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A silicon-based single-electron interferometer coupled to a fermionic sea
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We study Landau-Zener-Stückelberg-Majorana (LZSM) interferometry under the influence of projective
readout using a charge qubit tunnel-coupled to a fermionic sea. This allows us to characterize the coherent
charge-qubit dynamics in the strong-driving regime. The device is realized within a silicon complementary
metal-oxide-semiconductor (CMOS) transistor. We first read out the charge state of the system in a continuous
nondemolition manner by measuring the dispersive response of a high-frequency electrical resonator coupled to the
quantum system via the gate. By performing multiple fast passages around the qubit avoided crossing, we observe
a multipassage LZSM interferometry pattern. At larger driving amplitudes, a projective measurement to an even-
parity charge state is realized, showing a strong enhancement of the dispersive readout signal. At even larger driving
amplitudes, two projective measurements are realized within the coherent evolution resulting in the disappearance
of the interference pattern. Our results demonstrate a way to increase the state readout signal of coherent quantum
systems and replicate single-electron analogs of optical interferometry within a CMOS transistor.
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I. INTRODUCTION

Silicon quantum electronics is a nascent field in which
the discreteness of the electron charge or spin is exploited to
obtain additional device functionalities beyond the capabilities
of the current silicon microelectronics industry [1]. Some of
the most promising outcomes of this research field include
single-electron devices [2,3] (performing logic operations
at the device level [4], spin filters for spintronics [5], and
aiming to redefine the Ampere [6]) and quantum computers
and memories based on the long spin coherence times offered
by silicon [7–10].

A developing area of silicon quantum electronics is the ap-
plication of the coherent quantum properties of single-electron
charge states to realize electronic analogs to optical interferom-
etry experiments [11,12]. Optical interferometry has enabled
the development of extremely sensitive detectors that, for ex-
ample, have recently detected gravitational waves [13]. How-
ever, electron interferometry can lead to novel applications
such as electron holography for precise imaging [14] or testing
the effect of Fermi-Dirac statistics in quantum optics [15].

In quantum electronic devices, coupled two-level systems
(TLSs) can coherently split single-electron states via Landau-
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Zener (LZ) transitions [16], with the quantum interference be-
tween consecutive LZ transitions giving rise to Landau-Zener-
Stückelberg-Majorana interferometry (LZSM) [17]. This tech-
nique has been successfully applied to coherently control a
variety of solid-state platforms such as superconducting qubits
[18,19], charge and spin qubits in semiconductor quantum
dots and dopants [11,20–22], and nitrogen vacancy centers in
diamond [23], and it has been used to address fundamental
phenomena such as second-order phase transitions [24,25].
Although LZSM interferometry is typically described in terms
of TLS, it has been suggested that more complex multi-level
systems can be studied using LZSM interferometry. This
approach has been harnessed in multi-level super-conducting
qubits for high-resolution excited state spectroscopy [26] and
in multi-level semiconductor qubits for extreme harmonic
generation [27,28].

In this paper, we present an LZSM interferometry study
performed in a single-electron double quantum dot (DQD)
formed at the edge states of a silicon transistor fabricated using
industry-standard 300 mm silicon-on-insulator technology
[29]. The DQD operates in the charge-qubit regime and is
coupled to a fermionic sea, generating a multilevel energy
spectrum. We read out the charge-qubit state dispersively,
interfacing it with a high-frequency resonator via the gate
[30,31]. By tuning the microwave drive amplitude, we access
multiple LZSM regimes, introducing increasing degrees
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FIG. 1. Dispersive detection of a DQD. (a) Scanning electron microscope image of a device connected to an rf-reflectometry setup via
the top gate. A nearby on-PCB coplanar waveguide delivers MW signals. (b) Device schematic. Top: cross section perpendicular to current
flow direction, indicating the location of the corner QDs, where BOX indicates the buried oxide layer. Bottom: top view of the device, with
transparent top gate for clarity; five electronic transitions between dots and reservoirs marked by arrows. �c represents the tunnel coupling
and �L (R) the relaxation rates between the left (right) dot and the reservoirs. (c) Resonator phase response �ϕ as a function of top-gate and
back-gate voltages (VTG,VBG). The white dashed line emphasizes the ICT and the black solid arrow indicates the position of the trace in panel
(d). DQD electron numbers appear in parentheses. (d) �ϕ as a function of VTG, showing the relative intensity of the ICT and the DST.

of projective readout arising from the interaction with the
fermionic reservoirs, which first enhance the interferometric
signal and then suppress it completely. Finally, we develop
a theoretical model for the qubit-resonator interaction, accu-
rately describing the interferometry and the dispersive signal
enhancement. Our results motivate further studies exploring
electron quantum optics in silicon and using the enhancement
of the qubit readout signal for high-fidelity state readout.

II. DEVICE AND RESONATOR

We perform the experiment on a fully depleted silicon-on-
insulator nanowire transistor [height and width 11 and 60 nm;
a similar device is shown in Fig. 1(a) [32]]. A 40-nm-wide
wraparound top gate (VTG) covers the square-section channel,
causing electron accumulation first at the topmost corners, cre-
ating a DQD in parallel with the source and drain, highly doped
with arsenic [29,33]; see Fig. 1(b). The silicon handle wafer
constitutes a back gate (VBG). We perform gate-based radiofre-
quency reflectometry [12] in a dilution refrigerator (35 mK) us-
ing a tank circuit (L = 390 nH, parasitic capacitance Cp = 660
fF), and homodyne detection at resonance (frf = 313 MHz).

The demodulated phase response (�ϕ) is sensitive to
single-electron charge instability and more particularly to
parametric capacitance changes (Cpm) occurring when elec-
trons tunnel [34–38], with �ϕ = −πQCpm/Cp, and Q is the
loaded Q-factor. We use this feature to measure the charge
stability diagram in (VTG,VBG) space in the subthreshold
regime [Fig. 1(c)], indicating a few-electron DQD with four
stable charge configurations (nm), where n and m refer to
electron number. The absence of charge transitions at lower
gate voltages indicates depletion of electrons. The device is
operated as a single-electron charge qubit; an electron can
occupy the left or right dot—states (10) and (01)—and unload
or load an electron via the source and drain fermionic seas—
states (00) and (11).

The DQD parametric capacitance seen from the top gate is

Cpm ≈ −e
∂

∂VTG
{αL〈nL〉 + αR〈nR〉}, (1)

where αL (R) represents the left (right) top-gate coupling and
〈nL (R)〉 is the average electron occupation of the left (right)
dot [12]. To include the fermionic reservoirs, we utilize the
occupation probabilities of the four charge states (Pnm) [12]:

Cpm ≈ 2e2α2
−

∂

∂ε0

{
P01 − P10 + α+

α−
(P00 − P11)

}
. (2)

Here, α± = (αL ± αR)/2 and the energy detuning between
dots ε0 = −2eα−(VTG − VTG0), where VTG0 is the top-gate
voltage at which (10) and (01) hybridize (depending on VBG).
In the common situation in which the dots have similar top-
gate couplings (i.e., small α−), transitions involving (00) and
(11) states yield α+/α− larger change in capacitance than
those involving (01) and (10) states. Figure 1(d) shows this
phenomenon, where the phase shift of dot-to-sea transitions
(DST) is approximately 15 times larger than the interdot
charge transition (ICT), in agreement with an independent
magnetospectroscopy measurement of α+/α− = 18 (see the
Supplemental Material [39]).

III. LZSM INTERFEROMETRY: MULTIPASSAGE REGIME

Coherent LZSM interference occurs when a system is
repeatedly (at least twice) driven through an anticrossing (of
energy �c) at a rate comparable to (�c/h)2, and over time
scales shorter than the coherence time T2.

To perform coherent fast passages through the DQD an-
ticrossing, a harmonic microwave electric field of amplitude
Amw and frequency fmw = 21 GHz is delivered via an on-PCB
antenna. This effectively varies, periodically, VTG—and hence
ε0—at fixed VBG [black line in Fig. 1(c)].
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FIG. 2. Multipassage LZSM interferometry. Schematic of the
probability distribution after the first (a) and second (b) passage.
(c) �ϕ calculated (left of panel) vs experimental (right of panel),
both panels mirrored in the horizontal direction with respect to one
another. (d) Optical interferometry analog showing the photon paths
(electron charge states), the beam splitters (fast passage through
the anticrossing), and refocusing mirrors (microwave electric fields).
Here the process is repeated N times.

To model the coherent evolution, we use a full unitary
description of each passage and the dynamical phase acquired
(see [39]). To summarize, the probability, PLZ, that an electron
performs an LZ transition to the excited state following a
passage is [Fig. 2(a)]

PLZ = exp

⎛
⎝− π�2

c

2hfmw

√
A2

mw − ε2
0

⎞
⎠. (3)

Starting in state (01), after two passages, the probability of
returning to (01)—Fig. 2(b)—is

PLZ,2 = 1 − 4PLZ(1 − PLZ)sin2φSt, (4)

where the Stückelberg phase φSt = φSt(ε0,fmw,Amw) captures
the phase difference acquired during free evolution. If the
charge coherence is preserved for even longer time scales,
multiple correlated passages lead to a stationary probability
distribution in P01:

PLZ,N = 1
2 [1 + sgn(ε0)(1 − 2P +

LZ,N)], (5)

P +
LZ,N = 1

2

∑
k

�2
c,k

�2
c,k + T2

T1
(|ε0| − khfmw)2 + h̄2

T1T2

, (6)

with charge relaxation time T1, �c,k = �cJk(Amw/hfmw), and
Jk is the Bessel function of kth order. This detuning-dependent
probability can be converted to a capacitance using Eq. (2).
Assuming Amw is not large enough to reach the crossings with
the (00) and (11) states (P00 = P11 = 0), we obtain Cpm in the

multipassage regime:

Cpm � 4e2α2
−

∂

∂ε0
P01 and P01 = PLZ,N. (7)

Both measured and calculated interferometry patterns in
Fig. 2(c) show the signatures of multipassage LZSM: enhanced
�ϕ at equally spaced points in ε0, separated by the photon
energy hfmw, and (quasi)periodic �ϕ oscillations for increas-
ing Amw. The interference pattern disappears for fmw < 4
GHz, indicating that T2 ∼ 0.25 ns (see [39]). Since we use
a classical resonator (frf � kBT/h,fmw), the probabilities
appear stationary and Eq. (7) holds. In our simulations, we use
�c = 34 μeV (extracted from the FWHM of the ICT), T2 =
0.25 ns, and find the best fitting T1 for T1 = 5T2 = 1.25 ns.

The electron manipulation resembles a multipassage Mach-
Zehnder interferometer [Fig. 2(d)] with the role of the beam
splitter played by the anticrossing splitting the electronic
wave function [20], and the phase difference here is φSt. The
microwave drive refocuses the electron paths, repeating N =
T2fmw ≈ 5 times. These results demonstrate that, although
continuously monitoring the qubit state, the nondemolition na-
ture of gate-based readout does not preclude multiple coherent
passages.

IV. LZSM INTERFEROMETRY
WITH PROJECTIVE READOUT

For larger driving fields (Amw) or detunings (ε0), transi-
tions to the (00) and (11) states come into play. First, these
transitions involve charge transfer into a fermionic sea (not
phase-preserving), introducing projective readout of the
charge. Second, as discussed, DSTs yield a much larger
reflectometry signal �ϕ than for qubit states (01) and (10).

To understand the coherent evolution through the charge
configurations, in Fig. 3(a) we calculate the full DQD energy-
level spectrum versus reduced detuning ε0/EC—where EC is
the charging energy—for top-gate coupling asymmetry α− =
0.05 (see [39]). Additionally, in Fig. 3(b), we measure �ϕ as a
function of ε0 and Amw across a large range [of which Fig. 2(c)
is a subset], enabling LZSM interferometry involving the four
DQD charge states. For small Amw, we label charge-stable
regions (constant �ϕ). Elsewhere, charge transitions occur,
leading, in some cases, to interferometric patterns. We identify
four distinct LZSM regimes, three involving passages through
the ICT, which we indicate by the symbols in Fig. 3(b).

For small Amw and ε0 (red star), multipassage LZSM
interference occurs, as explained above. As Amw and ε0 are
increased, the DSTs are crossed, producing a double-passage
LZSM interference pattern where projective readout via the
(00) and (11) states is performed every second passage (green
circle). Due to the DST, the interference pattern amplitude
in this regime is as much as eight times greater than in the
multipassage region. This is illustrated in Fig. 3(c), where we
plot �ϕ against ε0 for Amw = 0.55 meV and fmw = 11 GHz.
For yet larger values of Amw, while ε0 remains small, projective
readout occurs after every passage, making the interference
pattern disappear (yellow triangle). Finally, though outside
the scope of this paper, we highlight regions (blue star)
where DST-mediated incoherent LZSM occurs; see [39].
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FIG. 3. Multilevel LZSM interferometry. (a) Calculated DQD energy level diagram as a function of reduced detuning ε0/EC; α− = 0.05
and Em/EC = 10, where Em is the mutual charging energy. (b) �ϕ measured as a function of the detuning, ε0, and MW amplitude, Amw, for
fmw = 21 GHz. Regions of constant �ϕ, with well-defined electron numbers, are indicated in parentheses. The (10)-(01) anticrossing and the
(00)-(10) and (01)-(11) crossings are indicated by black dashed lines. Incoherent, multipassage, double-passage, and single-passage LZSM
regions are indicated by the blue star, red star, green circle, and yellow triangle, respectively. (c) �ϕ vs ε0 trace at Amw = 0.55 meV and
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A. Double-passage regime

We move on to the double-passage regime in Fig. 3(b).
Following a microwave-driven double passage over the an-
ticrossing, Eq. (4) gives the (01) and (10) state probability
distribution. Due to the larger microwave amplitude, the system
encounters DSTs where both (01) and (10) states cross (e.g.)
the (11) state [Figs. 4(a) and 4(b)].

To understand the charge dynamics, we require insights into
the dot-reservoir relaxation rates. We estimate the right dot-
reservoir rate, �R < 12 GHz, from the temperature dependence
of the (10)↔(11) DST FWHM (see [39]). By analyzing the de-
cay of the�ϕ oscillations toward low ε0 [Fig. 3(c)], we extract a
left dot relaxation rate �L ≈ 50 GHz [39]. The relaxation rate
ratio �R/�L < 0.25 indicates much faster relaxation via the
left dot. This relaxation-rate asymmetry, combined with the
small difference in ε0 between the (10)↔(11) and (01)↔(11)
DSTs, results in relaxation occurring primarily via the left dot
after the double-passage. This projects the system into the (11)
or (00) state, with subsequent passages through the anticrossing
being uncorrelated.

To confirm this description, Fig. 4(c) presents the data
alongside a simulation based on Eq. (2). Although here
P01,P10,P11 	= 0, the main contribution to the capacitance
arises from P11, due to the large α+/α−,

Cpm ≈ 2e2α−α+
∂

∂ε0
P11. (8)

In the limit where Amw 
 hfmw and ε0 is close to the
(01)↔(11) crossing, Eq. (8) becomes

Cpm ≈ 2e2α−α+
�L − �R

2fmw

∂

∂ε0
PLZ,2. (9)

While both data and simulation show (quasi)periodic oscilla-
tions for increasing Amw, as in the multipassage regime, the
periodic enhancement of �ϕ with ε0 is absent, because only
two consecutive passages are correlated [40]. Calculations are
obtained using Eq. (9), considering leading terms in ε0/Amw

for PLZ,2 and with �c = 34 μeV, fmw = 21 GHz. The good
agreement shows the validity of this simple dynamical picture,
demonstrating an efficient way to increase the dispersive
readout signal after manipulation by projecting the coherent
state to an even-parity charge state. Comparing Eqs. (7) and (9),
we note the dispersive signal enhancement dependence on the
amplification factor α+

α−
(�L−�R)

4fmw
, and the key role of asymmetric

relaxation rates in this dispersive detection mechanism. Finally,
we observe that by performing a double passage followed
by a projective measurement, we can effectively control the
coherence time, now determined by the MW period: T2 ∼ f −1

mw.
The electron evolution resembles a standard Mach-Zehnder

interferometer. After a double passage through the anticross-
ing, the (01) branch of the “beam” is detected via relaxation
into the (11) state, indicated by the detector D11 for ε0 > 0
[Fig. 4(d)]. For ε0 < 0, the (10) beam is read out by relaxation
into the (00) state.

B. Single-passage regime

Finally, for a large microwave driving amplitude centered
around small detuning, the LZSM interference pattern disap-
pears [Fig. 3(b), yellow triangle]. The dynamic evolution now
involves all four charge states. Every passage is followed by
a projective measurement caused by electron tunneling from
the left dot to the source or drain. Without two consecutive
passages with a phase-coherent charge-state superposition, no
interference signal manifests, even though the system is driven
at fmw = 21 GHz, much faster than T2.
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Our optical analog is again a standard Mach-Zenhder
[Fig. 4(e)]; however, now an additional detector or “observer”
(D11 or D00) is placed within one of the branches of the electron
beam after the first beam splitter. This projective measurement
collapses the charge superposition state after the first passage,
and the interference pattern disappears.

V. OUTLOOK AND CONCLUSION

We have realized a multimode LZSM interference experi-
ment in a CMOS transistor, observing the multiple-, double-,
and single-passage regimes of a single-electron charge qubit
by adding progressive stages of projective readout. We have
used additional levels arising from the interaction of the qubit
with a fermionic reservoir first to project the coherent state
of the qubit, enhancing the interferometric signal, and second
to suppress the interference pattern completely. These ob-
servations raise possibilities of sophisticated coherent-control
experiments using fast pulses for manipulation, followed by
qubit readout via a dot-to-lead transition for an enhanced
signal. Our simulations, extending LZSM theory to a resonator-
qubit coupled system, match our data well in each regime.
In future, devices with additional tunability of the level cou-
plings and the relaxation rates could provide access to even
more complex interferometry experiments, opening a door to
silicon-based quantum optics. For example, split-gate CMOS

transistors [11,41] could enable independent control of the dot
occupations allowing exploration of the effects of Coulomb
interactions and Fermi-Dirac statistics in electron optics, while
retaining the scalability of CMOS fabrication.
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