Supplemental Material for "One photon simultaneously excites two atoms in ultrastrongly coupled light-matter"

I. Coupling ratio dependence of one-photon two-atom excitation effect

We numerically calculate the projection $P_j \equiv |\langle \Psi_j | j \rangle|^2$ of the superposition states $|\Psi_{gg1}\rangle \simeq (|\psi_3\rangle + |\psi_4\rangle)/\sqrt{2} (\simeq |gg1\rangle)$ and $|\Psi_{ee0}\rangle \simeq (|\psi_3\rangle - |\psi_4\rangle)/\sqrt{2} (\simeq |ee0\rangle)$ at the anticrossing point on the bare states $|j\rangle = \{|gg1\rangle, |ee0\rangle\}$ as a function of the coupling ratio, and the result is shown in Supplementary Fig. 1(a). As mentioned in the theoretical prediction in Ref. 1, a lower g/ω_r maximizes the projection. However, the effective coupling strength below $g/\omega_r = 0.1$ is much smaller than that at larger coupling ratios, see Supplementary Fig. 1(b). Thus, when g/ω_r is below 0.1, we cannot clearly see the antisplitting between $|gg1\rangle$ and $|ee0\rangle$ and the "one-photon-exciting-two-atoms" effect. As shown in the right panel of Supplementary Fig. 1, the effective coupling is maximum at around $g_{1,2}/\omega_r \simeq 0.7$, which is close to our system.

According to the theoretical prediction in Ref. 1, when the Hamiltonian has no direct spin-spin interaction, which

Supplementary Fig. 1. The left panel shows the maximum value of the projections $P_{gg1}(g/\omega_r)$ and $P_{ee0}(g/\omega_r)$ at the antisplitting point. The green dotted vertical line corresponds to the value that maximizes g_{30-40} . the right panel shows the effective coupling constant g_{30-40} plotted against the coupling ratio g/ω_r . The red and blue star represent $g_1/\omega_r = 0.64$ and $g_2/\omega_r = 0.67$, respectively.

is written as

$$\mathcal{H}_{\text{ideal}}/\hbar = \frac{\omega_{q}}{2} \sum_{i=1,2} \hat{\sigma}_{zi} + \omega_{r} a^{\dagger} a + g \sum_{i=1,2} (\hat{\sigma}_{zi} \cos \theta + \hat{\sigma}_{xi} \sin \theta) (\hat{a}^{\dagger} + \hat{a}), \qquad (1)$$

the effective coupling strength Ω between $|gg1\rangle$ and $|ee0\rangle$ can be approximate to

$$\Omega \simeq \frac{8}{3} \frac{g^3}{\omega_{\rm q}^2} \sin \theta \cos \theta^2 \,, \tag{2}$$

where $\omega_{\rm q}$ is the qubit frequency, and $\theta = \arctan(-\Delta/\varepsilon)$. The parameters in our system are $\theta_1 \simeq 0.09 \times 2\pi$, $\theta_2 \simeq 0.06 \times 2\pi$, $\omega_{\rm q1} \simeq 3.42$ GHz, and $\omega_{\rm q2} \simeq 2.48$ GHz. From Eq. (2), the effective coupling constant Ω obtained using the parameters in our system is expected to be more than 200 MHz. The measured effective coupling constant g_{30-40} is much suppressed. Besides, if the Hamiltonian has no direct spin-spin interaction, the projections on $|gg1\rangle$ and $|ee0\rangle$ at the anticrossing point is less than 0.8 at $g/\omega_{\rm r} = 0.25$, and when $g/\omega_{\rm r} \gg 0.25$, the "one–photon–exciting–two–atoms" effect is no longer observed.

[1] L. Garziano, V. Macri, R. Stassi, O. Di Stefano, F. Nori, and S. Savasta, Physical Review Letters 117, 043601 (2016).