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Amplitude and phase effects in Josephson qubits driven by a biharmonic electromagnetic field
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We investigate the amplitude and phase effects of qubit dynamics and excited-state population under the
influence of a biharmonic control field. It is demonstrated that the biharmonic driving field can have a significant
effect on the behavior of quasienergy level crossing as well as on multiphoton transitions. Also, the interference
pattern for the populations of qubit excited states is sensitive to the signal parameters. We discuss the possibility
of using these effects for manipulating qubit states and calibrating nanosecond pulses.
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I. INTRODUCTION

Numerous works have recently been devoted to theoretical
and experimental investigations of Josephson qubit circuits
(see, e.g., review Refs. [1–4]). Amplitude spectroscopy [5–11]
obtains information about these circuits as a function of the
driving amplitude and control parameters determining the
distance between levels. This technique can be applied to
quantum systems with crossing energy levels where transitions
can be realized by changing the external parameters. In
this situation, the frequency of the applied electromagnetic
field can be several orders of magnitude lower than the
distance between levels, thus the system driven at the field
period evolves mostly adiabatically, with the exception of the
relatively small time intervals when energy levels approach
each other and Landau-Zener tunneling becomes possible
between them [12–14]. This makes it possible to obtain an
interference pattern of populations depending on the field
amplitude and the distance between levels [15] (see Ref. [16]
for a review). The main advantage of amplitude spectroscopy
is that the system can be investigated in a wide range of field
changes and interlevel distances (level displacements) and also
provides information about the effects of noise on a qubit.

Many problems of qubit dynamics are not fully solved at
present. These include the problem of reducing the effect
of different noise mechanisms [1–3], optimal control [17],
nonlinear dynamics of qubits [5–11], etc. It has been known
that high-frequency pulses with Rabi frequency can be used
to control the dynamic of qubits. Meanwhile, the dynamics
of a qubit is not determined by the field produced by a
pulse generator but by the applied field, which undergoes
significant changes in a waveguide. In recent works [18,19]
the control of qubit populations and signal diagnostics were
carried out by mixing two large-amplitude rf pulses with
different frequencies at a fixed phase difference. In particular,
the ability to manipulate pulse shapes can be used to control the
time a qubit spends near an avoided crossing. This approach
in combination with Landau-Zener-Stüeckelberg interference,
can control the interference, by changing the parameters of a
probing signal [20–26].
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Since Rabi dynamics and qubit populations depend on
the form of the driving signal, the qubit could also be used
for calibrating ultrashort (nanosecond) pulses. For example,
phase-sensitive effects, actively used in optics [27,28] and
plasma physics [29], can control system populations and
calibrate ultrashort laser pulses. Biharmonic drives have
also been extensively studied in the context of controlling
transport phenomena of either small particles or magnetic flux
quanta [30].

The main goal of this work is to investigate how to control
transitions between qubit states and the interference pattern
of populations by changing the form of the applied driving
field. A perturbation resonant theory [31] (Rabi generalized
approximation) and a quasienergy approach [32–35] are used
to study the controlled dynamics of qubits subject to driving.
Special attention is paid here to the phase dependence of the
qubit response to a biharmonic field, which represents the
superposition of two signals with a phase shift between them.
We describe interesting phase effects, which can be observed
in Josephson circuits by means of amplitude spectroscopy,
when qubits are driven by biharmonic signals.

This work is organized as follows. At first we describe a
model of a Josephson loop using a two-level approximation,
explain the meaning of the control parameters, and analyze
the qubit dynamics driven by biharmonic pulses by using
the rotating-wave approximation (RWA). Then the Floquet
formalism and approach [34] based on the quasienergy
representation for transition probabilities is briefly described.
Furthermore, we present the results of numerical calculations
and their analysis based on the RWA. Finally, we discuss
several consequences of our analysis.

II. BIHARMONICALLY DRIVEN QUBIT MODEL

The basic dynamical behavior of a superconducting flux
qubit driven by an electromagnetic field can be described by
the Hamiltonian

H (t) = 1

2

(
ε(t) �

� −ε(t)

)
, (1)

where ε(t) is the energy bias of the qubit, and � is the tunnel
level splitting [2,3]. The qubit may be driven with an external
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FIG. 1. (Color online) Schematic diagram (a) of a flux qubit in
driving field and (b) the qubit levels in the effective potential. The
red curve depicts a potential profile with no displacement ε(t) = 0,
while the black curve shows the levels at the static bias ε(t) = ε0.

magnetic flux �(t) consisting of constant and alternating fluxes
�(t) = �dc + �ac(t) [see Fig. 1(a)]. In this case, the energy
bias ε(t) = ε0 + εac(t) describes the time-dependent driving

εac(t) = 2Ip�ac(t), (2)

with the static bias

ε0 = 2Ip(�dc − �0/2), (3)

where Ip is persistent current, and �0 = h/2e is the magnetic
flux quantum. We shall treat below ε0 as a controlling param-
eter. When only the dc-magnetic flux �dc = �0/2 penetrates
the superconducting circuit, then the potential energy of
the qubit becomes a double-well potential [36] [depicted
in Fig. 1(b) by a red curve]. In this static case, quantum
mechanical tunneling causes the appearance of two discrete
levels, the qubit, with energies E0 = −�/2 and E1 = �/2,

characterized by the corresponding basis vectors |0〉 = 1√
2
( 1
−1)

and |1〉 = 1√
2
(1
1). The states |0〉 and |1〉 are coherent superpo-

sitions of states with electrical currents flowing clockwise and
counterclockwise in the superconducting circuit. Changing the
external magnetic flux �dc modifies the effective potential and
states |±〉 of the qubit with energies E± = ± 1

2

√
ε2

0 + �2.
To perform quantum control we consider the driving

function to be periodic in time ε(t) = ε(t + T ). Although our
approach is applicable to any periodic function ε(t), here we
shall discuss in detail the case of a biharmonic drive

εac(t) = A[cos(ωt) + γ cos(2ωt + θ )], (4)

where A is the driving amplitude parametrized in units of
energy, θ is the relative phase of the signals, and γ is the
relative amplitude. Note, that in an experiment [18] the signal
generator allows one to control the relative signal phase.

The system dynamics obeys

i�
∂

∂t
|ψ(t)〉 = H (t)|ψ(t)〉. (5)

Using the RWA [31], let us now investigate the system behavior
described by the Hamiltonian (1), where ε(t) is given by
Eq. (4). We perform the canonical transformation

|ψ(t)〉 = U0(t)|ψ(t)〉, U0(t) = exp

[
− i

2�
φ(t)σz

]
, (6)

where

φ(t) = ε0t + A

�ω

{
sin(ωt) + γ

2
[sin(2ωt + θ ) − sin θ ]

}
,

(7)

σz =
(

1 0

0 −1

)
.

The Schrödinger equation for the transformed wave func-
tion |ψ(t)〉 takes the form

i�
∂

∂t
|ψ〉 =

(
U+

0 H (t)U0 − iU+
0

∂U0

∂t

)
|ψ〉 = H (t)|ψ〉, (8)

and the modified Hamiltonian becomes

H (t) = �

2

∞∑
n,m=−∞

Jn

(
A

�ω

)
Jm

(
γA

2�ω

)

×
(

0 d
(n,m)
+ (t)

d
(n,m)
− (t) 0

)
, (9)

where
d

(n,m)
± (t)= exp(∓i[ Aγ

2�ω
sin θ+mθ ])exp{±i[ ε0

�
+(n+2m)ω]t}.

To obtain Eq. (9) a well-known relation was used

exp

(
i

A

�ω
sin(ωt)

)
=

∑
n

Jn

(
A

�ω

)
exp(inω), (10)

where Jn(x) is a Bessel function. Using the RWA in Eq. (9),
fast-oscillating components can be neglected with the ex-
ception of those for which the resonance condition is held:
ε0 + (n + 2m)�ω = 0, at �ω � �. Then the Hamiltonian
describing the slow dynamics will have the form

HR = 1

2

(
0 �R

�∗
R 0

)
, (11)

where the resonance parameter is introduced

�R ≡ �R(A,γ,θ ) = � exp

(
−i

Aγ

2�ω
sin θ

)

×
∑
n,m

Jn

(
A

�ω

)
Jm

(
Aγ

2�ω

)
exp(−imθ ), (12)

and the sum is taken over all n and m satisfying the condition
ε0 + (n + 2m)�ω = 0. If the amplitude ratio γ or the phase θ

is fixed and the definite value of the control parameter ε0 is
also chosen, then [according to the resonance condition ε0 +
(n + 2m)�ω = 0] it is possible to find a set of values of n and
m for the Bessel function products in expression (12), which
determine the character of the Rabi frequency dependence on
the relative amplitude γ or phase θ .

The Hamiltonian (11) corresponds to the resonant inter-
action of the alternating field with a two-level system and
describes a generalized Rabi resonance (see Ref. [31]). When
γ = 0 this expression reduces to the standard Rabi resonance
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(m = 0) in the case of a monochromatic signal [37]. For
a biharmonic signal, the frequency of the generalized Rabi
resonance is defined by the expression �R = |�R|, which
depends on the amplitude driving A, the relative amplitude
γ , and phase θ difference of the biharmonic field.

III. QUASIENERGY STATES

Let us assume that the qubit was originally in the state
|α〉 = |−〉, which is the eigenvector of the Hamiltonian (1) in
the absence of the oscillating components of the field [�ac(t) =
0 in the expression (2)], i.e., the qubit was “prepared” in
the ground state E− = − 1

2

√
ε2

0 + �2 [see Fig. 1(b)]. We will
be interested in the probability of the qubit transition to the

final state |β〉 = (1
0) (after the effect of the biharmonic drive),

which is connected with the experimentally measured current
projection in the superconducting loop. Note that this transition
has been studied experimentally in Refs. [18,19].

We use the quasienergy representation [32,33] (see
Ref. [34] for a review) to calculate the population probabilities
of the system levels. This representation provides precise
intermediate states of the driven system with an optional
amplitude and allows us to reveal resonance transition features
caused by the quasienergy levels motion and crossing.

A formal solution of the Schrödinger Eq. (5) can be written
as |ψ(t)〉 = U (t,t0)|ψ(t0)〉, where

U (t,t0) = P̂ exp

(
− i

�

∫ t

t0

H (τ )dτ

)
,

and P̂ denotes the time-ordering operator. The time evaluation
for a period is given by the operator

U (T ) ≡ U (t + T ,t) = P̂ exp

(
− i

�

∫ t+T

t

H (τ )dτ

)
,

which is called the Floquet operator [32–34]. The eigenvalues
of the Floquet operator can be written in the form

U (T )|�k(t)〉 = e−iQkT /�|�k(t)〉, |�k(t + T )〉 = |�k(t)〉,
(13)

and the parameters Qk are called the quasienergies (in
the system considered here k = 1, 2). The eigenvalues Qk

therefore can be mapped into the first Brillouin zone, obeying
−�ω/2 < Qk < �ω/2.

In the quasienergy basis |�k(t)〉, the transition probability
P|α〉→|β〉(t,t0) is described by

P|α〉→|β〉(t,t0) =
∑
k,l

e−i(Qk−Ql )(t−t0)/�Mk(t,t0)M∗
l (t,t0), (14)

where

Mk(t,t0) = 〈β|�k(t)〉〈�k(t0)|α〉.
It is clear from Eq. (14) that with the change of the duration
of the signal (t − t0), the contributions with different k and l

oscillate strongly and this reduces the transition probability.
When the system parameters are changed (for example, the
field amplitude A or control parameter ε0) it is possible that
two quasienergies approach degeneracy, Qk = Ql , and the
transition probability significantly increases because it has

a time-independent contribution. In general, the crossing of
quasienergies plays an important role in populating the levels
of complex quantum systems [38].

It is necessary to average expression (14) over the initial
times t0 of the field pulse arrival at the qubit and over the
biharmonic drive duration itself at the fixed signal phase [32]. It
can be shown that the averaged transition probability P |α〉→|β〉
is determined by the relation

P |α〉→|β〉 =
∑

k

∑
n,l

∣∣〈β∣∣�(n−l)
k

〉∣∣2∣∣〈�(n)
k

∣∣α〉∣∣2
, (15)

where |�(n)
k 〉 are the Fourier components of the quasienergy

function, which may be calculated as

∣∣�(n)
k

〉 = 1

T

∫ T

0
exp(inωt) |�k(t)〉dt.

We numerically obtained the quasienergy levels and the
corresponding eigenfunctions. These can be used to find the
transition probabilities in an arbitrary strong driving field and
to investigate the population dependence from different signal
parameters.

IV. QUASIENERGY LEVELS AND
MULTIPHOTON RESONANCES

We focus here on the phase dependence of the qubit
excitation level population. Phase control arises by setting
a relative phase difference θ between the two components of
the biharmonic drive. First, we investigate the behavior of
the quasienergy curves Q1(ε0) and Q2(ε0), which depend
on the control parameter ε0 [see Fig. 2(a)]. In the case of
a biharmonic drive, the characteristic feature of the Qk(ε0)
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FIG. 2. (Color online) Quasienergy levels (Q1,Q2) versus the
displacement parameter ε0 (a). The dashed curve corresponds to
Q1(ε0) and the solid to Q2(ε0). Here the transition probability P |α〉→|β〉
versus the static bias ε0 is shown in (b). The system parameters used
here are �/h = 0.25 GHz, ω/2π = 1 GHz, A/h = 5 GHz, γ = 0.5,
and θ = π .
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functions is symmetry breaking: Qk(ε0) �= Qk(−ε0). These
features immediately follow from expressions (1) and (4), and
are clearly observed in Fig. 2(a).

When the inequality � � �ω holds, our numerical analysis
shows that the curvature of the qubit dispersion does not play
an important role in the formation of the quasienergy levels
and the resonant transmission probability. It is clear that the
quasienergies repeat periodically in energy, with a period �ω,
and these behave approximately in accordance with the almost
linear law Q1,2 = ±1/2 ε0 (mod �ω). Only when the driving
parameter | ε0 |∼ �, the quasienergy levels become slightly
distorted compared to straight lines. For some particular values
of the control parameter ε0, when the resonance conditions
ε0 + (n + 2m)�ω = 0 are fulfilled, the quasienergy levels
approach each other, causing the appearance of peaks on
the diagram of the excited level population of a qubit |β〉
[Fig. 2(b)], which are physically specified by multiphoton
transitions.

When the inequality � � �ω takes place, the resonances
have a Lorentzian shape. Indeed, if we neglect the influence of
noise, the transitions occur strictly at the resonance condition
ε0 + (n + 2m)�ω = 0. The decoherence and the random-
phase shift of the signal lead to an effective broadening of
the levels, causing the Lorentzian broadening of the transition
peaks. This statement can be also proven via perturbation
theory [6], which gives the exact Lorentzian peaks in the
transition probability.

It can be shown that for � ∼ �ω, the curvature of the dis-
persion is mainly influenced by the nonresonant background
in the dependence of the transition probability as a function
of displacement parameter ε0, again only slightly distorting
the shape of the resonant peak. Note that when the inverse
inequality takes place the shape of the resonances begin to
heavily depend on the parameter � that follows the appearance
of the nonresonant background in the transmission probability
and a strong overlapping of resonances.

The behavior of the quasienergies with field amplitude A

can also be qualitatively understood in the context of the
RWA. Indeed, in this approximation, the quasienergies are
eigenvalues of the Hamiltonian (11), i.e., they are determined
by the Rabi frequency (Q1 = �R/2, Q2 = −�R/2). Thus,
the expression (12) approximately describes the dependence
of the quasienergies on the field amplitude.

Figure 3(a) shows the dependence of the quasienergy
levels [obtained by numerically solving Eq. (13)]. Figure 3(b)
illustrates the population probabilities of the excited level [cal-
culated according to Eq. (15)] when changing the biharmonic
field amplitude A. It is evident that the anticrossing points
correspond to small Rabi frequencies, which agree with the
dynamic trapping (dynamic localization) of the system states.
When changing the sign of the control parameter ε0, a shift is
observed where the quasienergies approach each other due
to the apparent asymmetry of the quasienergy levels. The
asymmetry of the quasienergy levels causes the asymmetry of
the excited level population as a function of the field amplitude
in Fig. 3(b). Note that in the case of a monochromatic driving
field (γ = 0) the quasienergy levels at ε0 > 0 and ε0 < 0
coincide.

The analysis performed demonstrates the sensitivity of
the qubit population, i.e., the measurable response of our
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FIG. 3. (Color online) Quasienergy levels (Q1 and Q2) in (a) and
the probability P |α〉→|β〉 to find the qubit in the state |β〉 in (b). Both
versus the applied-drive amplitude A. Here the red curves correspond
to ε0/h = −2 GHz, and the blue curves to ε0/h = 2 GHz. The dashed
curves correspond to Q1(A) and the solid curves to Q2(A). The other
system parameters used here are �/h = 0.25 GHz, ω/2π = 1 GHz,
γ = 0.5, and θ = π .

interferometer to the form of the biharmonic field. This allows
controlling the transitions between qubit levels by changing
the biharmonic drive parameters.

Note that for a positive ε0, the probability P |α〉→|β〉 of the
excited level population [31] cannot exceed 0.5, when ε0 < 0
the probability lies in the range 0.5 � P |α〉→|β〉 � 1. Also,
the curves change shape [“peaks” are replaced by “dips” as
seen in Figs. 2(b) and 3(b)]. These results can be explained
by measuring the current projection in the superconducting

loop. Thus, for the opposite-current projection, i.e., |β〉 = (1
0)

when ε0 > 0, the probability does not exceed 0.5 (i.e., 0 �
P |α〉→|β〉 � 0.5). This is why we describe the character of
the resonances (peaks and dips) according to their forms for
positive ε0.

Now we will analyze in detail the above-mentioned features
of the transition probabilities and how these depend on
the driving field parameters. As in the preceding section,
we investigate the population behavior of the qubit excited state
|β〉 after changing the drive parameters, as done in amplitude
spectroscopy [5–7,10,11]. Calculated according to Eq. (15),
Fig. 4 shows the probability P |α〉→|β〉 for populating the state
|β〉 versus the control parameter ε0 and the amplitude A of the
external alternating field [at two values of the amplitude ratios
γ of the harmonic drive defined by Eq. (4) and for the relative
phase θ = π ].

As mentioned above, these dependencies can be qualita-
tively understood in the context of the RWA. The oscillation
frequency according to Eq. (12) is proportional to the sum of
Bessel function products taken with different phases; therefore

104516-4



AMPLITUDE AND PHASE EFFECTS IN JOSEPHSON . . . PHYSICAL REVIEW B 90, 104516 (2014)

FIG. 4. (Color online) The population P |α〉→|β〉 of the excited
state |β〉 as function of the external field amplitude A and the static
bias ε0, at γ = 0 (a) and γ = 0.5 (b). The qubit parameters used here
are �/h = 0.25 GHz, ω/2π = 1 GHz, and θ = π .

its minima and maxima are sensitive to the driving field
parameters. The other peculiarity of this system is associated
with the asymmetry over the offset of the static bias ε0

which has been already discussed. Figure 4(a) shows that
for a monochromatic field (γ = 0), the interference pattern
is symmetric with respect to ε0 → −ε0. Notice that such type
of interference patterns have been obtained experimentally
by using methods of amplitude spectroscopy [5–7,10,11].
Observed in Refs. [5–7,10,11] at γ = 0, the multiphoton qubit
energy absorption is independent of the “direction” of the
sweep over ε0; while when γ �= 0 in Fig. 4(b), the asymmetry
in the location of the absorption peaks is clearly seen (see
Ref. [18]). Figure 4(b) also shows additional peaks caused
by the form of the resonant condition ε0 + (n + 2m)�ω = 0
and by a set of n and m which are in close agreement with
the absolute value, and which determine the dependence of
the Bessel functions on the driving parameters. The interfer-
ence pattern asymmetry allows us, by changing the signal
parameters, to control the Landau-Zener quantum-coherent
tunneling and this could be important for controlling qubit
states for large-amplitude drives.

V. THE RABI FREQUENCY DEPENDENCE ON RELATIVE
PHASE AND AMPLITUDE

We will concentrate here on the phase dependence of the
level population of the excited qubit. In our case, the phase
control arises by setting a relative phase difference θ between
the two components of the driving field.

Ω 2Ω

Ω a2Ω
1 a2Ω

2

0

E

FIG. 5. (Color online) Energy diagram showing the eigenstates
(E+ and E−) of a flux qubit as a function of the control parameter ε0.
Two components of the biharmonic drive may produce the transition
pathways between the levels with amplitudes a

(2)
2ω and a

(1)
2ω , as shown

in the figure.

Several features of the resonances, for the biharmonic
driving Eq. (4), differs from the multiphoton resonance in a
monochromatic field. Let us now consider a biharmonic drive
as a superposition of two weak drives applied on a qubit. The
nonlinear interaction of this biharmonic field with the qubit
produces the harmonics. The perturbation approach, presented
in Sec. II, shows that two harmonics may induce the transition
pathways between qubits levels with the same frequencies.

For instance, one harmonic [∼A cos(ωt)] with frequency
ω can be transformed to a drive with frequency 2ω

[∼A2 cos(2ωt)]. This drive gives the transition between the
qubit’s levels with drive amplitude a

(2)
2ω . At the same time,

the harmonic ∼γA cos(2ωt + θ ) can cause a transition with
amplitude a

(1)
2ω . This means that in this case it becomes possible

to have a transition with probability |a(2)
2ω + a

(1)
2ω |2 and the

interference population is caused by the nonlinear mixing of
driving components on the qubit (see Fig. 5). Therefore, the
mixing of two drives with different phases will be the result of
the phase dependence of the qubit population.

Figure 6 shows the probability to have a |α〉 to |β〉
transition as a function of the relative phase difference θ of
the drives. Figure 6(b) shows that when changing the sign of
the controlling parameter ε0, the probability P |α〉→|β〉 ≈ 0.5 is
observed (the blue zones correspond to the appearance of a
population plateau) and this is associated with the measured
projection of the current in a qubit. The resonances of the
Hamiltonian (11) for a biharmonic drive are sensitive to the
phase as illustrated in Fig. 6(a). Figure 6 shows the locations
of the maxima and minima, which are established by the
transformation: ε0 → −ε0 and θ → θ + πs, where s is any
integer. There are also special intervals of a relative phase
difference (nearby θ = π/2 and θ = 3π/2), when the Rabi
frequencies are weakly dependent on the field amplitude and
the populations of the excited state become constant. This
population trapping effect can allow the dynamic control of
the qubit. Indeed, for certain biharmonic field parameters it is
possible to stabilize the population of a qubit in an excited state,
and for small changes of the signal amplitude the population
remains stable.

To obtain additional information about how the shape of
the biharmonic drive affects the qubit behavior, we computed
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FIG. 6. (Color online) The probability P |α〉→|β〉 of the excited state |β〉 depends on the relative phase θ and the amplitude A of a biharmonic
drive (a) and (b) and the Rabi frequency �R in (c) and (d), for ε0/h = 2 GHz (a) and (c) and ε0/h = −2 GHz (b) and (d). The system
parameters used here are �/h = 0.25 GHz, ω/2π = 1 GHz, and γ = 0.5. The corresponding scales of the population probability P |α〉→|β〉 are
given on the right side of the figures.

the interference patterns of the excited state population [see
Figs. 7(a) and 7(b)] when changing the amplitudes A and
γA, introduced in Eq. (4), respectively, with frequencies ω

and 2ω. The blue zones in the red background refer to the
capture of the population for the given parameters. The effect
of the dynamical suppression of tunneling [39] is seen in
Figs. 7(a) and 7(b); it occurs when the blue zone increases
(i.e., the absence of excitation in the system) when changing

the control parameter ε0. The Rabi frequencies of the levels
(colored) depend on A and γA, and are shown to interpret
the interference picture in Figs. 7(c) and 7(d). Figures 7(c)
and 7(d) show the trajectories of the motion of the population
zeros which are shown in blue. In the RWA, as it is seen
in Figs. 7(c) and 7(d), the frequency of the Rabi generalized
resonance qualitatively follows the behavior of the population
zeros in Figs. 7(a) and 7(b).
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FIG. 7. (Color online) The probability P |α〉→|β〉 of the excited state |β〉 versus the driving amplitudes A and γA (a) and (b) and the Rabi
frequency �R in (c) and (d). Here ε0/h = 2 GHz in (a) and (c) and ε0/h = 6 GHz in (b) and (d). The system parameters used here are
�/h = 0.25 GHz, ω/2π = 1 GHz, and θ = π .

When ε0 = 0, a symmetric pattern of probabilities is
formed along the axis Aγ = 0, and when increasing the
distance between the levels, the pattern deforms and a “slope”
is observed. Note two significantly different zones of the
resonance curves. First, a network of resonances in the
right and left angles on the bottom zone of the squares in
Figs. 7(a) and 7(b) (for |γA| � A). Second, the central zone
has a divergent “radial” structure following the trajectories
of the zeros of Bessel functions. The structure of network
zones can be explained by the asymptotic behavior of the
Bessel functions for large arguments ( A

�ω
� |n2 − 1

4 | and
γA

2�ω
� |m2 − 1

4 |) in formula (12) for the Rabi frequency:

Jn

(
A

�ω

)
Jm

(
γA

2�ω

)

≈ 2�ω

πA

√
2

γ

{
cos

[
A

�ω

(
1 − γ

2

)
− π

2
(n − m)

]

+ sin

[
A

�ω

(
1 + γ

2

)
− π

2
(n + m)

]}
,

which explains the formation of a periodic lattice. In the central
zone, where |γA| � A, in Eq. (12) a small amount of the
components with Jm( γA

2�ω
) is presented, so the zeros of the

Rabi frequency are basically determined by several Bessel
functions.

Let us indicate one more system symmetry which follows
from the analysis of the Hamiltonian (1): the Rabi frequency
shows similar oscillations when ε0 → −ε0 and γ → −γ ,
which corresponds to changing the sign in front of the
harmonic with double frequency and points to the already
observed symmetry in the shift of the relative phase difference
θ → θ + πs, where s is any integer (see Fig. 6).

The results presented in this section explore various ways
to control qubits by using the relative amplitude and the phase
of a biharmonic signal.

VI. DEPHASING EFFECTS ON THE
INTERFERENCE PATTERNS

We finally briefly discuss the dephasing effects on the qubit
interference patterns. Of course, in experimental conditions
the interaction of a qubit with a reservoir (e.g., charge
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FIG. 8. (Color online) The probability of populating the excited
state |β〉 after applying a biharmonic drive. Here �/h = 0.25 GHz,
ω/2π = 1 GHz, and the damping parameters are � = 0.02 GHz (a),
� = 0.09 GHz (b), and � = 0.36 GHz (c). The scale of the transition
probability is the same as in Fig. 4.

fluctuations on Josephson contacts, flux fluctuations through
a superconducting circuit, and radiative damping) have a
considerable effect on the qubit dynamics. These processes are
typically described by considering the interaction of a qubit
with a bosonic reservoir [40]. In this case, the equation for the
density operator of the qubit ρ in the Markov approximation
takes the following form [40]:

∂ρ

∂t
= 1

i�
[H,ρ] + �

2
(σzρσz − ρ), (16)

where the rate � characterizes the phase damping and is deter-
mined by the reservoir parameters. The transverse relaxation
(dephasing) usually dominates over the energy relaxation,
which in this approximation can be neglected [5–7,10,11,40].

According to Ref. [5], dephasing produces broader and
overlapping resonances already at � ≈ ω/2π , which also
happens when the qubit is driven by a biharmonic drive (Fig. 8).
However, the asymmetry of the interference picture with
respect to ε0 and the population oscillation over the amplitude
A at a fixed ε0 remains. Another difference is the slope of
the interference fringes along the A axis, which remains when
� � ω/2π . This can be used for the dynamic control of a qubit
state fitting the phase difference between the two harmonics
and their relative intensity.

VII. CONCLUSION

The dynamic behavior of a qubit in a strong field depends
significantly on the shape of the driving field. Let us briefly
summarize a few results found here when a biharmonic field
is used to drive a qubit. First, crossing the quasienergy levels
depends on the biharmonic drive parameters, causing a change
of the multiphoton transition character according to the sign
of the controlling parameter. We have shown that the peaks of
the resonances depend on the relative phase and amplitudes of
the two harmonics driving the qubit. Second, the interference
pattern for the populations of a qubit in the excited state
is sensitive to the driving field and noise parameters. These
effects manifest the sensitivity of the level populations to
the relative phase. It is demonstrated that when the phases
θ are multiples of π/2, the dynamical confinement of the
populations are possible when changing the amplitudes of
the drive. This effect can be used for the quantum control
of the states of the qubit. The interference effects we obtained
agree qualitatively with the results of experiments [18].

Earlier we mentioned the analogy of forming Landau-
Zener-Stüeckelberg interference patterns of the qubit pop-
ulations using a Mach-Zehnder interferometer [24,41,42]
(for example see Ref. [5]). According to this analogy, the
qubit evolves differently in the upper and lower levels, and
(Landau-Zener) transitions occur when the levels approach
each other. The interference of two states propagating along
two levels causes the formation of the interference pattern. The
Landau-Zener tunneling can be seen as similar to the passage
of light through semitransparent mirrors. In the case of a
biharmonic drive, the interference pattern depends on the form
of the driving field. Following this analogy, the light beams
meet two types of mirrors and their permeability (tunneling
probability) through the regions of adiabatic level crossing
(and consequently the interference pattern of the excited-state
population) become sensitive to the form of the driving field.

ACKNOWLEDGMENTS

We are very grateful to W. D. Oliver for a careful reading
of the manuscript and helpful remarks. F.N. acknowledges
partial support from the RIKEN iTHES Project, MURI Center
for Dynamic Magneto-Optics, Grant-in-Aid for Scientific
Research (S), and the JSPS-RFBR Contract No. 12-02-92100.
This work was partially supported by the Russian Ministry
of Education and Science and Lobachevsky State University
of Nizhni Novgorod through Contract No. 02..49.21.0003 and
by the RFBR Grant No. 14-07-00582. M.V.D. was financially
supported by the “Dinastia” fund.

104516-8



AMPLITUDE AND PHASE EFFECTS IN JOSEPHSON . . . PHYSICAL REVIEW B 90, 104516 (2014)

[1] J. Clarke and F. K. Wilhelm, Nature (London) 453, 1031 (2008).
[2] J. Q. You and F. Nori, Phys. Today 58(11), 42 (2005).
[3] J. Q. You and F. Nori, Nature (London) 474, 589 (2011).
[4] I. Buluta, S. Ashhab, and F. Nori, Rep. Prog. Phys. 74, 104401

(2011); I. Buluta and F. Nori, Science 326, 108 (2009).
[5] W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov,

and T. P. Orlando, Science 310, 1653 (2005).
[6] D. M. Berns, W. D. Oliver, S. O. Valenzuela, A. V. Shytov,

K. K. Berggren, L. S. Levitov, and T. P. Orlando, Phys. Rev.
Lett. 97, 150502 (2006).
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