0.2125i,
(C_|Us(T)|Cy) = 0.6743 + 0.2036i,

resulting in

P(T) = [{C4|Un(T)|C4)]> = 0.5039,
P_(T) = |(C_|Ua(T)|C4)|* = 0.4961.

Moreover, for the input state |C.), the gate fidelity is

Fi(T) = [(W(T)IC)
ICHUN(T)IC,) + (C-|Uu(T)IC4) P
1 —4.4480 x 1072,

where

1
—(IC C_)).
ﬁ(l +) +1C-))

W (T)) = Un(D)IC+) =

For the input state |C_), we obtain

(C|U(T)|C—) = 0.6743 + 0.2036i,
(C_|U4(T)H|C-) = —0.6817 — 0.1978i,

resulting in

P(T) = {C4|Un(T)IC-)|* = 0.4961,
P/ (T) = |(C_|Ug(T)|C_)|* = 0.5039.
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FIG. 3. Populations of different output states for different input states in the implementation of: (a) the NOT gate, (b) the Hadamard gate,
and (c) the w-phase gate with parameters K = 27w x 12.5 MHz and || = 0.5. (d) Average fidelities of the NOT gate (red-dotted curve), the
Hadamard gate (blue-dashed curve), and the -phase gate (green-solid curve) with parameters K = 27 x 12.5 MHz and |¢| = 0.5.

Accordingly, the gate fidelity in this case is

Fy (T) = {(W_(T)|C_)|?
= L{C4IUn(T)IC-) — (C_|Un(T)IC-)|?
=1—4.4752 x 1072,
where
1
|W_(T)) = Un(T)|C-) = ﬁucn ()}

Therefore, the fidelities of the Hadamard gate for the two input
states |C..) are both nearly unity.

In addition, we also plot the average fidelities of the NOT,
Hadamard and m-phase gates in Fig. 3(d). The average fi-
delities of the three gates are Fyor = 0.9997, Fyy = 0.9999,
and F; = 0.9998, respectively. The results show that the three
gates are implemented with very high fidelities.

3. Hamiltonian and evolution operator of two coupled resonators

Now we consider a generalized scheme when two cavity
modes are driven by two Kerr-nonlinear resonators, as de-
scribed by the Hamiltonian

H.pn =—-K Z aflzaﬁ + e (aZ2 + aﬁ). (24)
n=1,2

The product coherent states | + «); ® | & «), of the modes a,
and a; are the four degenerate eigenstates of H.,. Therefore,
the product cat states {|C+); ® |C+),} span a four-dimensional
computational subspace S, useful for implementing two-qubit
gates.

Additionally, we consider a control Hamiltonian [47,50,86]

Ha (1) = xi(t)alaiday + ala [V (1)ay + A(t)al]

+EO@m +ED + Y ant)afan,  (25)

n=1,2

where x1,(?) is the cross-Kerr parameter, A(¢) is the strength
of a resonant longitudinal interaction between the modes a;
and ay; x1,2(¢) are the detunings, and &(¢) is the strength of
an additional coherent driving of the mode a,. We assume
that the parameters in H.,(#) should be much smaller than
the energy gap Eg, of the eigenstates of Heyp to limit the
evolution to the subspace S;.

To realize geometric controlled 6-rotation gates, we choose
the parameters in Eq. (25) as follows:

(NN (9cos € + €2 Qy siné)

Im[A(7), ] = Re[A(r), § — 7 /2],

x2(1) = [?/Svl; Q—M/\%i);ﬁ]
X = — %
e xlza)g;(:\/\f/i? )
et) = % (26)

The evolution operator of the system reads
Uo(T,0) = [C1)2(Col ® 1o + [C_)2(C-| @ Us(T, 0),  (27)

where 1, is the identity operator acting on the cat qubit 2 and
U(T, 0) is the single-qubit operation acting on the cat qubit 2
defined by Eq. (17).

B. Two-qubit entangling gates
1. Example of a two-qubit entangling gate

As an example of the application of a two-qubit entangling
gate, we show the implementation of a modified controlled-
NOT (CNQOT) gate defined by the operator

Uenor = 11 ® [C4)2(Cs | + i0x ® [C-)2(C—], (28)

corresponding to the parameters ny = 7 /2, po = 7 /2, and
0 =m/2 for U;. The following discussion is based on
the parameters oy = o = 0.5, K =27 x 12.5 MHz (Egy =
161 MHz), and T = 1 us. The average fidelity Fenor(¢) of
the implementation of this CNOT gate over all possible initial
states in the computational subspace S; is defined by [84,85]

Fenor (1) = {Tr[Ma ()M ()] + | Te[Ma ()11},

1
Dy(Dy + 1)
where
My(t) = PaaUlxorU () Pea, 29)

given via the projector P, and the dimension D, = 4 of the
computational subspace S,. We plot the time variation of
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FIG. 4. Implementation of the CNOT gate: (a) Time variation
of the average fidelity Fenor(?). (b) Populations of different output
states for different input states.

Fenor(t) in Fig. 4(a), and obtain Fonor(T) = 0.9997. Con-
sequently, the modified CNOT gate can be realized almost
perfectly.

Populations of different output states with different input
states in the implementation of our CNOT-like gate are plotted
in Fig. 4(b). As seen, the system does not evolve when the
cavity mode 1 is in the cat state |C);. However, if the cavity
mode 1 is in the cat state |C_);, a nearly perfect population
inversion occurs to the cavity mode 2. The result of Fig. 4(b)
also indicates that the CNOT gate is successfully implemented
with an extremely small leakage to unwanted levels.

IV. DISCUSSIONS ON EXPERIMENTAL IMPERFECTIONS

Here, we estimate the performance of the protocol in the
presence of different experimental imperfections. We consider
our implementation of a Hadamard gate as an example. First,
due to an imperfect calibration of the instruments, there may
exist systematic errors in the control parameters. The control
parameter under the influence of systematic errors can be writ-
ten as Qf(¢) = (1 + &) (2), where Qf(¢) is a faulty control
parameter and §y is the corresponding error coefficient.

We plot the average fidelity Fyy of the Hadamard gate
versus the systematic error coefficient &; in Fig. 5(a). It
is seen that, when 6, € [—-10%, 10%] (6, € [—-10%, 10%]),
the average fidelity F; remains higher than 0.9969 (0.9973).

099 - -
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0.98 cnneen 8
[ 5)1
— 4,
0.97 I
-0.1 0 0.1
5 6k
x10
(b) g ‘
-+ + -
+ +: +
'LTE 6 + + R |
qu + "_'|_-|- . -|-h' .;."+ -Iﬁ--l.
4 +F * o et
< =+ 1
4 - . .
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5
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ot 4 N
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s 495 4, o, TT o4t
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0 50
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FIG. 5. (a) Final-state average fidelities F;(T) vs the systematic
error coefficient §;. (b) Final-state average infidelities, 1 — Fy;(T), vs
simulation counts with the additive white Gaussian noise (signal-to-
noise ratio Rsxy = 10). (c) Final-state average infidelities, 1 — Fy(T),
vs simulation counts with 1/ f noise (signal-to-noise ratio Rgy = 10).
We set here: K = 27 x 12.5 MHz and o = 0.5.
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In addition, the influence on Fy caused by systematic errors
of €.(t), is larger than those of €2,(¢) and €2,(¢), but we can
still obtain £ > 0.9768 when §, € [—10%, 10%]. Therefore,
the implementation of the Hadamard gate is robust against
systematic errors.

Apart from systematic errors, due to random noise, there
are also fluctuations of parameters that may disturb the evo-
lution of the system. Additive white Gaussian noise (AWGN)
is a good model to investigate random processes [81,87—89].
Therefore, we add AWGN to the control parameter as

Q1) = Qu(t) + AWGN[Q (1), Rs]. (30)

Here, AWGN[€2(?), Rsy] is a function that generates AWGN
for the original signal () with a signal-to-noise ratio Rgn.
As AWGN is generated randomly in each single simulation,
we perform the numerical simulation averaged over 50 sam-
ples to estimate its average effect. Then, 1 — Fy in each single
simulation is plotted in Fig. 5(b). Thus, we find the values
of the infidelity 1 — Fy € [3 x 107%,8 x 10779] averaged over
the fifty simulations. The results indicate that the implemen-
tation of the Hadamard gate is insensitive to AWGN.

Apart from AWGN, the 1/ f noise in coherent drives is also
a noise limiting the performance of quantum devices. When
considering this noise, the control parameter becomes

& (1) = Qu(t) + noise ;1 [ (1), Ry, (31)

with noise p-1 [ (?), Rgy] being a function generating the 1/ f
noise for the original signal €2 (¢) with a signal-to-noise ratio
Rsn. Here, we also perform numerical simulations averaged
over 50 samples to estimate the average effect of the 1/f
noise with Rgy = 10. The results are shown in Fig. 5(c),
where we find 1 — Fyy € [4.884 x 1077, 5.004 x 107°] aver-
aged over the fifty simulations. Therefore, our implementation
of the Hadamard gate is also insensitive to 1/f noise. As the
system cannot be completely isolated from the environment
in experiments, the interactions between the system and the
environment may result in decoherence. We consider two
types of decoherence factors, i.e., a single-photon loss and
dephasing. The evolution of the system is described by the
Lindblad master equation [47]

p(t) = — i[Hcat + Haqa (), p(t)]

+ %E[a]p(t) + %L[a*a]pm, (32)

where k (k) is the single-photon-loss (dephasing) rate and
the Lindblad superoperator £ acting on an arbitrary operator
o produces L[o]p(t) = 20p(t)o" — o0'op(t) — p(t)o 0. In the
presence of decoherence, the evolution is no longer unitary.
For the convenience of our discussion, we take the evolution
with initial state |C, ) as an example and analyze the fidelities
of the Hadamard gate as

Fy = ((C+ U p(T)UuIC4 )1 (33)

We plot the infidelity 1 — Fy versus the single photon loss
rate ¥ and the dephasing rate x4 in Fig. 6(a) in the range
(0,0.05 MHz) [48]. The results show that the influence of
single-photon loss is stronger than dephasing. When «, kg <

0.02

0.015

110.01

0.005

Populations

FIG. 6. (a) Infidelity 1 — Fy vs the single photon loss rate « and
the dephasing rate x4 with parameters K = 27 x 12.5 MHzand o =
0.5. (b) Populations of different output states for different input states
in the implementation of the Hadamard gate (k = «, = 0.05 MHz)
with parameters K = 27 x 12.5 MHz and « = 0.5.

0.05 MHz, 1 — Fy(T) is lower than 0.0201. Therefore, the
protocol is robust against single-photon loss and dephasing. In
addition, the populations of the output states corresponding to
different input states in the implementation of the Hadamard
gate with decoherence rates k = k, = 0.05 MHz are plotted
in Fig. 6(b). Compared with the results shown in Fig. 3(a), in
the presence of decoherence, there exist more faulty popula-
tions of the output states. This is because the single-photon
loss continuously causes quantum jumps between the cat
states |C1) [49]. The total populations in the subspace S with
the input states |C1); are both higher than 0.995, showing that
the leakage to the unwanted levels outside the subspace S is
still very small in the presence of decoherence.

V. AMPLIFICATION OF THE CAT-STATE AMPLITUDE
BY SQUEEZING THE DRIVE SIGNAL

To increase the distinguishability of cat-state qubits, we
can introduce a method to amplify the photon numbers in-
spired by Refs. [77,78]. When we consider a squeezing
operator as S = exp[r(a’> — a*)/2], the cat states {|C.)} be-
come the amplified cat states {|C.)} with |C+) = S|CL) (i.e.,
squeezed cat states). Here, we omit the subscript “1” for
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@ S
squeezing

gates

Average photon number
w

Time (us)

Step 1 Step 2 Step 3

FIG. 7. Top panel: The process of NGQC for the amplified cat-
state qubits. Bottom panel: Time variation of the average photon
number n,(t) = Tr[p(t)a’a]. Step 1 (3) is an antisqueezing (squeez-
ing) process for a measurable input (output) state. Step 2 denotes
evolution of the system implementing a given gate (e.g., a Hadamard
gate in the bottom panel).

simplicity. The squeezing operator S can be realized by two-
photon (squeezing) driving

H, = —iey(a®> — a'), (34)

for the interaction time t; = r/2¢,, i.e., switching off the
Kerr interaction and the control field [H.(z)]. In addition,
the inverse transform § = S' can be realized by squeezing the
driving interaction

H, = —H, = ie;(a* — a'?), (35)

for the interaction time #; = r/2¢,. In this case, the total pro-
cess can be divided into three steps as shown in Fig. 7.

In step 1, we apply the transform S to the input state,
which is a superposition of the squeezed cat states. In this
way, the amplified cat states {|C.)} are transformed into
small-amplitude cat states {|C+)}. The step 2 is the geometric
gate operation, as illustrated in Sec. III. In step 3, we apply
the squeezing transform S to enhance the photon number
of the output state, so that the output state can be experi-
mentally detected. The total operator acting on the amplified
cat-state qubit is U = SUS', which has the same matrix ele-
ments for a small-amplitude cat-state qubit, i.e., (C y |U|C )=
(C,IUIC,) (7,7 ==). Here, we assume r = 1.2 and o =
0.5, as an example to show the implementation of NGQC for
the amplified-cat-state qubits.

We plot the time variation of the average photon number
np(t) = Tr[o(t)a’a] in the bottom panel of Fig. 7. As shown,
the average photon number decreases during the first step, cor-
responding to the antisqueezing process |C;) — |C,). Then,
by implementing the Hadamard gate, the cat state |C.); is
transformed into (|C.) + |C_))/+/2. Finally, in step 3, we
amplify the output state by squeezing, i.e.,

1 1

C C- —(IC Co)).
ﬁ(l 4+ ))—>\/§(| 1) +1C-)

q)(t)/

v

Y

)

FIG. 8. Superconducting quantum circuit for implementing
Hamiltonian in Eq. (9). The circuit consists of a SQUID array
(black), a shunting capacitor (black), a flux bias line (purple), and
an ac gate voltage (red). Here, ®(¢) is the externally applied mag-
netic flux, C; is the capacitor shunting the SQUID array, E; is the
Josephson energy of a single SQUID, V,, is the amplitude of the ac
gate voltage, and C, is the gate capacitor.

The final average photon number is 6.732. The antisqueez-
ing and squeezing processes are fast (see Fig. 7), so that
decoherence in these two processes affects weakly the target
state. By considering the experimentally feasible parame-
ters: €, = Ka? =27 x 3.125 MHz, 1, = r/€; = 30.56 ns,
and k = k4 = 0.05 MHz, we achieve the fidelity iy = 0.9513
of the output state (|C.) + |C_))/+/2 for the Hadamard gate
with the initial state |C, ) for the amplified cat-state qubit.

VI. POSSIBLE IMPLEMENTATION USING
SUPERCONDUCTING QUANTUM CIRCUITS

A. Single-qubit geometric quantum gates

As shown in Fig. 8, we consider an array-type res-
onator composed of N superconducting quantum interfer-
ence devices (SQUIDs) [90-96]. An ac gate voltage V, =
V, cos(wpt + @p) (with amplitude V), frequency w,, and phase
¢,) is applied to induce linear transitions between eigenlevels.
The Hamiltonian of this setup reads [92,94,96]

b EcCV,
Hy = 4Ech* — NE;[®(1)] cos <]%> — Mﬁ, (36)
e

where i is the number of Cooper pairs and ¢ is the overall
phase across the junction array. Here, E¢ is the resonator
charging energy, E; is the Josephson energy of a single
SQUID, and N is the number of SQUIDs in the array. The
Josephson energy is periodically modulated (with frequency
wyp and phase ¢,,) by the external magnetic flux ®(¢), leading
to

Ej)[®(t)] = E; + Ej cos(wapt + ¢2p). 37
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After the Taylor expansion of cos(¢/N) to fourth order, we
obtain

Ho ~ 4Ech> — NE;(1 — X + X?/6)
— NE;(1 — X)cos(wapt + ¢2,)
EcC,V,
_ Cctp pﬁ’
e

(38)

where X = (¢/N)?/2. The quadratic time-independent part of
the Hamiltonian can be diagonalized by defining

A= —ing(a—a'), ¢=eola+a), (39)

where ny = [E;/(32NE¢)]"* and ¢y = 1/2nq are the zero-
point fluctuations.

By dropping the constant terms, the Hamiltonian H
becomes

Ec
12N2

Hy = w.a'a— (a + cf)4
Ejo. 112

+ ——(a+a') cos(wypt + @2p)
4E;

EcC,V,
—— =
e

+ (a—a")cos(wpt + @), (40)

where w. = 4/8EcE;/N. For simplicity, we assume w;, =
2w, and @, = —2&. Then, moving into a rotating frame at
frequency w, and neglecting all of the fast oscillating terms,
the approximate Hamiltonian under the rotating wave approx-
imation (RWA) can be written as

Hy = — Ka?d® + e,(e%€a'? + e 26 42)

+ x()d'a+ e@)a’ + €*(t)a, 41)

where K = Ec/2N?, ¢, = w.E;/8E;, x(t) = w, — w,, and

EcC,V, .
€t) = —l% exp(—ig). (42)

Then, by defining a; = a, we recover the total Hamiltonian
Hi(¢) given in Eq. (9) for the single-qubit case. Note that,
as shown in [97], the Kerr nonlinearity (which is a rescaled
third-order susceptibility of a nonlinear medium) can be expo-
nentially enhanced by applying quadrature squeezing, which
interaction with a medium is proportional to its second-order
susceptibility. This means that one can exponentially amplify
higher-order nonlinearities by applying lower-order nonlinear
effects. Other methods of applying quadrature squeezing to in-
crease nonlinear interactions are described in, e.g., [98—100].

B. Errors in the superconducting circuit

According to the above analysis, the control drives depend
on the parameters Ec, E;, and V,. Assuming that the parame-
ters with errors respectively become

Ec — Ec + 8Ec, E; — E; +38E;, Vy, — V, + 68V,

The errors in the control parameters can be approximately
calculated by

. (8E; SE, KSE,
8w,~w_(_f+_6),3,(= c

9

‘T 2\E Ec Ec
€ 8EC 8E_]
Sey > = == — =),
2\ E- E
SEc 8V,
Se(t) ~ | == + =L Je(0).
€(t) (EC+VP>6()

Therefore, when considering the errors in the control parame-
ters, the Hamiltonian becomes

H(; = H() + SHcat + SHC,
8Hey = —8Ka?d? + 8ex(e¥6a’? + e %5 a?),
8H, = dw.a'a + Se(t)a’ + 3¢ (1)a, @3)

where 6H,, induces an error on the amplitude of the coher-
ence states |to) as

o Z(SEC (SEJ
So o —— -2,
4\ Ec E;

and 6H, influences the control drives designed by invariant-
based reverse engineering.

For |8Ec/Ec|, |6E;/E;| < 0.1, and o = 0.5, the absolute
error of the coherent-state amplitude approximately satisfies
|| < 0.0375. Because of

1 — [{@ylo)|> ~ 1 — [{@_|a)|* ~ 0.001,

with @3 = 0.5 £ 0.0375, the cat qubit can be near perfectly
stabilized in the preset states by a small fluctuation of the
amplitude .

Moreover, according to Eq. (14) and §H. in Eq. (43),
the errors in ,(t), £2,(t), and £2.(¢) can be approximately
described by the linear superpositions of 8E;, 8Ec, and §V),.
Therefore, when E;, Ec, and V, are subjected to AWGN or
1/ f noise, the wave shapes of Q.(t), 2,(¢), and 2.(¢) are also
mixed with the same type of noise. According to the analysis
in Sec. IV, the fidelities of the gates are insensitive to these
types of noise in ,(), €,(¢), and .(¢). Consequently, our
proposal is robust against AWGN and 1/ f noise in E; and E¢
of the considered superconducting circuits.

C. Kitten states

We also note that the Kerr nonlinearity enables the
generation of not only conventional (i.e., two-component)
Schrodinger cat states, i.e., superpositions of two macroscop-
ically distinct states, but also the generation of superposi-
tions of a larger number of macroscopically distinct states.
The states are referred to as Schrodinger kitten states or
multi-component cat-like states, as predicted in [101] and
experimentally generated via the Kerr interaction in super-
conducting quantum circuits in [102]. These kitten states,
which are examples of Gauss sums, have been used in an
unconventional algorithm for number factorization, i.e., to
distinguish between factors and nonfactors. Implementations
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TABLE II. Comparison of the gate times between previously reported schemes and ours.

Year Reference System Gate Gate time Fidelity
2014 Ref. [114] Trapped ions Hadamard, Phase ~1-2 ms 20.99
2017 Ref. [108] Superconducting circuits NOT, Hadamard ~62.5 ns 20.99
2018 Ref. [89] Rydberg atoms Controlled-m-phase ~376.16 us >0.999
2018 Ref. [113] Cavity QED Controlled-r -phase, Toffoli ~0.5-3 us 20.999
2019 Ref. [115] Trapped ions CNOT ~1-2 ms 20.99
2020 Ref. [107] Superconducting circuits Controlled-m-phase ~113 ns >0.99
2020 Ref. [40] Rydberg atoms CNOT ~85.94 s 20.999
2020 Ref. [109] Rydberg atoms Controlled-m-phase, CNOT ~8 s 20.99
2021 Ref. [110] Rydberg atoms SWAP ~T7.7 s >0.99
2021 Ref. [112] Rydberg atoms CNOT ~1 pus 20.99

Our proposal Superconducting circuits NOT, Phase, Hadamard, CNOT ~210-220 ns 20.99

of the Gauss-sums algorithm include NMR spectroscopy
[103,104] and Ramsey spectroscopy using cold atoms [105].

D. Two-qubit geometric entangling gates

To realize two-qubit geometric gates, we consider two
superconducting circuits with the same structure shown in
Fig. 8. The two circuits are coupled with each other through
a Josephson-junction coupler with Josephson energy E;
[86,106]. The coupler provides a coupling between the two
circuits as

_ [A . é(t)]
Uy = —Ejcos | — Py +2m— |, (44)
Dy
with ¢,, = gom(an +al) (m = 1,2). Here, ®(¢) is the exter-
nal flux applied to the loop of the coupler, and & is the flux
quantum. By modulating ®(¢) at the frequency of the second
circuit, the required cross-Kerr nonlinearity xab(t)a'f ala;az
and the longitudinal interaction aIal [AT(@®)ax + )Ll(t)a;] can
be realized with the Taylor expansion of cos[q32 — 431 +
2w d(t)/ D] to fourth order [86]. The coupling between two
circuits changes the detuning and strength of the two-photon
drive of each circuit. However, to diagonalize the quadratic
time-independent part of the Hamiltonian, the coefficients of
ﬁ%l and ¢331 should be set equal, where 71, = —ino,(a, — afn).
Consequently, one can derive that the strength of the self-
Kerr nonlinearity for each circuit is still expressed by K =
Ec/2N?.

E. Comparison of gate times

We now compare the gate time of our proposal with
previous experiments. Relevant information is also listed in
Table II.

The gate time in our proposal is comparable with that in
previous experiments using superconducting systems. For ex-
ample, the gate time of a controlled- -phase gate in Ref. [107]
using superconducting qubits is about 113 ns, with gate fi-
delities ~0.99. In Ref. [108], the gate time for implementing
the Hadamard gate and the NOT gate with fidelities ~0.99
(by using a transmon qubit coupled to a transmission-line
resonator) is ~62.5 ns. In our proposal, to implement the NOT
and Hadamard gates with fidelity higher than 0.99, the gate

time can be selected as 7 = 210 ns. To implement the CNOT
gate with fidelity higher than 0.99, the gate time in the present
scheme is about 220 ns.

Moreover, compared with some previous methods using
dipole interactions between neutral atoms, the gate time
for two-qubit gates in the present approach is generally
shorter. For example, in Ref. [89], the gate time to real-
ize the controlled-w-phase gate with about 10~ infidelity
is 376.16 us using the available dipole interaction strengths
V =20 MHz. In the scheme of Ref. [40], the gate time to
implement the CNOT gate for two neutral atoms with in-
fidelity about 10~ is 85.94 us, using the reported dipole
interaction strengths V = 2r x 50 MHz.

In the present protocol, the gate times for implementing the
controlled-7 -phase gate and the CNOT gate, with infidelities
about 10™* to 1073, can be both less than 1 pus with the
available Kerr nonlinearity K = 2w x 12.5 MHz. The longer
gate times of the controlled--phase gate and the CNOT gate
in the schemes of Refs. [40,89] is because these protocols
should work in the Rydberg blockade regime, which limits
the strength of the control fields.

Recently, some modified nonadiabatic geometric quantum
computation methods [109—-112], based on the dipole inter-
actions of neutral atoms, have been proposed, which work in
different regimes and relax the limitation of strong amplitudes
of control fields. The gate times of the controlled- -phase gate
and the CNOT gate in these schemes can be improved to about
1-10 ps. In the present protocol, as the Kerr nonlinearity
can provide much bounder energy gap between eigenvectors
of H., the control fields with stronger amplitudes can be
adopted.

In addition, as reported in the scheme of Ref. [113], to
implement multi-atom geometric quantum gates in cavity
quantum electrodynamics system with the amplitude of laser
pulses about 50-200 MHz with fidelity over 0.999, the gate
time is about 0.5-3 us, which is also close to the gate time in
the present approach.

Compared with the present method, the gate time of
the nonadiabatic geometric quantum computation schemes
[114,115] in trapped-ion systems is slower. Because these
schemes work in the Lamb-Dicke limit, the amplitudes of
driving pulses should be much less than the frequency (1-
10 MHz) of the vibration modes of trapped ions, and the gate
time is about 1-2 ms.
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VII. CONCLUSIONS

In conclusion, we have proposed a method to realize nona-
diabatic geometric quantum computation using cat qubits with
invariant-based reverse engineering. The evolution of the cav-
ity mode is restricted to a subspace spanned by a pair of
Schrodinger cat states assisted by a Kerr nonlinearity and a
two-photon squeezing drive, so that one can generate photonic
cat qubits. We add a coherent field to linearly drive the cavity
mode, inducing oscillations between dressed cat states. When
designing the control fields by invariant-based reverse engi-
neering, the system can evolve quasiperiodically and acquire
only pure geometric phases. Thus, one can realize nonadia-
batic geometric quantum computation with a cat qubit. By
amplifying the amplitudes of different cat states, the input and
output states can be easily detected in experiments.

Two-qubit quantum gates for cat qubits are also considered
with couplings between two cavity modes. As we have shown,
the controlled two-qubit geometric quantum entangling gates
can also be implemented with high fidelities. The influence
of systematic errors, AWGN, 1/f noise, and decoherence
(including photon loss and dephasing), was studied here using
numerical simulations. The results indicate that our approach
is robust against these errors. Therefore, our protocol can
provide efficient high-fidelity quantum gates for nonadiabatic
geometric quantum computation in bosonic systems.
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APPENDIX: DERIVATION OF A DYNAMIC INVARIANT
AND THE CHOICE OF PARAMETERS FOR ELIMINATING
DYNAMICAL PHASES

Because the Hamiltonian H.(t) = Q(t) -0 possesses
SU(2) dynamic structure, there is a dynamic invariant /(¢) in
form of I(t) = E(t) -6 [81,116]. The commutative relation of
H_.(t) and I(¢) can be calculated as

[Ho.(), 1] = [Q1)-GlE¢) - 51— [E(t) - FILAL) - 5]
= {6 x [QU)x 1))} -G
= (& x &) [Q() x L(t)]
= 2i[Q(r) x L(1)] - 5.

(AD)

Substituting Eq. (A1) into Eq. (1), we obtain E(t) =2[Q(t) x
Z (1)]. Moreover,

1d - )z oo 8 N
37 EOF =8¢0 =26(0) - [Q0) x E0)]
=2Q(1) - [£(t) x £(1)] = 0,

implies that |Z ()| should be constant.

When |Z(t)| =1, one can parametrize Z(t) as
(sin n sin w, cos 17 sin , cos ), and derive the eigenvectors
|¢L(t)) of the invariant I(¢) as given in Eq. (13). The time
derivatives of the dynamical phases ¥, () and the geometric
phases ®_(¢) acquired by |¢.(¢)) are

(A2)

. 1
Di(t) = :F[Qz(t) +30 sin’ Mj| sec /L,

O (1) = 47 sin’ (%) (A3)
To eliminate the dynamical phases, we choose
Q(1) = —3i(0) sin [ (1)) (A4)

In addition, by reversely solving E t) = 2[Q(t) X Z’ ()], we
obtain

Qu(t) = 5. - [ () x B (1)],

Q) = 371 (t) - Hr(1),

D1 (1) = [2Q.(t) + ()] tan[w(D)]1E, + ()2,

Dy(t) = cos[n(t)]12; + sin[n(t)]e,. (AS)

Combining Egs. (A4) and (AS), we derive Eq. (14) as shown
in Sec. III.
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