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Photon-assisted Landau-Zener transition: Role of coherent superposition states
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We investigate a Landau-Zener (LZ) transition process modeled by a quantum two-level system (TLS) coupled
to a photon mode when the bias energy is varied linearly in time. The initial state of the photon field is assumed
to be a superposition of coherent states, leading to a more intricate LZ transition. Applying the rotating-wave
approximation (RWA), analytical results are obtained revealing the enhancement of the LZ probability by
increasing the average photon number. We also consider the creation of entanglement and the change of photon
statistics during the LZ process. Without the RWA, we find some qualitative differences of the LZ dynamics
from the RWA results; e.g., the average photon number no longer monotonically enhances the LZ probability.
The ramifications and implications of these results are explored.
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I. INTRODUCTION

Landau-Zener (LZ) transitions involve a quantum two-level
system (TLS) with a constant coupling strength � between
two adiabatic energy levels. A control parameter is swept at a
constant velocity, v, so that an avoided crossing of energy
levels occurs and provides the probability that the system
will stay in an adiabatic state. LZ transitions have attracted
considerable attention theoretically (see, e.g., Refs. [1–6]) and
experimentally (see, e.g., Refs. [7–9]).

In a variety of physical areas, LZ processes play an
important role, e.g., in artificial atoms [10] and Bose-Einstein
condensates in optical lattices [11]. Especially in supercon-
ducting circuits, which can behave like controllable quantum
TLSs [12–15], LZ and Landau-Zener-Stückelberg (LZS)
problems have been studied by several groups [1,16–21]. The
standard LZ problem for an isolated TLS can be solved exactly.
For some many-level systems, the LZ transition probability
can also be calculated exactly for some initial states [22–24].
LZ transitions controlled by classical fields are considered in
Ref. [25], and in a quantum photon field the authors of Ref. [26]
found that varying the LZ sweep rate produces collapses and
revivals of the coherent field amplitude.

Naturally, a quantum TLS is influenced by its environ-
ment, and therefore there have been many studies about the
dissipative LZ problem. Exact results are available at zero
temperature [27,28], and various numerical methods have been
employed to study the cases at finite temperatures [29–31].
The nonmonotonic dependence of the LZ probability on the
sweep velocity was studied in Ref. [29] using numerical
methods. Environment parameters, such as temperature, can
exponentially enhance the coherent oscillations generated at a
LZ transition [31].

It is interesting to replace the classical coupling � by a
fully quantum-field coupling; then the TLS and the field form
a whole composite quantum system. In this paper we consider
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a quantum TLS coupled to a photon mode when the bias energy
is varied linearly in time.

Coherent superpositions of coherent states, like |ψ(0)〉ph =
(|α〉 + eiθ | − α〉)/Nθ , with the normalization constant N2

θ =
2(1 + cos θe−2|α|2 ), have attracted extensive interest as a
distinct class of nonclassical states with interesting properties.
For a large amplitude, α, these can be interpreted as quantum
superpositions of two macroscopically distinguishable states,
the so-called Schrödinger cat states. Such states can be
prepared in various systems and play an important role in
fundamental tests of quantum theory and in many quantum-
information-processing tasks [32–34], including quantum
computation [35], quantum teleportation [36], and precision
measurements [37,38].

We aim to discover the effect of the initial superposition of
coherent states on the LZ transition. The increasing average
photon number may enhance the LZ probability. We also focus
on the effect of the LZ process on the quantum properties of the
whole system, including entanglement creation and changing
the photon distribution.

By applying a rotating-wave approximation (RWA), we
obtain analytical results which reveal the enhancement of
the LZ probability when increasing the average photon
number. Whereas, without the RWA we find some qualitative
differences of the LZ dynamics from the RWA results; e.g.,
there are two stages of the LZ transition and the final LZ
probability no longer monotonically depends on the average
photon number.

This paper is organized as follows. In Sec. II, we introduce
the standard LZ model and the quantized LZ model considered
in this paper. In Sec. III, by employing the RWA, we
analytically calculate the LZ probability, the entanglement
between the TLS and the field, and the photon statistics
characterized by the Mandel parameter Q. Numerical results
are shown in this section to confirm the analytical results. In
Sec. IV, without the RWA, numerical and analytical results
are given to compare with the RWA results. The thermal state
of the photon field is also considered, in order to compare
with the case of a superposition of coherent states in which
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the photon distribution is Poissonian. Finally, we present the
conclusions.

II. HAMILTONIAN OF THE LANDAU-ZENER
TRANSITION

Let us first briefly gather together several results that will
be used in this work. The standard LZ problem, for an isolated
quantum TLS driven by a classical field, is described by the
Hamiltonian

H = −vt

2
σz − �

2
σx, (1)

in terms of the Pauli matrices σx,z, and σx = σ+ + σ− (h̄ = 1
is assumed throughout). Let the states | ↑〉 and | ↓〉 denote the
eigenstates of σz, i.e., the so-called diabatic states with energies
±vt/2 which cross at t = 0. The constant v is the sweep
velocity, by which the energies of the diabatic states cross. The
coupling � denotes the interaction between the two diabatic
states, which are chosen to be positive and time independent.
For � �= 0, the diabatic states are not eigenstates of the
Hamiltonian in Eq. (1), and the avoided-level crossing appears
between the adiabatic energies E±(t) = ±[(vt)2 + �2]/2
at t = 0. Thus, generally, a population transfer is induced.
Asymptotically, for times |t | � �/v, the diabatic states
coincide with the adiabatic states. The LZ problem asks for the
probability of the TLS ending up in the initially unoccupied
level and is given by P0,LZ = 1 − exp(−π�2/2v), which is an
exact result for all � and v. In the adiabatic limit �2/v � 1,
i.e., when the sweep occurs slowly enough, P0,LZ will saturate
at 1, which implies that the transfer of population between the
adiabatic eigenstates is prevented by the splitting �.

In this work we consider a quantized LZ Hamiltonian
describing the coupling of a quantum TLS to a single-photon-
field mode. The Hamiltonian reads

H = ω0

2
σz + ωa†a − vt

2
σz − �

2
σx(a + a†), (2)

where the operator a (a†) annihilates (creates) a photon in the
field mode with frequency ω, and the energy bias of the TLS
is denoted by ω0. In this paper, the resonance case ω0 = ω

is considered. Hence we rewrite the total Hamiltonian in a
rotating frame defined by the operator N̂ = a†a + σz/2, at the
frequency ω.

In the weak-coupling regime, where the coupling is at least
an order of magnitude less than the energy frequency, i.e., � <

0.1ω, one can employ a RWA and the Hamiltonian becomes

H = −vt

2
σz − �

2
(aσ+ + a†σ−). (3)

Now the system is modeled in terms of a time-dependent
Jaynes-Cummings Hamiltonian [26,39,40], which can also be
called the Landau-Zener-Jaynes-Cummings (LZ-JC) model.
Note that the operator N̂ = a†a + σz/2 is conserved by this
Hamiltonian.

When considering a finite detuning δω = ω0 − ω, the RWA
is usually justified in the condition that |δω| � ω0 + ω. Then
a constant energy bias δω is added to the adiabatic states, and
the LZ-JC Hamiltonian becomes H = − vt−δω

2 σz − �
2 (aσ+ +

a†σ−). The finite detuning δω gives no change to the LZ

process except translating the time when the LZ transition
occurs, from t = 0 to t = δω/v.

This kind of model was considered in Ref. [39], where
highly nonclassical sub-Poissonian states were found. Some
later work [23,40] mentioned the LZ problem in the JC
and Rabi models. A superconducting qubit coupled to a
transmission-line resonator [41] can be described by the
quantized LZ Hamiltonian in Eqs. (2) and (3) when the
transition frequency of the charge (flux) qubit is varied linearly
in time by a driving charge (magnetic flux). Furthermore,
in this kind of circuit quantum electrodynamics, the strong
coupling can be obtained, which allows the cases beyond the
RWA [42].

III. LANDAU-ZENER TRANSITION PROCESSES,
ENTANGLEMENT CREATION, AND PHOTON

DISTRIBUTION WITH THE RWA

Let us assume that the initial state of the total system is in a
direct product form, and the TLS initially starts from |↑〉 and
that the photon field starts from a Fock state, then the initial
state of the whole system |ψ(0)〉tot = | ↑〉 ⊗ |n〉. Under the
LZ-JC Hamiltonian in Eq. (3), the state at time t becomes

|ψ(t)〉tot = An(t)| ↑ n〉 + Bn(t)| ↓ n + 1〉, (4)

where the time-dependent coefficients An (t) and Bn (t) are the
solutions of a second-order Weber equation and in the form of
combinations of parabolic cylinder functions [1]. Explicitly,
the coefficients

An(t) =
∑
±

μn,±D−1−iδn
(±Zt ),

(5)
Bn(t) =

∑
±

νn,±D−iδn
(±Zt ),

where D−1−iδn
(±Zt ) [D−iδn

(±Zt )] are the parabolic cylinder
functions and the parameters Zt = −√

2eiπ/4√v/2t and
δn = �2(n + 1)/(4v), because when the field mode is
occupied by n photons, the splitting � is enhanced by a
factor

√
n + 1, as compared with the standard LZ model. The

parameters νn,± and μn,± satisfy νn,± = ∓μn,±e−iπ/4/
√

δn.
Moreover, if the bias energy vt0 is finite, then we
have μn,+ = D−iδn

(−Zt0 )/[D−iδn
(−Zt0 )D−1−iδn

(Zt0 ) +
D−iδn

(Zt0 )D−1−iδn
(−Zt0 )] and μn,− = μn,+D−iδn

(Zt0 )/
D−iδn

(−Zt0 ). Usually, one considers the limit cases when the
bias energy vt is switched from a large negative value to a
large positive value; then with the asymptotes of the parabolic
cylinder functions, we find An(t) ≈ exp(−πδn), which
implies that for an initial state | ↑ n〉, the final probability of
the TLS staying in | ↑〉 is P↑,n = P↑,0 exp(−π�2n/2v), with
P↑,0 = exp(−π�2/2v) denoting the vacuum case.

When the initial state of the field is a superposition of Fock
states, the initial state of the whole system reads

|ψ(0)〉tot = | ↑〉 ⊗
∞∑

n=0

Cn|n〉, (6)

where the superposition parameter Cn satisfies
∑∞

n=0 |Cn|2 =
1. Then, multilevel LZ transitions are expected at the avoided-
level crossings of the diabatic energy levels, and we sketch the
energy-level diagram in Fig. 1(a). The final probability of the
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FIG. 1. (Color online) (a) Adiabatic energy levels of the quantized
LZ Hamiltonian (3) within the RWA. The coupling � = 0.5 and
frequency ω = 10 are both in units of

√
v, also h̄ = 1. The arrow

marks the point where the avoided crossings are located. (b) LZ
probability PLZ(t) as a function of time, in units of 1/

√
v, for the

coupling � = 0.5, and for various values of the average photon
number |α|2. The horizontal black dashed lines show the analytical
results in Eq. (11). (c) Final LZ transition probability PLZ(∞) versus
average photon number |α|2 for various couplings � = 0.1, 0.2, and
0.5. (d) Final LZ probability PLZ(∞) as a function of the superposition
parameter θ , for the coupling � = 0.5 and various values of |α|2.

TLS staying in | ↑〉 becomes an average of P↑,n, and then the
final LZ transition probability at t = ∞ reads

PLZ (∞) = 1 − P↑,0

∞∑
n=0

|Cn|2 exp

(
−π�2n

2v

)
. (7)

A. LZ processes for coherent superposition states

Hereafter we focus on the nonclassical properties associated
with the following superposition of coherent states:

|ψ(0)〉ph = 1

Nθ

(|α〉 + eiθ | − α〉), (8)

where N2
θ = 2(1 + cos θe−2|α|2 ) is a normalization constant

and, for simplicity, we assume α to be real. Such states
are superpositions of classically distinguishable states and
involve fundamentally nonclassical properties. Therefore, they
are important for investigating fundamental tests of quantum
theory and in many quantum-information-processing tasks
[32–34].

As shown in Refs. [43,44], for an anharmonic oscillator
with the Hamiltonian H = υ(a†a + 1

2 ) + χ (a†a)2, an initial
coherent state |α〉 will evolve into the coherent superposition
states in Eq. (8) with a superposition phase θ corresponding
to different evolution times. And at some special time such as
t = π/ (2χ ), the so-called “Yurke-Stoler” coherent state with
θ = π/2 can be achieved. In an optical system, the coherent
superposition states with large amplitude can be generated
by using homodyne detection and photon number states as
resources [34], and the superposition phase θ is related to the
photon numbers.

Recalling the initial state in Eq. (6), the superposition
coefficient becomes

Cn = 1

Nθ

exp

(
−|α|2

2

)
αn[1 + (−1)n]√

n!
. (9)

It follows that we can calculate the final LZ transition
probability exactly

PLZ (∞) = 1 − 2P↑,0

N2
θ e|α|2

(
e|α|2P↑,0 + cos θe−|α|2P↑,0

)
. (10)

It turns out that PLZ (∞) now depends on the initial conditions
|α|2 and θ ; the former is associated with the average photon
of field and the latter determines the types of superpositions.
Obviously, for |α|2 = 0 and cos θ �= −1, then PLZ (∞) = 1 −
P↑,0, corresponding to the standard LZ probability. Whereas
in the limit |α|2 → ∞, with finite ratio �2/v �= 0, PLZ (∞)
will tend to unity monotonically.

1. Yurke-Stoler state

When θ = π/2, the superposition state is the so-
called Yurke-Stoler (YS) coherent state [43]: |α〉YS =
(|α〉 + i |−α〉) /Nπ/2. The average photon number of |α〉YS

is |α|2. Thus, the LZ probability for the YS state becomes

PLZ (∞) = 1 − P↑,0 exp[− |α|2 (1 − P↑,0)], (11)

which reveals the dependence of PLZ (∞) on the ratio �2/v

and the average photon number |α|2. Obviously, enhancing
|α|2 and the ratio �2/v will increase the final LZ probability
PLZ (∞).

2. Even coherent state

When θ = 0, the photon state is the so-called “even
coherent state”: |α〉+ = (|α〉 + |−α〉) /N0, with N2

0 = 2(1 +
e−2|α|2 ). This state refers to the fact that the photon number
distribution is nonzero only for even photon numbers with the
average photon number n̄ = 2 |α|2 (1 − e−2|α|2 )/N2

0 . Then the
final probability

PLZ,+ (∞) = 1 − P↑,0
cosh(|α|2 P↑,0)

cosh |α|2 . (12)

3. Odd coherent state

When θ = π , the photon state is an “odd coherent state”:
|α〉− = 1

Nπ
(|α〉 − |−α〉), with N2

π = 2(1 − e−2|α|2 ), for which
only an odd number of photons have a nonzero probability and
the average photon number n̄ = 2 |α|2 (1 + e−2|α|2 )/N2

π . Then
the LZ probability becomes

PLZ,− (∞) = 1 − P↑,0
sinh(|α|2 P↑,0)

sinh |α|2 . (13)

When |α|2 approaches zero, we have PLZ,− (∞) → 1 − P 2
↑,0,

because the odd coherent state |α〉− tends to the Fock state |1〉.

4. Numerical results of LZ processes for various types of coherent
superposition states

Let us first focus on the YS coherent state and numerically
study the LZ processes. In Fig. 1(b), we show that for a weak
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coupling � = 0.5 (in units of
√

v), the LZ transition occurs
near the point t = 0, at the avoided crossings. The coherent
oscillation of PLZ(t) is enhanced by increasing the average
photon number |α|2. Figure 1(c) shows the final probability
P LZ(∞) as a function of |α|2 for different couplings �. As
expected in the analytical results, for increasing |α|2 we find
that PLZ(∞) tends to 1 monotonically, and larger couplings �

accelerate this increase. The superposition parameter θ gives
a periodic contribution to PLZ(∞), as shown in Fig. 1(d).
For small average photon numbers |α|2 < 2, there is a clear
maximum of PLZ(∞) at θ = π (odd coherent state), which
implies that not only the average photon number but also the
proper superpositions of coherent states can enhance the LZ
probabilities. When |α|2 is larger, however, there is hardly
any effect of the superposition parameter θ . Then all the
superpositions of coherent states provide the same asymptotic
value of PLZ(∞), as shown in Fig. 1(d).

B. Entanglement between the quantum TLS
and the photon field

Due to the coupling terms in the LZ-JC Hamiltonian, the
dynamics will produce entanglement between the quantum
TLS and the photon field. The aim of this section is to
reveal the connection between the LZ transition and the
entanglement creation. The concept of purity can be employed
to characterize entanglement. Based on the reduced density of
TLSs, purity is determined by the linear entropy, defined by
El(t) = 1−Trρ2

TLS
(t). In terms of the elements of the density

matrix, we have El(t) = 1 − ∑
i,j=↑,↓ |〈i|ρTLS |j 〉|2. In the LZ

process we find the matrix elements of the density matrix as a
function of time

|〈↑|ρTLS |↓〉|2 = − sin2 θ

N2
θ e2|α|2

∣∣∣∣∣
∞∑

n=0

(−1)n|α|2n+1An+1B
∗
n√

(n + 1)n!

∣∣∣∣∣
2

,

|〈↑|ρTLS |↑〉|2 = [1 − PLZ(t)]2, (14)

|〈↓|ρTLS |↓〉|2 = P 2
LZ(t).

Due to the exact solutions of An(t) and Bn(t), the linear
entropy can be analytically obtained. If we choose even (or
odd) coherent states in Eq. (8) for θ = 0 (or π ), there will be
a simple form of the linear entropy

El(t) = 2PLZ(t)[1 − PLZ(t)], (15)

which implies that the TLS and the photon field can achieve
full entanglement, in the sense that, after tracing out the
photon states, no coherence between |↑〉 and |↓〉 is left; i.e.,
the antidiagonal elements in the reduced density matrix of
Eq. (14) vanish. In this case, the entanglement is absolutely
determined by PLZ (t). At finite times, when PLZ (t) suddenly
jumps to a nonzero value but is less than 1/2, El (t) increases
fast to a steady value. However, if PLZ (t) is larger than 1/2,
El (t) decreases. The entanglement will be less perfect if other
initial superposition parameters (θ �= 0,π ) are chosen, because
there will be nonzero off-diagonal elements in the reduced
density matrix. The entanglement dynamics strongly depends
on the LZ transition probability, and this is confirmed by the
numerical results shown in Fig. 2.
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FIG. 2. (Color online) (a) Linear entropy El(t) as a function of
time (in units of 1/

√
v) for the coupling � = 0.5 (in units of

√
v)

and for various values of the average photon number |α|2. (b) Final
or long-time linear entropy El(∞) as a function of |α|2, for various
couplings � = 0.2, 0.5, and 1. (c) Final linear entropy El(∞) versus
the superposition parameter θ , for the coupling � = 0.5 and various
|α|2.

For an initial YS coherent state, the dynamics of the
linear entropy El (t) for finite times is shown in Fig. 2(a).
The entanglement between the TLS and the photon field is
created when the LZ transition occurs. Analogous to the LZ
probability, El (t) oscillates with time and tends to a steady
value. However, it is not always the case that the larger |α|2
is the stronger the entanglement will be. In Fig. 2(b), we
plot the final linear entropy El(t = ∞) versus |α|2. Clearly,
for small values of the coupling �, the linear entropy El(∞)
has a maximum. However, for larger couplings, like � = 1,
increasing |α|2 only suppresses El(∞) rapidly. Note that in the
large-coupling � limit, PLZ (∞) achieves unity adiabatically,
which implies that the final state is separable. In Fig. 2(c), the
linear entropy El(∞) versus the initial superposition parameter
θ for a small coupling � = 0.5 is considered. The odd coherent
state at θ = π has a maximal entanglement for a small photon
number, |α|2 = 0.3, whereas it has a minimal entanglement
for a larger photon number, |α|2 = 2.

C. Photon distribution of the field

One of the best-known nonclassical effects is the generation
of sub-Poissonian (or super-Poissonian) photon statistics of
the light field [45,46]. A coherent state |α〉, which can be
regarded as a state with the “most” classical behavior, yields
a Poissonian distribution, i.e., the variance of the number
operator n̂ = a†a is equal to the mean photon number: (�n̂)2 =
n̄ = |α|2. Mandel introduced the Q parameter [45],

Q = (�n)2

n̄
− 1, (16)

which characterizes the departure from the Poissonian dis-
tribution, i.e., the nonclassical property. When Q = 0, the
state is called Poissonian, while, for Q > 0 the state is super-
Poissonian. If −1 � Q < 0, the statistics is sub-Poissonian.
It is known that the Yurke-Stoler coherent state is Poissonian.
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FIG. 3. (Color online) (a) Mandel parameter Q(t) as a function
of time in units of 1/

√
v for various values of the average photon

number |α|2 and the coupling � = 0.5 in units of
√

v. (b) Final
Mandel parameter Q(∞) as a function of |α|2 for various couplings
� = 0.2, 0.5, and 1. (c) Final Q(∞) versus coupling � for various
|α|2. The horizontal black dashed lines mark Q = 0 and correspond
to a Poissonian distribution.

However, under time evolution, the parameter Q changes with
time as Q(t) = (�n̂)2

t /n̄t − 1. Thus the initial Poissonian may
turn into sub-Poissonian or super-Poissonian. It is interesting
to consider how the photon distribution changes during the LZ
process.

For the superposition of coherent states in Eq. (8), at finite
times, we obtain the average photon number

n̄t = n̄0 + PLZ (t) , (17)

where n̄0 = 2 |α|2 (1 − e−2|α|2 cos θ )/N2
θ indicates the initial

average photon number. The expression given above reflects
that the dynamics of n̄t is dominated by the LZ transition
probability PLZ (t). The asymptotic behavior at infinite time
will be n̄∞ = n̄0 + PLZ (∞). We also obtain the average value
of n̂2 at t = ∞,

〈n̂2〉∞ = −4 |α|2 P 2
↑,0

N2
θ e|α|2

(
e|α|2P↑,0 − e−|α|2P↑,0 cos θ

)

+ |α|4 + 3n̄0 + PLZ (∞) , (18)

where PLZ (∞) is shown in Eq. (10). By the definition in
Eq. (16), the asymptotic value of Q(t) becomes Q(∞) =
(�n̂)2

∞ /n̄∞ − 1, where the variance (�n̂)2
∞ = 〈

n̂2
〉
∞ − n̄2

∞.
We shall now concentrate on some limiting cases: (i) when
|α|2 = 0, for finite LZ rate �2/v �= 0, we have Q(∞) < 0,
i.e., the LZ transition induces sub-Poissonian statistics in
the photon field; and (ii) when |α|2 is very large, we have
Q(∞) → 0, in which case the LZ transition has no effect on
the photon distribution.

In Fig. 3(a), we numerically plot the Mandel parameter
Q(t) versus time t . Obviously, the photon statistics of the field
changes suddenly when the LZ transition occurs. Near the
avoided-level-crossing point, for |α|2 > 0, super-Poissonian
and sub-Poissonian statistics appear alternately. The final
Mandel parameter Q(∞) versus |α|2 is shown in Fig. 3(b), for
weak couplings �, both sub-Poissonian and super-Poissonian

statistics can appear with increasing |α|2. For the large |α|2
limit, the photon distribution finally tends to Poissonian, which
is not shown here. We also show Q(∞) versus the LZ param-
eter �/

√
v in Fig. 3(c). When |α|2 = 0, Q monotonically

decays with �/
√

v from 0 to −1, whereas, for a finite average
photon number such as |α|2 = 1, super-Poissonian statistics
also appears. However, a large |α|2 will erase the nonclassical
effects revealed by the sub-Poissonian (or super-Poissonian).

IV. LANDAU-ZENER TRANSITION WITHOUT THE RWA

In this section, we consider the LZ transition without
the RWA. A reasonable comparison between the solutions
with and without the RWA will enable us to understand the
contribution from the counter-rotating terms.

A. YS coherent state case

Without the RWA, due to the counter-rotating terms σ+a†

and σ−a, the total number operator N̂ = a†a + σz/2 is not
conserved by the Hamiltonian in Eq. (2) , i.e., [N̂,H ] �= 0.
Then the Hamiltonian (2) cannot be exactly diagonalized
and has a fundamentally different energy structure from
the Hamiltonian (3) within the RWA, no matter how small
the coupling � is. From the adiabatic energy spectrum in
Fig. 4(a), clearly, one can find two groups of avoided-level
crossings, which are significantly different from the RWA
case in Fig. 1(a). The groups of avoided-level crossing are
formed not only between the states |↑ n〉 and |↓ n + 1〉 but
also between |↑ n〉 and |↓ n − 1〉 (when n � 2), with level
splittings �

√
n + 1 and �

√
n, respectively. Note that the two

groups of avoided crossings are approximately independent
whenever the time between the successive avoided level cross-
ings, tcross = 2ω/v, exceeds the duration of an individual LZ
transition, τLZ ∼ max{1/

√
v,�/v} [47,48]. For our multilevel
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FIG. 4. (Color online) (a) Adiabatic energy levels of the quantized
LZ Hamiltonian (2) without RWA. The coupling � = 0.5, frequency
ω = 10, and the parameters are in units of

√
v. The vertical arrows

show the points where the avoided crossings are located. (b) LZ
probability PLZ(t) as a function of time (in units of 1/

√
v) for various

values of the average photon number |α|2, and for the coupling � =
0.5 and frequency ω = 10. The horizontal black dashed lines show
the analytical results of Eq. (11) with the RWA which, in the middle,
approximately agree with the first-stage LZ transitions.
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FIG. 5. (Color online) LZ transition probability PLZ(t) as a
function of time (in units of 1/

√
v) and various values of the coupling

� (in units of
√

v) and frequency ω (in units of
√

v). The average
photon number |α|2 = 1. The horizontal red dash-dot lines show the
analytical results of Eq. (11) within the RWA. The vertical black
dashed lines indicate the times between the successive avoided-level
crossings, i.e., the two stages of the LZ transitions.

LZ problem, the couplings become �n = �
√

n + 1 (or �
√

n).
Thus the “independent LZ transition approximation” holds as
long as the Fock states |n〉, with n > 4ω2/�2, are not occupied,
i.e., when ω > max{√v/4, |α| �}.

The appearance of the second set of avoided-level crossings
then allows the occurrence of the second transition. Therefore,
two stages of the LZ transition are predictable and numerically
shown in Fig. 4(b). We choose ω = 10 and � = 0.5 (in units
of

√
v), and then there exist two (almost) independent LZ

transitions. The second transitions just occur in the vicinity of
the second set of avoided crossings at t = 2ω/v. The analytical
results for PLZ(∞) [in Eq. (11)] within the RWA are marked
by dashed lines. For different |α|2 cases, the first-stage LZ
probabilities nicely agree with the RWA results. However, after
the second stage, the final LZ probabilities significantly deviate
from the RWA results.

In order to reveal the richness of the dynamics without
the RWA, in Fig. 5, we have numerically calculated LZ
probabilities for |α|2 = 1 and various values of the couplings
� and frequencies ω. Obviously, once small frequencies such
as ω = 1 are chosen, the time tcross = 2ω/v is of the order τLZ,
where the two LZ transitions start to interfere with each other.
By increasing the frequency ω, there are two visible stages
of the LZ transition. The first-stage LZ probabilities do not
depend strongly on the frequency ω, as long as |α| � � ω

is satisfied. However, the second-stage LZ probability is
influenced strongly by the frequencies ω.

If all the avoided crossings are well separated, we can
approximately treat the transitions as being independent and
compute the transition probabilities as joint probabilities
[28,48,49]. For the Hamiltonian (2) without the RWA, the
final probability to find the TLS at |↑〉 from the initial state
|↑ n〉 is [49]

P↑,n→↑ = P↑,n−1P↑,n + (1 − P↑,n−1)(1 − P↑,n−2), (19)

where P↑,n = exp[−π�2(n + 1)/2v] = P n+1
↑,0 , and the ex-

panded form of the equation above still holds for the n = 0
and 1 cases. By substituting P↑,n→↑ into P LZ (∞) = 1 −∑∞

n=0 |Cn|2 P↑,n→↑, we obtain the LZ probability in the
independent-transition approximation and weak couplings:

PLZ (∞) = Kα,θ

P↑,0

[
fα,θ (P↑,0) − fα,θ

(
P 2

↑,0

)]
, (20)

where the coefficient Kα,θ = e−|α|2/(1 + cos θe−2|α|2 ) depends
on |α|2 and θ . The function fα,θ is defined by fα,θ (x) =
(1 + x) (e|α|2x + cos θe−|α|2x). When |α|2 → 0, for cos θ �=
−1, we find that PLZ (∞) tends to the standard LZ probability
1 − P↑,0, whereas, for cos θ = −1, PLZ (∞) approaches 1 −
P 3

↑,0. In the large photon number limit |α|2 → ∞, Eq. (20)
gives PLZ → 0.

By performing a numerical time integration for t ∈
[−50,50], in units of 1/

√
v, we calculate the long-time

LZ probability as a function of |α|2 for different values
of �; these results are shown in Fig. 6(a). Clearly, the
LZ probability possesses a nonmonotonic behavior. When
the coupling is sufficiently weak, such as � = 0.1, the LZ
probability increases with |α|2 monotonically in quite a long
region of |α|2. However, a stronger coupling like � = 0.5
makes the LZ probability achieve a maximum value quickly.
Unfortunately, the approximate result in Eq. (20) is not in
good agreement with the numerical results, which is unlike the
thermal state case [49]. This is because the initial photon state
is of Poissonian (sub- or super-) statistics, and the independent-
transition condition ω > max{√v/4, |α| �}, will be destroyed
by increasing |α|. Moreover, the LZ process strongly depends
on the frequencies ω even in the weak-coupling region (see
Fig. 5). Nevertheless, the approximation result of Eq. (20) still
indicates a significant fact that the long-time LZ probability no
longer increases monotonously with the photon number |α|2.

In Fig. 6(b), the dynamics of entanglement and Mandel
parameter Q can also present two transitions. From all the
numerical results shown in Figs. 4–6, we find that there are
some qualitative differences between the results with and
without the RWA. Nevertheless, under certain conditions, the
RWA results are in good agreement with the first-stage LZ
transition. Thus one can choose properly weak couplings �

and large frequencies ω to extend the time interval between
the two LZ transitions, when the RWA is valid.

For comparison, we also consider the thermal state case,
and below we calculate the LZ probability within the RWA
and without the RWA.

B. Thermal state case

When the photon field initially starts from a thermal state,
the density matrix of the total system is

ρtot (0) = |↑〉 〈↑| ⊗ 1

Z
exp(−ωa†a/T ), (21)

where the partition function Z = (1 − e−ω/T )−1 (setting
h̄,kB = 1). Within the RWA, the final LZ transition probability
becomes

PLZ (∞) = 1 − P0,LZ

1 + n̄P0,LZ
, (22)
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FIG. 6. (Color online) (a) Without the RWA, the long-time LZ
probability PLZ as a function of |α|2 for different couplings �, in
units of

√
v. The frequency ω = 10 (in units of

√
v) and the numerical

time integration is performed over [−50,50]. The blue solid triangles,
black solid circles, and red solid squares denote the numerical results
for ω = 0.1, 0.2, and 0.5, respectively. The dashed lines correspond
to the analytical results of Eq. (20), and the blue, black, and red lines
denote ω = 0.1, 0.2, and 0.5, respectively. (b) Linear entropy El(t)
and Mandel parameter Q(t) as a function of time (in units of 1/

√
v).

The average photon number is |α|2 = 1, the coupling � = 0.1, and
the frequency ω = 10, in units of

√
v.

where the average photon number n̄ = [exp(ωβ) − 1]−1 and
P0,LZ denotes the standard LZ probability: P0,LZ = 1 −
exp(−π�2/2v). When the scaled temperature T/ω → 0, we
find that PLZ (∞) tends to the standard LZ probability.

Without the RWA, the approximate final LZ transition
probability for finite temperature and weak coupling becomes
[49]

PLZ(∞) = GT

P↑,0

[
fT (P↑,0) − fT

(
P 2

↑,0

)]
, (23)

where GT = 1 − exp(−ω/T ) and the function fT (x) = [1 −
x exp(−ω/T )]−1. For the initial thermal state, the probability
p(n) of finding n photons is exponentially dependent on ω,
which is quite different from the case of the YS coherent state,
where the photon distribution is Poissonian and independent
of ω. Consequently, in Fig. 7, for an initial thermal state,
we plot the LZ probability versus time for weak coupling
�. The first-stage LZ probability is consistent with the RWA
results, and the second-stage LZ transitions also confirm
the approximate results of Eq. (23). Moreover, for different
frequencies ω, although the curves differ strongly around
t = 0, the LZ probabilities converge toward the same value,
which is significantly different from the case of the YS
coherent state, where the LZ probabilities strongly depend
on ω and do not converge to a single value (see Fig. 5).

V. CONCLUSIONS

We have investigated the LZ transition in a composite
system of a TLS coupled to a single-mode photon field. The
initial state of the field was chosen as a superposition of
coherent states. Within the RWA, we analytically obtained the
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FIG. 7. (Color online) The initial state of the photon field is now
a thermal state. Without the RWA, we plot the LZ probability PLZ(t)
as a function of time in units of 1/

√
v for various frequencies ω = 1,

10, and 20, in units of
√

v. The coupling � = 0.1 in units of
√

v,
and the scaled temperature T/ω = 1. The horizontal red dash-dot
lines mark the analytical results of Eq. (22) with the RWA, and the
horizontal black dashed line corresponds to the analytical results of
Eq. (23) without the RWA. The vertical dashed lines indicate the time
between the successive two stages of the LZ transitions.

LZ probability as a function of the average photon number and
the superposition parameter. By increasing the average photon
number and choosing proper superposition parameters, one
can enhance the LZ probability. We also found that both the
creation entanglement (between the TLS and field) and the
photon distribution change drastically when the LZ transitions
occur, which is helpful for revealing the effects of the LZ
transition on the whole quantum system.

Beyond the RWA, we found some qualitative differences
from the RWA results. The final LZ probability no longer
monotonically depends on the average photon number. In
addition, two obvious stages of the LZ transition appear in
the vicinity of the successive avoided crossings, and the RWA
results can only indicate the first-stage LZ probability. The final
LZ probability, after the second stage, significantly deviates
from the RWA results and strongly depends on the frequencies
ω, even for weak couplings �.

We found that the LZ dynamics is quite different from
the thermal state case, which is due to the Poissonian
distribution in the superposition of coherent states. Although
the RWA fails in estimating the final LZ probability, it plays
an important role in characterizing the finite-time coherent
oscillations generated by the LZ transitions. With sufficiently
weak coupling � and large frequency ω, one can extend the
time interval between the two LZ transitions when the RWA
is accurate enough. Very recently, the authors of Ref. [50]
found the absence of vacuum-induced Berry phases without
the RWA. Our results also provide examples indicating that
the RWA leads to faulty results.
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