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A periodically driven quantum system with avoided level crossing experiences both nonadiabatic transitions
and wave-function phase changes. These result in coherent interference fringes in the system’s occupation
probabilities. For qubits, with repelling energy levels, such interference, named after Landau-Zener-Stückelberg-
Majorana, displays arc-shaped resonance lines. In the case of a multilevel system with an avoided level crossing
of the two lower levels, we demonstrate that the shape of the resonances can change from convex arcs to concave
heart-shaped and harp-shaped resonance lines. Indeed, the whole energy spectrum determines the shape of such
resonance fringes and this also provides insight into the slow-frequency system spectroscopy. As a particular
example, we consider this for valley-orbit silicon quantum dots, which are important for the emerging field of
valleytronics.
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I. INTRODUCTION

Quantum systems can be reliably prepared, controlled, and
probed. The “simplest nonsimple quantum problem” [1] is
arguably a driven two-level system (a qubit), which can be
used for quantum sensing [2] and quantum information [3].
Due to the interplay of the nonadiabatic transitions between
the energy levels and the accumulation of the wave-function
phase changes, the interference fringes provide a convenient
and powerful tool for controlling and probing both the quan-
tum system and its environment. This technique, known as
Landau-Zener-Stückelberg-Majorana (LZSM) interferometry
[4], is ubiquitously applied to two-level quantum systems.
(For several experimental realizations in both superconduct-
ing and semiconducting systems, see, e.g., Refs. [5–11].)
However, a generalization of this approach to multilevel sys-
tems remains a mostly open and topical subject, to which we
devote the present work.

In order for LZSM physics to be directly relevant, a mul-
tilevel system has to have a reasonable quasicrossing of the
lower energy levels, also known as avoided level crossing.
Usually, multilevel systems have either all levels coupled
or all well separated. The former case contains transitions
between all energy levels and is known as amplitude spec-
troscopy [12,13]. In the latter case, with a significant energy-
level separation, a slow drive would not produce nonadiabatic
transitions due to negligibly small tunneling probabilities,
described by the Landau-Zener (LZ) formula. The cure to
this could be to “dress” the system with another, resonant,
signal. Then, these conveniently prepared dressed levels could
be slowly driven and probed by means of LZSM physics.
This approach was demonstrated for superconducting qubits
[14,15]. One message we would like to convey here is that

a multilevel system should be doubly driven: by a resonant
dressing signal and a slow driving one. In different contexts,
doubly driven quantum systems were studied in Refs. [16–22],
while other examples of driven multilevel systems, where
LZSM physics is relevant, are in Refs. [10,23–32].

So our aim here is to consider how a multilevel sys-
tem can be reduced to a two-level one, being well sepa-
rated from the upper ones but bearing information about
them. Here, instead of considering a general case, we would
rather focus on an example [1]: silicon double quantum dots
(DQDs) exploiting both orbital and valley degrees of freedom,
which make them multilevel systems [33–36]. Such systems
present a unique opportunity of using the valley degree of
freedom, which is being studied in the emerging field of
valleytronics [37].

The rest of the paper is organized as follows. We will
start in Sec. II from a four-state Hamiltonian for a silicon
orbital-valley DQD, Ref. [34]. (Another example of a four-
state system is a device with two coupled qubits, studied in
Appendix A.) We will discuss how to prepare the DQD states
for low-frequency LZSM spectroscopy by dressing them with
a resonant signal, with details presented in Appendix B.
The dressing allows us to reduce the four-level system to a
two-level one. Then, in Sec. III we adopt the formulas from
Ref. [4] for this case. In Sec. IV we discuss the interference
fringes obtained. We will also analyze the shape of the res-
onant lines. For a generic dressed four-level system, these
are expected to be harp shaped, which is demonstrated here
for the parameters used in the experiments in Ref. [36]. A
particular case, with a symmetric Hamiltonian, is analyzed
in Appendix C. We conclude with a discussion that these
studies allow the means for low-frequency spectroscopy for
multilevel quantum systems.
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II. BARE AND DRESSED ENERGY LEVELS

Let us consider the four-state Hamiltonian for a silicon
orbital-valley DQD [34]:

H (t ) =

⎛⎜⎜⎜⎜⎝
ε(t )

2 + EL 0 td tv

0 ε(t )
2 −tv td

td −tv − ε(t )
2 + ER 0

tv td 0 − ε(t )
2

⎞⎟⎟⎟⎟⎠
= H0 + Vd(t ), (1)

with

Vd(t ) = 1
2Ad sin ωdtσ

(1)
z , (2)

where σ
(1)
k = σk ⊗ σ0, and the σk’s stand for the Pauli ma-

trices. The EL,R are the left and right dot valley splittings,
td and tv are the inter-dot and inter-valley tunnel couplings,
respectively. The energy bias is chosen as

ε(t ) = ε0 + A sin ωt + Ad sin ωdt ≡ ε + Ad sin ωdt,

ω � ωd, (3)

which contains both the resonant dressing drive with fre-
quency ωd and the slow spectroscopy drive ε = ε0 + A sin ωt

with frequency ω � ωd. Our approach consists of two steps.
In the first step (dressing), we will ignore the slow signal
and consider ε to be a time-independent value. We will
demonstrate how to reduce this system to a two-level one.
(For other similar cases, when a multilevel structure is reduced
to a two-level system, see Refs. [38,39].) After incorporating
this fast drive as the dressing, we will then add the slow time
dependence, contained in the variable ε.

Consider first the energy levels of our four-level system.
These are the eigenstates of the Hamiltonian H0. In the
absence of tunneling, td = tv = 0, these are given by the
diagonal matrix elements in Eq. (1). These are the four straight
intersecting lines in Fig. 1. Nonzero tunneling lifts the degen-
eracies. For calculations in this work we choose the param-
eters for a silicon orbital-valley DQD from Ref. [36]: EL =
37.5 μeV, ER = 38.3 μeV, td = 25.4 μeV, tv = 11.8 μeV.
(Another possible realization of a four-level structure, de-
scribing a two-qubit system, is given in Appendix A.) The
spectrum with these parameters is shown in Fig. 1. The chosen
parameters, which enter the Hamiltonian (1), result in the min-
imal energy difference �0 = (E1 − E0)min = 7.845 GHz · h,
and this takes place at very small offset, ε = ε∗ = −4 ×
10−3 GHz. Here h is the Planck constant. (Since we use both
energy and frequency units, we note, for convenience, that
1 μeV = 0.2418 GHz · h.) Such large splitting �0 does not
allow low-frequency spectroscopy because, according to the
adiabatic theorem and the LZ formula, there would be no
excitation for low-frequency driving. So, we will first “dress”
the “bare” spectrum in Fig. 1.

Accordingly, consider now the resonant driving with
ε(t ) = ε + Ad sin ωdt and h̄ωd ∼ �0. The detailed procedure
is described in Appendix B. This results in the shift of the
energy levels and the separation of the lower two levels from
the upper ones. These become Ẽ0,1 = E0,1 ± h̄ωd/2. What
matters for the low-frequency evolution then is the distance
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FIG. 1. Four-level system: Energy levels of an orbital-valley
DQD. The four energy levels in the absence of tunneling, td = tv =
0, shown by the dashed lines, experience four crossings. In the
general case, shown by the solid lines, the degeneracy is lifted, and
the four energy levels Ei are plotted for the parameters described in
the text.

between these meaningful energy levels,

�Ẽ = �E − h̄ωd, (4)

where �Ẽ = Ẽ1 − Ẽ0 and �E = E1 − E0. Thus, we have
mapped a multilevel system into a two-level dressed
one.

To better compare with qubits, it is instructive to plot
the equivalent (mirror-reflected) energy levels, ±�Ẽ/2, with
the same distance �Ẽ, instead of Ẽ0,1. The driving fre-
quency should be taken close to �0, and then with ωd/2π =
7.796 GHz of [36], we have the dressed avoided-level distance
� = �0 − h̄ωd = 0.049 GHz · h. The dressed energy levels,
featuring this avoided level crossing, are shown in Fig. 2(a) as
a function of the energy bias ε.

Close to the avoided-level crossing, we can expand (�E)2

in series in ε and obtain �Ẽ =
√

�2
0 + 0.16ε2 − h̄ωd. The

respective curves are shown by the dashed lines in Fig. 2(a).
This formula is useful for the description of the dynamics with
ε < EL,R.

Hereafter, the slow signal, driving the qubit, will be taken
with ω ∼ �, so that we have a nontrivial LZ probability,
PLZ ∼ 1. Then ε = ε0 + A sin ωt describes the low-frequency
parametric time dependence of the energy levels. Imagine
that we start at ε = ε0 with, say, ε0 = 50 μeV in Fig. 2(a).
Then the dynamics corresponds to first increasing the bias ε

up to ε = ε0 + A, and then decreasing it to ε = ε0 − A. Re-
spectively, the energy levels ± 1

2�Ẽ(ε) will change, as shown
in Fig. 2(b). Each time the system passes through ε = 0 in
Fig. 2(a), we have the avoided-level crossing in Fig. 2(b). Such
dynamics is described by the so-called adiabatic-impulse
model, as detailed in Refs. [4,40] and references therein.
This model combines both intuitive clarity and quantitative
accuracy. So we devote the next section to this.
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FIG. 2. Dressed energy levels. In (a) the two lowest dressed states are shown by plotting ±�Ẽ/2 vs ε, where �Ẽ = �E − h̄ωd and
�E = E1 − E0. The distance between the dressed energy levels shows the avoided-level crossing � at around ε = 0 and tends to EL,R − h̄ωd

to the left and right, respectively. The dashed parabolas correspond to the qubit-like spectrum at small ε. In (b) the same dressed energy levels
are shown versus time for ε = ε0 + A sin ωt , with ε0 = 50μeV and A = 100μeV. Several avoided-level crossings take place at t = t1, t2, and
t2 + 2π/ω. The probabilistic LZ transitions are shown in these points by thick vertical green dashes. Between these avoided-level crossings,
the wave-function phases ζ1,2 are accumulated. These phases, equal to the areas under the energy-level curves, result in observable interference
fringes.

III. LZSM FOR A MULTILEVEL SYSTEM

We now would like to calculate the occupation probabili-
ties for the two-level system with the energy levels ± 1

2�Ẽ(ε),
shown in Fig. 2. The adiabatic-impulse model considers the
dynamics to be adiabatic, when far from the avoided-level
crossings, with nonadiabatic transitions at the points of mini-
mal energy-level distance. The former stages are described by
the accumulation of the wave-function phases, while the latter
are characterized by the LZ transition formula. With this we
can generalize the formulas for the slow-passage case from
Refs. [4,41], giving the upper-level time-averaged occupation
probability

P+ = PLZ(1 + cos ζ+ cos ζ−)

sin2 ζ+ + 2PLZ(1 + cos ζ+ cos ζ−)
, (5)

where

ζ+ = ζ1 + ζ2 + ϕ, ζ− = ζ1 − ζ2, (6)

ζ1 = 1

2h̄

∫ t2

t1

�Ẽ(t )dt, ζ2 = 1

2h̄

∫ t1+2π/ω

t2

�Ẽ(t ) dt,

�Ẽ = E1 − E0 − h̄ωd, ε = ε0 + A sin ωt,

ωt1 = asin
(
−ε0

A

)
, ωt2 = π − ωt1,

ϕ = −π

2
+ 2δ(ln δ − 1) + 2 arg �(1 − iδ),

δ = �2

4v
, v = Ah̄ω

√
1 −

(
ε0

A

)2

.

And the probability of the nonadiabatic transition to the
upper adiabatic level during the avoided-level passage is given
by the Landau-Zener formula PLZ = exp (−2πδ). Here �

denotes the gamma function. Note that for sufficiently small
frequency (δ � 1) one could assume ϕ ≈ −π , though in the
equation above we keep the complete form of the phase, for
the sake of generality.

Formula (5) defines the lines (arcs) along which the reso-
nances are situated:

ζ+ = kπ. (7)

Under this condition, the upper-level occupation probability
becomes the highest possible, P+ = 1/2. The width of the
resonance lines is defined by the numerator in Eq. (5), which
tends to zero when

ζ1 = π

2
+ lπ and ζ2 = π

2
+ mπ, (8)

where l and m are integers. Note that these intersect at
ζ1 + ζ2 = (l + m + 1)π ≡ kπ , which means that the nodes
are situated on the resonance lines, defined by Eq. (7). These
are plotted in Fig. 3 for ω/2π = 50 MHz. The resonance line
with k = 20 is shown bolder in Fig. 3 to show that these are
the harp-shaped resonance lines with convex shapes. Such
harp-shaped resonances were reported recently in Ref. [36].

IV. DISCUSSION: RELEVANCE FOR LOW-FREQUENCY
SPECTROSCOPY

The positions of the resonances in Fig. 3 bear information
about the initial four-state Hamiltonian. Thus, these observa-
tions could be used for defining the system parameters, which
effectively correspond to the spectroscopy of a multilevel
system. Let us now summarize several distinctive features,
which could be useful for this type of spectroscopy.

(i) The resonances are limited by the inclined lines in the
region A > |ε0 − ε∗|. This is because otherwise the avoided-
level crossing is not reached and there is no transition from
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FIG. 3. Harp-shaped resonance fringes and nodes. The position
of the resonances is shown in red for different values of k, Eq. (7).
These curves are equidistant arcs for small k’s and harp-shaped
lines with increasing distance for higher k’s. When both phases
ζ1,2/π are equal to half-integer numbers [Eq. (8)], the resonances
are suppressed, and their positions are given by the intersection of
the green and blue lines.

the ground state to the excited one. The inclination of these
lines could be useful for power calibration.

(ii) For small driving amplitudes, A < EL,R, we have a
qubit-like spectrum, and accordingly, the arcs are equidistant
and symmetric.

(iii) As the the driving amplitude increases, starting at A ∼
EL,R, the resonances become asymmetric.
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FIG. 4. Power dependence of the resonances at zero offset, ε0 =
0. The solid black curve is given by ζ+. The position of the reso-
nances is defined by the equation ζ+ = kπ and this corresponds to
integer parts of ζ+/π , which are marked as horizontal grid lines. At
low bias, i.e., for k � 15, these can be fit by the constant-slope green
dashed line. This means that the resonance arcs are approximately
equidistant. At higher driving power A, the inter-resonance distance
monotonically increases. The orange diamonds correspond to the
resonances from the experimental data in Fig. 2(a) of Ref. [36].

(iv) As the driving amplitude increases further, the shape
of the resonance lines changes from convex to concave, pro-
ducing harp-shaped curves. This is because the energy-level
distance changes from increasing to becoming constant, see
Fig. 2. In the symmetric case, with EL = ER, the curves are
symmetric, and this case is analyzed in Appendix C.

(v) At large driving power, the resonance lines are increas-
ingly separated. This can be conveniently studied along the
line ε0 = 0 in Fig. 3. This is done in Fig. 4. There, one can see
the equidistant resonance position at smaller driving power A,
as described by the inclined dashed line, and the increasing
inter-resonance separation at larger A.

Our calculations are related to the experimental parameters
of Ref. [36]. In particular, note the good agreement shown in
Fig. 4. Moreover, our general approach can be applied to any-
multilevel system. Our general formulation allows the flexible
application to other systems, easy numerical calculations, as
well as analytical analysis in various limiting cases. These
are not possible by a direct numerical solution, without our
more-analytical approach.

V. CONCLUSION

We have demonstrated how a multilevel system could be
reduced to a two-level one by applying a resonant dressing
signal. The obtained two-level system is remarkably distinct
from a qubit because at larger bias the energy levels become
equally separated, and not repelling. This distinction results in
that the resonance fringes follow harp-shaped lines. Since the
dressed two levels bear information about the initial multistate
system, the unusual and versatile properties of such inter-
ferometric features could be adopted for multilevel system
spectroscopy.
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APPENDIX A: TWO-QUBIT FOUR-LEVEL SYSTEM

While multilevel quantum systems could be found in
different contexts, we would like to present one additional
example: a system of two coupled qubits. Let us now consider
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the Hamiltonian [42–44]

H = −1

2

∑
i=1,2

(
�iσ

(i)
x + εiσ

(i)
z

) + J

2
σ (1)

z σ (2)
z = −1

2

⎛⎜⎜⎜⎝
ε1+ε2−J �2 �1 0

�2 ε1−ε2+J 0 �1

�1 0 −ε1+ε2+J �2

0 �1 �2 −ε1−ε2−J

⎞⎟⎟⎟⎠, (A1)

where σ
(1)
k = σk ⊗ σ0 and σ

(2)
k = σ0 ⊗ σk . Let us choose ε2 to

be a constant and ε1 to have an alternating value: ε2 = J (just
for simplification) and

ε1 ≡ ε = ε0 + A sin ωt. (A2)

This would make the Hamiltonian somewhat resembling the
one in Eq. (1). Then the Hamiltonian becomes

H = −1

2

⎛⎜⎜⎜⎝
ε �2 �1 0

�2 ε 0 �1

�1 0 −ε + 2J �2

0 �1 �2 −ε − 2J

⎞⎟⎟⎟⎠
= H0 + Vd(t ) (A3)

with

Vd(t ) = − 1
2A sin ωtσ (1)

z . (A4)

In Fig. 5 we choose �1/h = 0.1 GHz, �2/h = 1 GHz, and
J/h = 0.2 GHz. Such parameters give the minimal splitting
�/h = 73 MHz and the shift ε∗/h = 93 MHz. The lowest
eigenvalues of H0, denoted by E0 and E1, are shown as the
red and blue curves in Fig. 5.

Note that for a two-qubit four-level system, the energy
levels are similar to those presented in Fig. 2(a), in that they
have small avoided-level crossing, an increasing energy-level
distance for small bias, and a constant distance for higher
bias. An important distinction is that these bare levels are

-2 -1 0 1 2
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ΔE
(G

H
z
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(GHz h)
FIG. 5. Energy levels of a two-qubit system. These are shown as

an example of the situation where the lower two energy levels have a
small avoided-level crossing � and the distance between the energy
levels increases at around this point and tends to constants at high
values of the bias ε.

not separated from the upper ones. Transitions to the upper
states would produce additional interference fringes like in
Refs. [12,13].

APPENDIX B: DRESSING

In this Appendix we consider how the resonantly driven
four-state DQD can be reduced to a dressed two-level system.
We start from the time-dependent Hamiltonian, Eq. (1), with
ε(t ) = ε + Ad sin ωdt , with ε assumed here being time inde-
pendent, H0 corresponds to ε(t ) → ε, and

Vd(t ) = 1
2Ad cos(ωdt )σ (1)

z , (B1)

with σ (1)
z = σz ⊗ σ0. The stationary Hamiltonian H0 is diag-

onalized by the matrix S (which can be found numerically):

S†H0S = H ′
0 = diag(E0, E1, E2, E3). (B2)

Then, the same procedure should be done with Vd(t ); we
denote the matrix V = S†σ (1)

z S. And then, similarly to how
this is done for qubits, e.g., in Ref. [45], we make the uni-
tary transformation U = exp (iωdtσ

(2)
z /2) and omit the fast-

rotating terms, which means the rotating-wave approximation.
We obtain the Hamiltonian of the dressed DQD:

H̃ =

⎛⎜⎜⎜⎝
E0 + h̄ωd

2 0

E1 − h̄ωd
2

E2 + h̄ωd
2

0 E3 − h̄ωd
2

⎞⎟⎟⎟⎠

+ Ad

4

⎛⎜⎜⎝
0 0 V02 V03

0 0 V12 V13

V20 V21 0 0

V30 V31 0 0

⎞⎟⎟⎠. (B3)

Here Vij are the elements of the matrix V .
If we neglect the driving amplitude, Ad → 0, the dressed

energy levels are given by the shifted bare ones: Ẽi = Ei ±
h̄ωd. These are plotted in Fig. 6(a). The effect of the driving,
for nonzero Ad, is shown in Fig. 6(b) for the lowest two levels
and Ad/� = 2.

Figure 6(a) demonstrates that the lowest two dressed states
are well isolated from the upper ones. This allows us to limit
the description of our system to two levels only,

Ẽ0,1 = E0,1 ± h̄ωd

2
. (B4)

The distance between these levels is

�Ẽ = �E − h̄ωd, (B5)

where �Ẽ = Ẽ1 − Ẽ0 and �E = E1 − E0.
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FIG. 6. Energy levels of the dressed DQD. (a) At low driving

power, Ad → 0, these are defined by Ei ± h̄ωd/2, see Eq. (B3).
(b) Close-up of the lowest two dressed energy levels. The solid
lines are the same as in (a), for low driving power. This displays
the minimal energy-level distance at around ε0 = 0 given by � =
(E1 − E0)min − h̄ωd. The dashed lines show how the driving changes
the dressed energy levels; these are plotted for Ad/� = 2.

APPENDIX C: HEART-SHAPED (CONCAVE) RESONANCE
FRINGES

Consider a symmetric DQD, being the same orbital-valley
one described by Eq. (1), with only one distinction that now
we assume

EL = ER. (C1)

With this simplification, we can obtain expressions for the
four energy levels

E0,1,2,3 = ER

2
±

⎧⎨⎩
⎡⎣ER

2
±

√(
ε

2

)2

+ t2
d

⎤⎦2

+ t2
v

⎫⎬⎭
1/2

. (C2)

By replacing the first sign ± for −, we have expressions
for the lowest two levels, E0,1. The difference between these
energy levels at ε = 0 is the minimal splitting:

�0 =
√[

ER

2
+ td

]2

+ t2
v −

√[
ER

2
− td

]2

+ t2
v . (C3)

Given this, for small ε we can expand �E2 = (E1 − E0)2 into
series and obtain the spectrum

E1 − E0 ≈
√

�2
0 + 0.16ε2. (C4)

Note that this is similar to a qubit spectrum
√

�2
0 + ε2, but

differs by a numerical factor. In Fig. 2(a) we can see that the
qubit-like spectrum, Eq. (C4), is sufficient for describing the
dressed energy levels at small values of the bias.

Symmetric heart-shaped resonances are shown in Fig. 7.
Note that with increasing the driving amplitude, the resonance
lines change from convex to concave shapes.

For the asymmetric case, with EL �= ER, we can generalize
Eq. (C2) assuming

E0/1 = θ (ε)

⎧⎪⎨⎪⎩ER

2
−

⎛⎝⎡⎣ER

2
±

√(
ε

2

)2

+ t2
d

⎤⎦2

+ t2
v

⎞⎠1/2⎫⎪⎬⎪⎭
+ θ (−ε)

⎧⎪⎨⎪⎩EL

2
−

⎛⎝⎡⎣EL

2
±

√(
ε

2

)2

+t2
d

⎤⎦2

+t2
v

⎞⎠1/2⎫⎪⎬⎪⎭.

(C5)

For large values of the bias, ε → ∞, Eq. (C5) gives

E1 − E0 ≈ θ (ε)ER − θ (−ε)EL, (C6)

which correctly describes the spectrum, demonstrated in
Fig. 2(a). Equation (C5) can be useful for analytical
studies.
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FIG. 7. Resonances for a symmetric DQD. These are calculated
analogously to the resonances shown in Fig. 3 with the only dif-
ference that EL = ER = 38.3 μeV. Resonances with k from 4 to
22 are shown. We make bolder the resonance line with k = 20 to
demonstrate that these are heart-shaped resonance lines with the
convex shape at ε0 = 0.

195434-6



LOW-FREQUENCY SPECTROSCOPY FOR QUANTUM … PHYSICAL REVIEW B 98, 195434 (2018)

[1] M. Berry, Two-state quantum asymptotics, Ann. N.Y. Acad.
Sci. 755, 303 (1995).

[2] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing,
Rev. Mod. Phys. 89, 035002 (2017).

[3] I. Buluta, S. Ashhab, and F. Nori, Natural and artificial atoms
for quantum computation, Rep. Prog. Phys. 74, 104401 (2011).

[4] S. N. Shevchenko, S. Ashhab, and F. Nori, Landau-Zener-
Stückelberg interferometry, Phys. Rep. 492, 1 (2010).

[5] W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov,
and T. P. Orlando, Mach-Zehnder interferometry in a strongly
driven superconducting qubit, Science 310, 1653 (2005).

[6] M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin, and P.
Hakonen, Continuous-Time Monitoring of Landau-Zener In-
terference in a Cooper-Pair Box, Phys. Rev. Lett. 96, 187002
(2006).

[7] C. M. Wilson, T. Duty, F. Persson, M. Sandberg, G. Johansson,
and P. Delsing, Coherence Times of Dressed States of a Super-
conducting Qubit Under Extreme Driving, Phys. Rev. Lett. 98,
257003 (2007).

[8] A. Izmalkov, S. H. W. van der Ploeg, S. N. Shevchenko, M.
Grajcar, E. Il’ichev, U. Hübner, A. N. Omelyanchouk, and
H.-G. Meyer, Consistency of Ground State and Spectroscopic
Measurements on Flux Qubits, Phys. Rev. Lett. 101, 017003
(2008).

[9] G. Sun, X. Wen, Y. Wang, S. Cong, J. Chen, L. Kang, W. Xu,
Y. Yu, S. Han, and P. Wu, Population inversion induced by
Landau-Zener transition in a strongly driven rf superconducting
quantum interference device, Appl. Phys. Lett. 94, 102502
(2009).

[10] J. Stehlik, Y. Dovzhenko, J. R. Petta, J. R. Johansson, F. Nori, H.
Lu, and A. C. Gossard, Landau-Zener-Stückelberg interferom-
etry of a single electron charge qubit, Phys. Rev. B 86, 121303
(2012).

[11] M. F. Gonzalez-Zalba, S. N. Shevchenko, S. Barraud, J. R.
Johansson, A. J. Ferguson, F. Nori, and A. C. Betz, Gate-sensing
coherent charge oscillations in a silicon field-effect transistor,
Nano Lett. 16, 1614 (2016).

[12] D. M. Berns, M. S. Rudner, S. O. Valenzuela, K. K. Berggren,
W. D. Oliver, L. S. Levitov, and T. P. Orlando, Amplitude
spectroscopy of a solid-state artificial atom, Nature 455, 51
(2008).

[13] A. M. Satanin, M. V. Denisenko, S. Ashhab, and F. Nori,
Amplitude spectroscopy of two coupled qubits, Phys. Rev. B
85, 184524 (2012).

[14] G. Sun, X. Wen, B. Mao, Y. Yu, J. Chen, W. Xu, L. Kang,
P. Wu, and S. Han, Landau-Zener-Stückelberg interference of
microwave-dressed states of a superconducting phase qubit,
Phys. Rev. B 83, 180507 (2011).

[15] M. Gong, Y. Zhou, D. Lan, Y. Fan, J. Pan, H. Yu, J. Chen,
G. Sun, Y. Yu, S. Han, and P. Wu, Landau-Zener-Stückelberg-
Majorana interference in a 3D transmon driven by a chirped
microwave, Appl. Phys. Lett. 108, 112602 (2016).

[16] Y. S. Greenberg, Low-frequency Rabi spectroscopy of dissipa-
tive two-level systems: Dressed-state approach, Phys. Rev. B
76, 104520 (2007).

[17] Y. S. Greenberg and E. Il’ichev, Quantum theory of the low-
frequency linear susceptibility of interferometer-type supercon-
ducting qubits, Phys. Rev. B 77, 094513 (2008).

[18] A. E. Mefed, Spectrometer for studying NMR and relaxation in
the doubly rotating frame, Appl. Magn. Reson. 16, 411 (1999).

[19] J. Tuorila, M. Silveri, M. Sillanpää, E. Thuneberg, Y. Makhlin,
and P. Hakonen, Stark Effect and Generalized Bloch-Siegert
Shift in a Strongly Driven Two-Level System, Phys. Rev. Lett.
105, 257003 (2010).

[20] M. Silveri, J. Tuorila, M. Kemppainen, and E. Thuneberg, Probe
spectroscopy of quasienergy states, Phys. Rev. B 87, 134505
(2013).

[21] A. P. Saiko, R. Fedaruk, and S. A. Markevich, Relax-
ation, decoherence, and steady-state population inversion in
qubits doubly dressed by microwave and radiofrequency fields,
J. Phys. B 47, 155502 (2014).

[22] P. Neilinger, S. N. Shevchenko, J. Bogár, M. Rehák, G. Oelsner,
D. S. Karpov, U. Hübner, O. Astafiev, M. Grajcar, and E.
Il’ichev, Landau-Zener-Stückelberg-Majorana lasing in circuit
quantum electrodynamics, Phys. Rev. B 94, 094519 (2016).

[23] C. Jin-Dan, W. Xue-Da, S. Guo-Zhu, and Y. Yang, Landau-
Zener-Stückelberg interference in a multi-anticrossing system,
Chin. Phys. B 20, 088501 (2011).

[24] M. B. Kenmoe, H. N. Phien, M. N. Kiselev, and L. C. Fai,
Effects of colored noise on Landau-Zener transitions: Two- and
three-level systems, Phys. Rev. B 87, 224301 (2013).

[25] S. Ashhab, Landau-Zener transitions in an open multilevel
quantum system, Phys. Rev. A 94, 042109 (2016).

[26] J. Stehlik, M. Z. Maialle, M. H. Degani, and J. R. Petta, Role
of multilevel Landau-Zener interference in extreme harmonic
generation, Phys. Rev. B 94, 075307 (2016).

[27] N. A. Sinitsyn and V. Y. Chernyak, The quest for solvable
multistate Landau-Zener models, J.Phys. A 50, 255203 (2017).

[28] A. Chatterjee, S. N. Shevchenko, S. Barraud, R. M. Otxoa, F.
Nori, J. J. L. Morton, and M. F. Gonzalez-Zalba, A silicon-
based single-electron interferometer coupled to a fermionic sea,
Phys. Rev. B 97, 045405 (2018).

[29] A. Bogan, S. Studenikin, M. Korkusinski, L. Gaudreau,
P. Zawadzki, A. S. Sachrajda, L. Tracy, J. Reno, and T.
Hargett, Landau-Zener-Stückelberg-Majorana Interferometry
of a Single Hole, Phys. Rev. Lett. 120, 207701 (2018).

[30] J. V. Koski, A. J. Landig, A. Palyi, P. Scarlino, C. Reichl,
W. Wegscheider, G. Burkard, A. Wallraff, K. Ensslin, and T.
Ihn, Floquet Spectroscopy of a Strongly Driven Quantum Dot
Charge Qubit with a Microwave Resonator, Phys. Rev. Lett.
121, 043603 (2018).

[31] A. L. Gramajo, D. Dominguez, and M. J. Sanchez, Amplitude
tuning of steady state entanglement in strongly driven coupled
qubits, Phys. Rev. A 98, 042337 (2018).

[32] A. V. Parafilo and M. N. Kiselev, Landau-Zener transitions
and Rabi oscillations in a Cooper-pair box: Beyond two-level
models, Low Temp. Phys. 44, 1692 (2018).

[33] C. H. Yang, A. Rossi, R. Ruskov, N. S. Lai, F. A. Mohiyaddin,
S. Lee, C. Tahan, G. Klimeck, A. Morello, and A. S. Dzurak,
Spin-valley lifetimes in a silicon quantum dot with tunable
valley splitting, Nat. Commun. 4, 2069 (2013).

[34] G. Burkard and J. R. Petta, Dispersive readout of valley split-
tings in cavity-coupled silicon quantum dots, Phys. Rev. B 94,
195305 (2016).

[35] X. Zhao and X. Hu, Coherent electron transport in silicon
quantum dots, arXiv:1803.00749.

195434-7

https://doi.org/10.1111/j.1749-6632.1995.tb38974.x
https://doi.org/10.1111/j.1749-6632.1995.tb38974.x
https://doi.org/10.1111/j.1749-6632.1995.tb38974.x
https://doi.org/10.1111/j.1749-6632.1995.tb38974.x
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1088/0034-4885/74/10/104401
https://doi.org/10.1088/0034-4885/74/10/104401
https://doi.org/10.1088/0034-4885/74/10/104401
https://doi.org/10.1088/0034-4885/74/10/104401
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1126/science.1119678
https://doi.org/10.1126/science.1119678
https://doi.org/10.1126/science.1119678
https://doi.org/10.1126/science.1119678
https://doi.org/10.1103/PhysRevLett.96.187002
https://doi.org/10.1103/PhysRevLett.96.187002
https://doi.org/10.1103/PhysRevLett.96.187002
https://doi.org/10.1103/PhysRevLett.96.187002
https://doi.org/10.1103/PhysRevLett.98.257003
https://doi.org/10.1103/PhysRevLett.98.257003
https://doi.org/10.1103/PhysRevLett.98.257003
https://doi.org/10.1103/PhysRevLett.98.257003
https://doi.org/10.1103/PhysRevLett.101.017003
https://doi.org/10.1103/PhysRevLett.101.017003
https://doi.org/10.1103/PhysRevLett.101.017003
https://doi.org/10.1103/PhysRevLett.101.017003
https://doi.org/10.1063/1.3093823
https://doi.org/10.1063/1.3093823
https://doi.org/10.1063/1.3093823
https://doi.org/10.1063/1.3093823
https://doi.org/10.1103/PhysRevB.86.121303
https://doi.org/10.1103/PhysRevB.86.121303
https://doi.org/10.1103/PhysRevB.86.121303
https://doi.org/10.1103/PhysRevB.86.121303
https://doi.org/10.1021/acs.nanolett.5b04356
https://doi.org/10.1021/acs.nanolett.5b04356
https://doi.org/10.1021/acs.nanolett.5b04356
https://doi.org/10.1021/acs.nanolett.5b04356
https://doi.org/10.1038/nature07262
https://doi.org/10.1038/nature07262
https://doi.org/10.1038/nature07262
https://doi.org/10.1038/nature07262
https://doi.org/10.1103/PhysRevB.85.184524
https://doi.org/10.1103/PhysRevB.85.184524
https://doi.org/10.1103/PhysRevB.85.184524
https://doi.org/10.1103/PhysRevB.85.184524
https://doi.org/10.1103/PhysRevB.83.180507
https://doi.org/10.1103/PhysRevB.83.180507
https://doi.org/10.1103/PhysRevB.83.180507
https://doi.org/10.1103/PhysRevB.83.180507
https://doi.org/10.1063/1.4944327
https://doi.org/10.1063/1.4944327
https://doi.org/10.1063/1.4944327
https://doi.org/10.1063/1.4944327
https://doi.org/10.1103/PhysRevB.76.104520
https://doi.org/10.1103/PhysRevB.76.104520
https://doi.org/10.1103/PhysRevB.76.104520
https://doi.org/10.1103/PhysRevB.76.104520
https://doi.org/10.1103/PhysRevB.77.094513
https://doi.org/10.1103/PhysRevB.77.094513
https://doi.org/10.1103/PhysRevB.77.094513
https://doi.org/10.1103/PhysRevB.77.094513
https://doi.org/10.1007/BF03161928
https://doi.org/10.1007/BF03161928
https://doi.org/10.1007/BF03161928
https://doi.org/10.1007/BF03161928
https://doi.org/10.1103/PhysRevLett.105.257003
https://doi.org/10.1103/PhysRevLett.105.257003
https://doi.org/10.1103/PhysRevLett.105.257003
https://doi.org/10.1103/PhysRevLett.105.257003
https://doi.org/10.1103/PhysRevB.87.134505
https://doi.org/10.1103/PhysRevB.87.134505
https://doi.org/10.1103/PhysRevB.87.134505
https://doi.org/10.1103/PhysRevB.87.134505
https://doi.org/10.1088/0953-4075/47/15/155502
https://doi.org/10.1088/0953-4075/47/15/155502
https://doi.org/10.1088/0953-4075/47/15/155502
https://doi.org/10.1088/0953-4075/47/15/155502
https://doi.org/10.1103/PhysRevB.94.094519
https://doi.org/10.1103/PhysRevB.94.094519
https://doi.org/10.1103/PhysRevB.94.094519
https://doi.org/10.1103/PhysRevB.94.094519
https://doi.org/10.1088/1674-1056/20/8/088501
https://doi.org/10.1088/1674-1056/20/8/088501
https://doi.org/10.1088/1674-1056/20/8/088501
https://doi.org/10.1088/1674-1056/20/8/088501
https://doi.org/10.1103/PhysRevB.87.224301
https://doi.org/10.1103/PhysRevB.87.224301
https://doi.org/10.1103/PhysRevB.87.224301
https://doi.org/10.1103/PhysRevB.87.224301
https://doi.org/10.1103/PhysRevA.94.042109
https://doi.org/10.1103/PhysRevA.94.042109
https://doi.org/10.1103/PhysRevA.94.042109
https://doi.org/10.1103/PhysRevA.94.042109
https://doi.org/10.1103/PhysRevB.94.075307
https://doi.org/10.1103/PhysRevB.94.075307
https://doi.org/10.1103/PhysRevB.94.075307
https://doi.org/10.1103/PhysRevB.94.075307
https://doi.org/10.1088/1751-8121/aa6800
https://doi.org/10.1088/1751-8121/aa6800
https://doi.org/10.1088/1751-8121/aa6800
https://doi.org/10.1088/1751-8121/aa6800
https://doi.org/10.1103/PhysRevB.97.045405
https://doi.org/10.1103/PhysRevB.97.045405
https://doi.org/10.1103/PhysRevB.97.045405
https://doi.org/10.1103/PhysRevB.97.045405
https://doi.org/10.1103/PhysRevLett.120.207701
https://doi.org/10.1103/PhysRevLett.120.207701
https://doi.org/10.1103/PhysRevLett.120.207701
https://doi.org/10.1103/PhysRevLett.120.207701
https://doi.org/10.1103/PhysRevLett.121.043603
https://doi.org/10.1103/PhysRevLett.121.043603
https://doi.org/10.1103/PhysRevLett.121.043603
https://doi.org/10.1103/PhysRevLett.121.043603
https://doi.org/10.1103/PhysRevA.98.042337
https://doi.org/10.1103/PhysRevA.98.042337
https://doi.org/10.1103/PhysRevA.98.042337
https://doi.org/10.1103/PhysRevA.98.042337
https://fnte.ilt.kharkov.ua/main.php?page=10
https://doi.org/10.1038/ncomms3069
https://doi.org/10.1038/ncomms3069
https://doi.org/10.1038/ncomms3069
https://doi.org/10.1038/ncomms3069
https://doi.org/10.1103/PhysRevB.94.195305
https://doi.org/10.1103/PhysRevB.94.195305
https://doi.org/10.1103/PhysRevB.94.195305
https://doi.org/10.1103/PhysRevB.94.195305
http://arxiv.org/abs/arXiv:1803.00749


S. N. SHEVCHENKO, A. I. RYZHOV, AND FRANCO NORI PHYSICAL REVIEW B 98, 195434 (2018)

[36] X. Mi, S. Kohler, and J. R. Petta, Landau-Zener interferometry
of valley-orbit states in Si/SiGe double quantum dots, Phys.
Rev. B 98, 161404 (2018).

[37] A. V. Rozhkov, A. L. Rakhmanov, A. O. Sboychakov, K. I.
Kugel, and F. Nori, Spin-Valley Half-Metal as a Prospective
Material for Spin Valleytronics, Phys. Rev. Lett. 119, 107601
(2017).

[38] Z. Qi, X. Wu, D. R. Ward, J. R. Prance, D. Kim, J. K. Gamble,
R. T. Mohr, Z. Shi, D. E. Savage, M. G. Lagally, M. A. Eriksson,
M. Friesen, S. N. Coppersmith, and M. G. Vavilov, Effects of
charge noise on a pulse-gated singlet-triplet qubit, Phys. Rev. B
96, 115305 (2017).

[39] I. Pietikäinen, S. Danilin, K. S. Kumar, J. Tuorila, and G. S.
Paraoanu, Multilevel effects in a driven generalized Rabi model,
J. Low. Temp. Phys. 191, 354 (2018).

[40] S. Ashhab, J. R. Johansson, A. M. Zagoskin, and F. Nori, Two-
level systems driven by large-amplitude fields, Phys. Rev. A 75,
063414 (2007).

[41] S. N. Shevchenko, S. Ashhab, and F. Nori, Inverse Landau-
Zener-Stückelberg problem for qubit-resonator systems,
Phys. Rev. B 85, 094502 (2012).

[42] M. V. Denisenko, A. M. Satanin, S. Ashhab, and F. Nori,
Dynamics of interacting qubits in a strong alternating electro-
magnetic field, Phys. Solid State 52, 2281 (2010).

[43] E. A. Temchenko, S. N. Shevchenko, and A. N. Omelyanchouk,
Dissipative dynamics of a two-qubit system: Four-level lasing,
Phys. Rev. B 83, 144507 (2011).

[44] A. L. Gramajo, D. Dominguez, and M. J. Sanchez, Entangle-
ment generation through the interplay of harmonic driving and
interaction in coupled superconducting qubits, Eur. Phys. J. B
90, 255 (2017).

[45] S. N. Shevchenko, G. Oelsner, Y. S. Greenberg, P. Macha,
D. S. Karpov, M. Grajcar, U. Hübner, A. N. Omelyanchouk,
and E. Il’ichev, Amplification and attenuation of a probe
signal by doubly dressed states, Phys. Rev. B 89, 184504
(2014).

195434-8

https://doi.org/10.1103/PhysRevB.98.161404
https://doi.org/10.1103/PhysRevB.98.161404
https://doi.org/10.1103/PhysRevB.98.161404
https://doi.org/10.1103/PhysRevB.98.161404
https://doi.org/10.1103/PhysRevLett.119.107601
https://doi.org/10.1103/PhysRevLett.119.107601
https://doi.org/10.1103/PhysRevLett.119.107601
https://doi.org/10.1103/PhysRevLett.119.107601
https://doi.org/10.1103/PhysRevB.96.115305
https://doi.org/10.1103/PhysRevB.96.115305
https://doi.org/10.1103/PhysRevB.96.115305
https://doi.org/10.1103/PhysRevB.96.115305
https://doi.org/10.1007/s10909-018-1857-8
https://doi.org/10.1007/s10909-018-1857-8
https://doi.org/10.1007/s10909-018-1857-8
https://doi.org/10.1007/s10909-018-1857-8
https://doi.org/10.1103/PhysRevA.75.063414
https://doi.org/10.1103/PhysRevA.75.063414
https://doi.org/10.1103/PhysRevA.75.063414
https://doi.org/10.1103/PhysRevA.75.063414
https://doi.org/10.1103/PhysRevB.85.094502
https://doi.org/10.1103/PhysRevB.85.094502
https://doi.org/10.1103/PhysRevB.85.094502
https://doi.org/10.1103/PhysRevB.85.094502
https://doi.org/10.1134/S1063783410110120
https://doi.org/10.1134/S1063783410110120
https://doi.org/10.1134/S1063783410110120
https://doi.org/10.1134/S1063783410110120
https://doi.org/10.1103/PhysRevB.83.144507
https://doi.org/10.1103/PhysRevB.83.144507
https://doi.org/10.1103/PhysRevB.83.144507
https://doi.org/10.1103/PhysRevB.83.144507
https://doi.org/10.1140/epjb/e2017-80563-y
https://doi.org/10.1140/epjb/e2017-80563-y
https://doi.org/10.1140/epjb/e2017-80563-y
https://doi.org/10.1140/epjb/e2017-80563-y
https://doi.org/10.1103/PhysRevB.89.184504
https://doi.org/10.1103/PhysRevB.89.184504
https://doi.org/10.1103/PhysRevB.89.184504
https://doi.org/10.1103/PhysRevB.89.184504

