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Supplementary Note 1. Growth of the epitaxial nanowires. 

In this work, all the nanowires were grown on p-type Si (111) substrates. 

The <111> and non-<111>-oriented InAs0.92Sb0.08-Al nanowires coexisted 

on the substrate surface because the thin natural oxide layer on the Si 

substrates cannot be removed completely before the nanowire growth. 

According to detailed transmission electron microscope (TEM) 

observations, we find that continuous half Al shells can be successfully 

grown on the facets of InAs0.92Sb0.08 nanowires with non-<111> growth 

directions, while the Al shells are discontinuous and look like ‘pearls on a 

string’ on the side walls of the <111> oriented nanowires. Particularly, 

narrow Al gaps can form naturally in these non-<111> InAs0.92Sb0.08-Al 

nanowires due to shadowing between the dense nanowires. Supplementary 

Figure 1 shows a high-angle annular dark-field scanning transmission 

electron microscope (HAADF-STEM), energy dispersive spectrum (EDS) 

and high-resolution TEM data of a typical shadow InAs0.92Sb0.08-Al 

nanowire. As shown in Supplementary Figure 1a, a half Al shell with a 

narrow Al gap can be clearly observed on the facet of the InAs0.92Sb0.08 

nanowire. The false-color EDS elemental maps of In (Supplementary 

Figure 1b), As (Supplementary Figure 1c), Sb (Supplementary Figure 1d) 

and Al (Supplementary Figure 1e) of the InAs0.92Sb0.08-Al nanowire further 

confirm that a narrow Al gap indeed formed in the continuous Al shell. 

Supplementary Figures 1f and 1g are high-resolution TEM images of the 

nanowire taken from the InAs0.92Sb0.08 region and InAs0.92Sb0.08-Al 

interface area, respectively. The InAs0.92Sb0.08 nanowire has a pure zinc-

blende crystal structure due to its non-<111> growth direction, although 

the Sb content is low, which is consistent with our previous work1. As 

shown in Supplementary Figure 1g, an abrupt interface between the Al 

shell and the InAs0.92Sb0.08 nanowire can be observed. 
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Supplementary Figure 1. Chemical composition and crystal structure of the 

InAs0.92Sb0.08-Al nanowires. a, HAADF-STEM image of an InAs0.92Sb0.08-Al 

nanowire. b-e, False-color EDS elemental maps of In (yellow), As (green), Sb (purple), 

and Al (orange) of the InAs0.92Sb0.08-Al nanowire, respectively. f, High-resolution TEM 

image of the InAs0.92Sb0.08 nanowire. The inset of f is its corresponding fast Fourier 

transform. g, High-resolution TEM image of the InAs0.92Sb0.08 nanowire taken from the 

InAs0.92Sb0.08-Al interface area. The blue and red rectangles in a highlight the regions 

where high-resolution TEM images were recorded. 
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Supplementary Note 2. Measurement setup. 

 
Supplementary Figure 2. The measurement setup. 

Supplementary Figure 2 shows the transport measurement setup. A small 

ac voltage V-ac and a dc voltage V-dc were applied through a voltage 

divider, after which the actual Vac and Vb were subjected onto the device. 

The ac current Iac was measured. A serial resistance from the dc wires and 

the low-pass filters was subtracted during the data analysis. A gate voltage 

VG was applied through a 300 nm-thick SiO2 to control the coupling 

strength of the Josephson junction (JJ). The shaded InAsSb nanowire 

segments were brought into proximity with the epitaxial Al to possess a 

hard superconducting gap of size . A microwave antenna with an open 

end of a coaxial cable was implemented to radiate the junction with 

microwaves. For the critical current measurement and the Shapiro step 

measurement, the dc current was converted. 
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Supplementary Note 3. Theoretical treatment of the LZSM 

interference. 

In this section, we interpret the theoretical treatment of the LZSM 

interference in the small JJ studied in our work. For ease of reading, we 

illustrate the LZSM interference again in Supplementary Figures 3a-3c. As 

explained in the main text, we map the effective two states as the charges 

being on the left and the right side of the junction based on the Bardeen-

Cooper-Schrieffer singularities of the density of states (see Supplementary 

Figure 3a for the case of Cooper pairs). The coupling strength between the 

two states, |L> and |R>, is defined as /2, resulting in an anti-crossing of 

. The red and blue energy levels in Supplementary Figure 3b are thus the 

two effective levels for LZSM interference. We consider a harmonic 

microwave driving with an amplitude of VRF and a frequency of f. The 

detuning can be controlled by applying a bias voltage relative to the anti-

crossing point, V0. As displayed in Supplementary Figures 3b and 3c, a 

LZSM transition takes place at time t1 and (after accumulating a phase 

difference of ) a subsequent LZSM transition and LZSM interference 

occur at time t2, when the system is driven back to the anti-crossing point. 
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Supplementary Figure 3. LZSM interference and its Fourier transform. a, 

Illustration of the two effective states in a small JJ. b, c, Schematics of the two-level 

system and the microwave driven LZSM interference. d, e, Calculated interference 

fringes. A harmonic driving signal (inset in e) with a frequency f = 10 GHz, and a 

decoherence rate Γ2 = 1/(4) ( = 2f) were used. f, The two-dimensional Fourier 

transform (2DFT) of e. The colored dots stand for the corresponding contributions from 

the lines in e. 

 

The extraction of the coherence time in Fourier space for a driven qubit has 

been theoretically studied by Rudner et al2. Here we follow a similar 

procedure and theoretically analyze the LZSM interference for various 

charges in our small JJs. When a harmonic drive 𝑉 ୊ cos(𝜔𝑡) ( = 2f) 

is applied, the Hamiltonian of the system can be expressed as: 

𝐻 = −
ℏ

2
൬

𝛽(𝑡) 𝛼

𝛼 −𝛽(𝑡)
൰ ,      𝛽(𝑡) = 𝜀 − 𝐴cos(𝜔𝑡), (1) 

where 𝜀 = 𝑚𝑒𝑉଴, 𝐴 = 𝑚𝑒𝑉 ୊, m is the number of charges, and e is the 
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elementary charge. When 𝑉 ୊ > 𝑉଴ , the system will be driven to pass 

through the anti-crossing twice at 𝑡ଵ and 𝑡ଶ in one period, respectively. 

The times 𝑡ଵ,ଶ satisfy 

𝐴 cos(𝜔𝑡ଵ) = 𝐴 cos(𝜔𝑡ଶ) = 𝜀, ቀ−1 <
𝜀

𝐴
< 1ቁ . (2) 

The phase difference (gray shaded area in Supplementary Figure 3c) 

accumulated between the two LZ transitions can be expressed as: 

𝜃(𝐴, 𝜀) = න 𝛽(𝑡)d𝑡
௧మ

௧భ

= 𝜀(𝑡ଶ − 𝑡ଵ) − 𝐴 න cos(𝜔𝑡)d𝑡.
௧మ

௧భ

(3) 

Let us define a wave vector in the time domain 

(𝑘஺, 𝑘ఌ) = ±൫𝛻஺𝜃(𝐴, 𝜀), 𝛻ఌ𝜃(𝐴, 𝜀)൯, (4)   

where ± accounts for the contributions of e±୧ఏ(஺,ఌ). Considering that the 

net contributions of 𝛻஺𝑡ଵ,ଶ and 𝛻ఌ𝑡ଵ,ଶ vanish due to Eq. (2),  

(𝑘஺, 𝑘ఌ) = ± ቆ− න cos(𝜔𝑡) d𝑡
௧మ

௧భ

, 𝑡ଶ − 𝑡ଵቇ . (5) 

Obviously, 𝑘஺  and 𝑘ఌ  correspond to the phase gain and the time 

separation, respectively. The solution of Eq. (2), 𝑡ଶ = 𝑡ଵ= 
ଵ

ఠ
arccos(𝜀/

𝐴), gives ∫ cos(𝜔𝑡)d𝑡
௧మ

௧భ
= (2/𝜔)ඥ1 − 𝜀ଶ 𝐴ଶ⁄ . Therefore, Eq. (5) defines 

a curve that is dependent only on the parameter = 𝜀/𝐴. Substituting these 

results into Eq. (5), we obtain that the parametric curve is a sine function 

𝜔
𝑘஺

2
= ±sin ൬

𝜔𝑘ఌ

2
൰ . (6) 

As explained later, this function corresponds to the lemon-shaped ovals 

with a singular boundary in the 2DFT (𝑘஺, 𝑘ఌ) space of the interference 

fringes (see also Supplementary Figure 3f). 

To account for decoherence, a classical noise can be added to the 

microwave drive, 𝛽෨(𝑡) = 𝛽(𝑡) + 𝛿𝜀(𝑡). The rate of transitions between |L> 

and |R> can be easily deduced in a rotating frame, where we have 
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𝐻 = −
ℏ

2
൬

0 𝛼(𝑡)

𝛼∗(𝑡) 0
൰ , 𝛼(𝑡) = 𝛼eି୧ఏ෩(௧), (7) 

with 𝜃෨(𝑡) = ∫ 𝛽෨(𝑡ᇱ)d𝑡ᇱ௧

଴
. The rate of transitions between |L> and |R> is  

𝑊 = lim
ఋ௧௰మ≫ଵ

 
𝛼ଶ

4𝛿𝑡
ඵ 〈eି୧ఏ෩(௧భ)e୧ఏ෩(௧మ)〉ఋఌ

௧ାఋ௧

௧

d𝑡ଵd𝑡ଶ, (8) 

where 𝛤ଶ  = 
ଵ

 మ்
  is the decoherence rate. A white noise model can be 

applied to average over 𝛿𝜀(𝑡): 〈e୧ఋ (௧మ)ି୧ఋఏ(௧భ)〉ఋఌ = eି௰మ|௧భି௧మ| , where 

𝛿𝜃(𝑡) = ∫ 𝛿𝜀(𝑡ᇱ)d𝑡ᇱ௧

଴
. 

The Fourier series expansion, e୧ఏ(௧) = e୧ఌ௧ ∑  𝐽௡ ቀ
஺

ఠ
ቁ eି୧௡ఠ௧

௡  , where 𝐽௡ 

is a Bessel function of the first kind, can be used to obtain 

𝑊(𝜀, 𝐴) =
𝛼ଶ

2
ා

𝛤ଶ  𝐽௡
ଶ ቀ

𝐴
ℏ𝜔

ቁ

(𝜀 − 𝑛ℏ𝜔)ଶ + ℏଶ𝛤ଶ
ଶ .

ାஶ

௡ୀିஶ

(9) 

It is this equation, Eq. (9), that relates to the conductance of the JJ, a 

measurable parameter in the experiment. It describes the interference 

fringes as a function of the microwave drive 𝐴 = 𝑚𝑒𝑉 ୊ and the detuning 

(voltage bias) 𝜀 = 𝑚𝑒𝑉଴  relative to the anti-crossing point. 

Supplementary Figure 3e presents one example calculated directly from Eq. 

(9), using a frequency f = 10 GHz and a decoherence rate Γ2 = 1/(4). Note 

that the data has been scaled to a maximum of 1, and the x-axis is the 

microwave amplitude VRF (A = meVRF), while in our measured data it is the 

power P. In addition, along the y-axis, the spacing Vb of the satellite peaks 

satisfies ℎ f = meVb [or δVb = (hf/e)(1/m)], which enables a direct 
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extraction of the number of charges m for the various tunneling processes 

in our experiment. 

The Fourier transform,  𝑊୊୘(𝑘஺, 𝑘ఌ) = ∫ eି୧௞ಲ஺ି୧௞ഄఌ𝑊(𝐴, 𝜀)
ାஶ

ିஶ
d𝐴d𝜀 , 

maps 𝑊(𝜀, 𝐴)  from the energy space to the Fourier space in the time 

domain2, 

𝑊୊୘(𝑘஺, 𝑘ఌ) =
𝛼ଶ𝜔 eି௰మ|௞ഄ|

2ට
4

𝜔ଶ  sinଶ ቀ
1
2

𝜔𝑘ఌቁ − 𝑘஺
ଶ

. (10)
 

We can see that 𝑊୊୘(𝑘஺, 𝑘ఌ) is concentrated inside the region bounded by 

the sinusoids 
ఠ

ଶ
𝑘஺ = ±sin ቀ

ଵ

ଶ
𝜔𝑘ఌቁ , which is the Eq. (6) shown above. 

Therefore, lemon-shaped ovals following such singular boundary are 

expected in Fourier space. Crucially, an exponential decay on k as eି௰మ|௞ഄ| 

can help to directly extract the coherence time T2, which demonstrates that 

this is a powerful technique. 

Supplementary Figure 3f shows the 2DFT results of Supplementary Figure 

3e. Note that the integral to obtain 𝑊୊୘ is from −∞ to +∞; therefore, the 

fringes shown in Supplementary Figure 3e need to be symmetrized to the 

four quadrants before performing the 2DFT. Lemon-shaped ovals are 

consistent with Eq. (10) and also with our experimental results. In addition, 

for a given , there is a ray 𝜀 = 𝐴 in energy space (𝐴, 𝜀) and a set of 

periodic points in the temporal space. As shown in Supplementary Figures 

3e and 3f, the colored rays of the interference fringes contribute to the 

colored dots in the Fourier space correspondingly. For example, the red ray 

stands for 𝜀 =
ଵ

ଶ
𝐴, and accordingly,  

(𝑘஺, 𝑘ఌ) = ± ቆ− ቀ
ଶ

ఠ
ቁ ට1 −

ఌమ

஺మ
 ,   

ଶ

ఠ
arccos(

ఌ

஺
)ቇ = ± ቀ−

√ଷ

ଶగ௙
,

ଵ

ଷ௙
ቁ. 
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Next, we show that these results can be directly compared with a recent 

theoretical derivation of the conductance considering sub-gap Yu-Shiba-

Rusinov (YSR or Andreev) states, and we can reach a consistent conclusion. 

In Ref. 3, the authors adopted the photon-assisted picture to calculate the 

tunneling conductance to sub-gap states in a superconductor and obtained 

the following results. 

 (1) They obtained the conductance between a normal probe and the YSR 

states at zero temperature, 

𝑑𝐼

𝑑𝑉
=

2𝑒ଶ

ℎ
෍

𝛾 𝛾୦

(𝑒𝑉 ± 𝜖଴)ଶ + (𝛾 + 𝛾୦)ଶ 4⁄
±

,              (11) 

where e and h are the tunneling rates of electrons and holes, respectively, 

and 𝜖଴  is the energy of the sub-gap states. We can see that (without 

microwave radiation) the conductance peak shows a Lorentzian shape, 

where the tunneling rates (coupling strength) function as the broadening 

term. Note that the appearance of two tunneling rates, e and h, is a specific 

requirement of YSR states, and /2 is the coupling strength in our model. 

(2) The conductance dI/dV was further obtained under microwave radiation, 

𝑑𝐼

𝑑𝑉
=

2𝑒ଶ

ℎ
෍ ෍

𝐽௡
ଶ(𝑒𝑉ୌ୊/ℏ)𝛾 𝛾୦

(𝑒𝑉 + 𝑛ℏ ± 𝜖଴)ଶ + (𝛾 + 𝛾୦)ଶ 4⁄
±௡

.             (12) 

We found that Eq. (12) in this theoretical work is fundamentally the same 

as the result of Eq. (9) in our work. For example, if we consider the 

transport of single charges at Vb = 2/e, the number of electrons transferred 

from the left side to the right side of the Josephson junction per unit time 

is W, i.e., the conductance is proportional to W. 
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The difference between Eq. (9) and Eq. (12) obtained in Ref. 3 is that in 

the denominator the tunneling rate (e and h; coupling strength) is the 

broadening term in the latter; but in our case it is the decoherence rate 𝛤ଶ. 

In the photon-assisted picture, the main broadening factor is the tunnel 

coupling. However, in the LZSM model, it includes various sources, such 

as tunnel coupling, thermal broadening, noise, etc. Therefore, we can call 

it a full-counting model which treats all the broadening/decoherence 

factors in the Lorentzian shape. In this case, what we care about is the shape 

(broadening) of the conductance peak which tells us the 

coherence/decoherence information, but not the absolute peak height (the 

background conductance may be involved in a realistic measurement). The 

Bessel function dependence of the evolution of the conductance peaks 

under microwave driving is clearly present in both pictures. 

 

Supplementary Note 4. Choice of the microwave frequencies. 

In order to choose proper frequencies of the microwave, we measured the 

dI/dV dependence on both the microwave frequency f and power P at a 

back-gate voltage VG = 30 V and a bias voltage near the gap edge, as 

shown in Supplementary Figure 4. There is a clear frequency-dependent 

effective attenuation of the microwave, presumably due to the coaxial lines 

and the details of the coupling between the microwave and the device. 

Nevertheless, in order to get rid of the heat load on the dilution refrigerator, 

we selected frequencies corresponding to a local minimum attenuation, as 

marked by the green arrows for 7.665 GHz and 11.755 GHz, respectively.
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Supplementary Figure 4. Choice of the microwave frequencies. The dI/dV was 

measured as a function of the microwave frequency f and power P using a back-gate 

voltage VG = 30 V and a bias voltage near the gap edge. 

 

Supplementary Note 5. Data analysis  

In this section, we explain the data analysis process of the interference 

fringes. As an example, here we study the data shown in Fig. 2c in the main 

text for VG = 31 V and f = 11.755 GHz. 

Step 1: determine the attenuation of the microwave. 

As shown in Supplementary Note 4, there is a frequency-dependent 

attenuation of the microwave. Therefore, we need to determine the actual 

microwave power experienced by the junction for each frequency used in 

the experiment. For instance, by applying Eq. (9) we calculated the 

interference fringes for single charges at VG = 31 V and f = 11.755 GHz, 

corresponding to Fig. 2c in the main text, as shown in Supplementary 

Figure 5a. The coherence time T2 was assumed to be 0.1 ns, and the peak 

conductance was set to be the same as the measurement. The abscissa 

(horizontal axis) was converted between P and VRF using the relation: 
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𝑉 ୊ = ඨ50 ∗ 10
௉

ଵ଴

1000
,                                      (S13) 

where P is in dBm and VRF in volts, and 50  is the impedance. As plotted 

in Supplementary Figure 5b, the attenuation at this frequency can be 

achieved by a comparison between the calculated curve (green) and the 

measured curve (black). The two arrows mark the positions of the first 

peaks, and the attenuation was 61.6 + 16.1 =  45.5 (dB). Note that the 

coaxial line passes through four attenuators (1 dB each), from the room 

temperature generator down to the mixing chamber. The 1 dB attenuator 

on each plate of the dilution refrigerator is used as a thermal sink, so that 

the coaxial lines can be cooled down well. 

 

Supplementary Figure 5. Determination of the attenuation. a, Calculated 

interference fringes corresponding to Fig. 2c in the main text, without an attenuation of 

the microwave. b, Comparison between the experimental data (black curve) taken from 

Fig. 2c in the main text and the calculated (green) curve taken from a, as indicated by 

the green dashed line. An attenuation of 45.5 dB can be extracted by the power 

difference between the first peaks, as marked by the green and black arrows. 

Step 2: select the proper data set and convert to the four quadrants. 
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Supplementary Figure 6. Selecting the proper data set and converting to the four 

quadrants. a, The same data as in Fig. 2c in the main text, but with the effective 

microwave power Peff = P  45.5 (dBm). The green dashed rectangle displays the data 

set chosen to perform the 2DFT. The coordinates of this data set were converted to the 

microwave amplitude VRF and relative bias voltage Vb-rel by setting the n = 0 interference 

fringes to Vb-rel = 0 mV, as indicated in b by the green dashed rectangle. The data set 

was further symmetrized to the four quadrants to carry out the 2DFT. 

As shown by the green dashed rectangle in Supplementary Figure 6a, a 

clear part of the interference fringes was selected to carry out the 2DFT. 

The coordinates were converted and further symmetrized to the four 

quadrants, as displayed in Supplementary Figure 6b. 

Step 3: perform the 2DFT. 

To perform the 2DFT, according to the method explained in Supplementary 

Note 3, the coordinates of Supplementary Figure 6b were further scaled by 

𝑚𝑒 𝑉ୠି୰   and 𝑚𝑒𝑉 ୊, and the data were scaled to a maximum of 1. And 

then the 2DFT can be calculated as a function of k and kA, as shown in Fig. 

2d in the main text. Note that an interpolation of the data was applied when 

a uniform coordinate spacing was needed. 

The analysis of the other data sets of the interference fringes was performed 

following the same procedure as described above. 
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Supplementary Note 6. Effect of the magnetic field on the LZSM 

interference. 

In this section, we present the effect of magnetic field on the LZSM 

interference and the coherence time. Supplementary Figure 7 shows a 

comparison of the interference fringes and the corresponding 2DFT 

patterns for the magnetic fields B = 0 T (Supplementary Figures 7a and 7b) 

and 0.2 T (Supplementary Figures 7c and 7d; along the nanowire). We can 

see that the interference fringes became blurred at B = 0.2 T, and the 

number of observable ovals decreased. Accordingly, the calculated 

coherence time T2 dropped from ~ 0.057 ns to ~ 0.022 ns. We attribute such 

behavior to the softening of the induced superconducting gap in the InAsSb 

nanowire when a magnetic field is applied, which induces energy 

broadening and thus decoherence. 
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Supplementary Figure 7. Effect of the magnetic field on the LZSM interference. a, 

Interference fringes at VG = 30 V, B = 0 T, and f = 11.755 GHz. b, 2DFT of a. c, The 

same as a, but at B = 0.2 T. d, 2DFT of c. 

Supplementary Note 7. Correlated conductance quantization and 

critical supercurrent for the second Josephson junction (JJ2). 

Supplementary Figure 8 shows the results for JJ2 (see Fig. 1 of the main 

text). The conductance dI/dV shown in the upper panel was measured in 

the normal state at a high-bias voltage: Vb=3 mV (black) and Vb=4.5 mV 

(red). The quantized conductance plateau at 2e2/h demonstrates the single 

ballistic channel in the JJ. However, the plateau for 4e2/h can be barely 

recognized, and the conductance evolves to the plateau of 6e2/h when VG 

increases. Such transition from a single channel to three channels could be 

attributed to the rotation symmetry of the nanowire which induces nearly 

degenerate 2nd and 3rd sub-bands, as has been observed in InSb nanowires4. 
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The bottom panel shows the correlated critical supercurrent IC, where a 

plateau of ~ 15 nA was achieved for a single ballistic channel, similar to 

JJ1 shown in the main text. The inset shows the dV/dI vs I curve at VG =  

-10 V, and the arrow indicates the critical supercurrent. 

 

Supplementary Figure 8. Correlated conductance quantization and critical 

supercurrent for JJ2. 

Supplementary Note 8. LZSM interference in another typical device. 

LZSM interference can be regularly observed in naturally formed JJs. 

Supplementary Figure 9 shows the results of another typical device. An Al 

gap of ~ 50 nm was formed during the epitaxial growth of the Al shell due 

to the shadowing of the dense nanowires, as indicated by the red arrow in 

the scanning electron microscope image of the device shown in 

Supplementary Figure 9a. The side-gate voltage was set to 0 and a back-

gate voltage VG was applied to control the coupling strength. 

Supplementary Figure 9b displays the interference fringes of the Cooper 

pairs, 2-charges of the 1st-order multiple Andreev reflections, and single 
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charges, similar to the one shown in the main text. 

Supplementary Figure 9. LZSM interference in another device. a, Scanning 

electron microscope image of the device. The red arrow indicates the naturally formed 

Al gap which functions as the JJ. b, Typical interference fringes at a back-gate voltage 

VG = 3.6 V (300 nm SiO2), a zero side-gate voltage, and f = 11.3 GHz. 
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