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Abstract

To help readers understand how we obtain the key equations in the main text, we provide further details in

this Supplemental Material, organized as follows. In Sec. I, we derive the control condition for generating

the maximum degree of orientation for a two-state molecule in the absence (presence) of a weak static field.

In Sec. II, we derive the maximum post-pulse orientation for a single molecular polariton. An analytical

solution is derived in Sec. III for describing the pulsed-driven molecular polariton. Finally, we show the

optimal amplitude and phase conditions in Sec. IV for analytically designing molecule-driving pulses.
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I. THE MAXIMUM DEGREE OF ORIENTATION FOR A TWO-LEVEL SYSTEM

A. A TWO-STATE SYSTEM

In this section, we provide further details about the theoretical maximum orientation of a two-

state system driven by a pulsed terahertz field E(t) through its dipole moment µ [1, 2]. The molec-

ular Hamiltonian reads Ĥ(t) = Ĥ0 + V̂(t) with the field-free Hamiltonian Ĥ0 = BĴ2 and the time-

dependent interaction potential V̂(t) = −µE(t) cos θ, where Ĵ is an angular momentum operator

and θ denotes the angle between the rotor axis and the polarization direction of the control field.

The time-dependent two-state wave packet after the laser pulse excitation is given by

|ψJ0 M(t)⟩ = C0(t f )e−iE0t|00⟩ +C1(t f )e−iE1t|10⟩, (S1)

where the rotational eigenstates |JM⟩ satisfy Ĥ0|JM⟩ = EJ |JM⟩, with eigenenergies EJ = BJ(J +

1), and CJ are the expansion coefficients of |JM⟩.

The degree of orientation after the rotational excitation with the selection rule ∆J = ±1 can be

written as

⟨ψ(t)| cos θ|ψ(t)⟩ = 2|C0(t)||C1(t)|M01 cos(ω01t − ϕ01), (S2)

where MJ′,J = ⟨J′M| cos θ|JM⟩, the transition frequency is defined by ω01 = E1 − E0 = 2B, and

the relative phase is ϕ01 = arg[C1(t)] − arg[C0(t)].

Based on the method of Lagrange multipliers [3, 4], the maximum degree of orientation with

the two-state subspace can be obtained from

L(|C0|, |C1|, λ) = f − λg, (S3)

where f = 2|C0||C1|M10 corresponds to the amplitude of the orientation at the full revivals and

g = |C0|
2 + |C1|

2 − 1 = 0 is a constraint. The extremum of f subject to g can be obtained by

satisfying ▽L = 0. We have

M01 |C1| − λ |C0| = 0,

M01 |C0| − λ |C1| = 0. (S4)

By multiplying each equation in (S4) by |C0| and |C1|, respectively, we have

f − λ(|C0|
2 + |C1|

2) = f − λ = 0. (S5)
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The degree of orientation f reaches its maximum when |C0|
2 = |C1|

2 =
√

2/2. For molecules ini-

tially in the ground rotational state with J = 0,M = 0, we can calculate the maximum orientation

f = M10 = 1/
√

3.

To derive how a control field can result in this orientation maximum, we write the Hamiltonian

in the interaction picture without using the rotating wave approximation (RWA)

HI =

 0 −µ01E(t)eiω01t

−µ01E(t)e−iω01t 0

 , (S6)

where µ01 = ⟨00|µ̂· ê|10⟩. To obtain an analytical solution of |ψ(t)⟩I , we expand the unitary operator

U(t, t0) by using the Magnus expansion [1, 2, 5]

U(t, t0) = exp

 ∞∑
n=1

Ŝ (n)(t)

 , (S7)

where the first leading term is given by Ŝ (1)(t) = −i
∫ t

t0
dt1HI(t1). The corresponding time-

dependent wave function |ψ(t)⟩I = U(t, t0)|00⟩ starting from the ground rotational state |00⟩ is

given by

|ψ(t)⟩I = i
|θ01(t)|
θ∗01(t)

sin |θ01(t)||10⟩ + cos |θ01(t)||00⟩. (S8)

where |θ01(t)| =
∣∣∣∣µ01

∫ t

t0
E(t′)eiω01t′dt′

∣∣∣∣. Note that |θ01(t)| coincides with the pulse area for a resonant

pulse with the RWA. Based on the above analysis, the maximum degree of orientation requires

that θ01(t) satisfies the following relations:

|C0(t f )| = | cos |θ01(t)|| =

√
2

2
,

|C1(t f )| =

∣∣∣∣∣∣i |θ01(t)|
θ∗01(t)

sin |θ01(t)|

∣∣∣∣∣∣ =
√

2
2
. (S9)

This implies that the amplitude of the control field should satisfy the condition |θ01(t f )| = π/4.

As used in the main text, we consider a Gaussian-profile pulse E(t) = E0 exp[−t2/2τ2
0] cos(ω0t+

ϕ0) with E0 =
√

2/ππ/(4µ01τ0), center frequency ω0 = ω01, and absolute phase ϕ0 = 0. This

choice leads to |θ01(t f )| = π/4, independent of duration τ0. We apply a THz pulse to a multi-state

molecule by including higher rotational states of J > 1. Figure S1 shows the final population

distribution of rotational states as a function of the THz pulse’s bandwidth ∆ω = 1/τ. It is clear

that a coherent superposition of rotational states |00⟩ and |10⟩ with equal weights can be obtained
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when the bandwidth of the THz pulse is narrow enough. In the present work, we apply the THz

pulses with a narrow bandwidth of ∆ω ≤ 2g, where the effect of higher rotational states of J > 1

can be ignored, as shown in Fig. S1.
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FIG. S1. The final population distribution of rotational states J = 0 (red solid line), J = 1 (blue dotted line),

J = 2 (green solid line), and J = 3 (gray dotted line) as a function of the THz pulse’s bandwidth ∆ω = 1/τ.

B. A TWO-STATE SYSTEM IN THE PRESENCE OF A STATIC FIELD

To understand how a static field modifies the rotational dynamics, here we show how to generate

the maximum degree of orientation for a two-state molecule driven by a THz pulse E(t) combined

with a weak static field ϵ(t) = ϵ0. The Hamiltonian of a two-state molecule in the presence of a

weak static field can be described by

Ĥ0 =

 0 µ01ϵ0

µ01ϵ0 E1

 .
By diagonalizing the Hamiltonian H0, we obtain two eigenenergies E± = (E1 ± ∆0)/2 with ∆0 =√

E2
1 + 4µ2

01ϵ
2
0 . The corresponding eigenfunctions |E±⟩ can be analyzed by replacing the definition

of |θ01(t)| in Eq. (S8) with E(t) = ϵ0 and t0 → −∞, i.e., θ01(t) = µ01

∫ t

−∞
ϵ0eiω01t′dt′. We can obtain

two eigenfunctions |E+⟩ = |10⟩ and E−⟩ = |00⟩ in the long-time limit. This implies that a weak

static field does not modify the eigenfunctions of bare molecules, but the corresponding transition

frequency ω+− = ω01 + ∆0 is blue shifted ∆0 from ω01. As a result, the control condition for

generating the maximum degree of orientation by a THz pulse becomes∣∣∣θ+−(t f )
∣∣∣ = ∣∣∣∣∣∣µ01

∫ t f

t0
E(t′)eiω+−t′dt′

∣∣∣∣∣∣ = π4 . (S10)
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FIG. S2. The same simulations as those in Fig. 2 of the main text for a two-state molecule driven by a THz

pulse combined with a static field at three different strengths with Ω0 = µ01ϵ0 =g (a)-(c), 1.6g (d)-(f) and

2.3g (g)-(i).

The revival period is modified to τ = 2π/ω+− , shorter than that of the bare molecule.

Figure S2 shows the same simulations as those in Fig. 2 of the main text for a two-state

molecule driven by a THz pulse in the presence of a weak static field at three different values

of the Rabi frequency Ω0 = µ01ϵ0 =g, 1.6g and 2.3g. We can see that the maximum orientation

disappears at ∆ = 0 with ω0 = ω01, but occurs at ∆ = ∆0 with ω0 = ω+−, in good agreement with

the above theoretical analysis. This blue-shift phenomenon is similar to that observed in Fig. 2 of

the main text. We can see that the blue shift depends on the value of Rabi frequency Ω0. A static

field with Ω0 = 2.3g results in a blue shift ∆0 =g, the same as the energy shift of the state |+; 0⟩

caused by the cavity.
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II. THE MAXIMUM DEGREE OF ORIENTATION OF A SINGLE MOLECULAR POLARITON

In this section, we provide the details for deriving the maximum degree of orientation of a

single molecular polariton. The time-dependent wave function of the molecular polariton driven

by the control field is given by

|ψ(t)⟩ =
∑
l=0,±

Cl,0e−iωl,0t|l; 0⟩ +
∞∑

n′=1

∑
l′=±

Cl′,n′e−iωl′ ,n′ t|l′; n′⟩ (S11)

with eigenstates |l; n⟩ and eigenfrequenciesω0,0 = 0 andω±,n = ωc(n+1)±g
√

n + 1. The expansion

coefficients Cl,n can be calculated numerically by Cl,n = ⟨l; n|Û(t, t0)|0; 0⟩ for the system initially

in the vacuum ground state |0; 0⟩.

The degree of orientation for the molecular polariton after the rotational excitation with the

selection rule ∆J = ±1 can be written as

⟨cos θ⟩ = 2
∑
l=±

|C0,0||Cl,0| cos(−ωl,0t + ϕl,0)Ml,0 (S12)

+2
∞∑

n′=1

∑
l′,s′=±

|Cs′,n′−1||Cl′,n′ | cos((ωs′,n′−1 − ωl′,n′)t + ϕs′l′n′)Ms′,n′−1,l′,n′ ,

with Ms′,n′−1,l′,n′ = ⟨s′; n′ − 1| cos θ|l′; n′⟩, and ϕs′,l′,n = arg[Cs′,n(t)] − arg[Cl′,n(t)]. Based on the

method of Lagrange multipliers, the maximum degree of orientation can be estimated by

L(|C0,0|, |C−,0|, |C+,0|, ..., |C−,n|, |C+,n|, λ) = f − λg, (S13)

where

f = 2|C0,0||C−,0|M−,0 + 2|C0,0||C+,0|M+,0

+2
∞∑

n=1

∑
s,l=±

|Cs,n−1||Cl,n|Ms,n−1,l,n, (S14)

and g = |C0,0|
2 +

∑∞
n=0

∑
l=± |Cl,n|

2 − 1 = 0. The extremum of f subject to g can be obtained by

satisfying ▽L = 0; then we have

|C−,0|M−,0 + |C+,0|M+,0 − λ|C0,0| = 0,

|C0|M−,0 + |C−,1|M−,0,−,1 + |C+,1|M−,0,+,1 − λ|C−,0| = 0,

|C0|M+,0 + |C−,1|M+,0,−,1 + |C+,1|M+,0,+,1 − λ|C+,0| = 0,∑
s=±

|Cs,n−1|Ms,n−1,l,n + |Cs,n+1|Ms,n,l,n+1 − λ|Cl,n| = 0. (S15)
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By multiplying each equation in (S15) by C0,0,C−,0, ...,C−,n,C+,n, respectively, we have

f − λ(|C0,0|
2 + |C−,0|2 + ... + |C−,n|2 + |C+,n|2) = f − λ = 0. (S16)

The maximum degree of orientation f corresponds to the maximum value of λ governed by

Eq.(S16). By analyzing Eqs.(S12)-(S15), the maximum degree of orientation f can be achieved

by satisfying conditions either with |C0,0|
2 = |C−,0|2+ |C+,0|2 or |C−,n−1|

2+ |C+,n−1|
2 = |C−,n|2+ |C+,n|2.

We can calculate the matrix elements M−,0 = M+,0 = (
√

2/2)M1,0 and Ml,n−1,s,n = (1/2)M1,0. Thus,

the maximum degree of orientation can be obtained

λ =
√

M2
−,0 + M2

+,0 =

√
1
3
, (S17)

with |C0,0| =
√

2/2, |C−,0| = |C+,0| = 1/2, or

λ =

√∑
s,l=±

M2
l,n−1,s,n =

√
1
3
, (n = 1, 2, 3, ...). (S18)

with |Cl,n−1| = |Cs,n| = 1/2, with l, s = ±, n = 1, 2, 3, ... As mentioned in the main text, this

work demonstrates how to achieve the orientation maximum for the first case with |C0,0|
2 = 0.5,

|C+,0|2 = |C−,0|2 = 0.25 while satisfying a phase relation of ω−,0 arg[C+,0] − ω+,0 arg[C−,0] = 2gπ.

The corresponding revival period τp can be derived by calculating the least common multiple of

2π/(ω±,0).

III. ANALYTICAL SOLUTION OF THE PULSED-DRIVEN MOLECULAR POLARITON

We now provide the details of how to derive the analytical solution of the time-dependent wave

function for describing the molecular polariton driven by a pulsed control field E(t). The time-

dependent Hamiltonian of the molecular polariton in the presence of the control field reads

Hp =
∑
n=0

∑
l=±

ωl,n|l; n⟩⟨l; n| − E(t)
∑
l=±

µ̃0(|l; 0⟩⟨0; 0| + |0; 0⟩⟨l; 0|)

−E(t)
∞∑

n=1

∑
l,l′=±

µ̃l(|l; n⟩⟨l′; n − 1| + |l′; n − 1⟩⟨l; n|), (S19)

where µ̃0 = ±
√

2/2µ01 and µ̃± = ±1/2µ01 denotes the transition dipole moments between en-

tangled states with µ01 = ⟨00|µ cos θ|10⟩ =
√

3/3. Without using the RWA, the corresponding

7



FIG. S3. Schematic of energy levels of the effective Hamiltonian and the polariton.

Hamiltonian in the interaction picture reads

HI =



0 B∗
−,0 B∗

+,0 0 0 · · · 0 0 0 0

B−,0 0 0 B∗
−,−,1 B∗

−,+,1 · · · 0 0 0 0

B+,0 0 0 B∗
+,−,1 B∗

+,+,1 · · · 0 0 0 0

0 B−,−,1 B+,−,1 0 0 · · · 0 0 0 0

0 B−,+,1 B+,+,1 0 0 · · · 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...

0 0 0 0 0 · · · 0 0 B∗−,−,n B∗−,+,n

0 0 0 0 0 · · · 0 0 B∗+,−,n B∗+,+,n

0 0 0 0 0 · · · B−,−,n B−,+,n 0 0

0 0 0 0 0 · · · B−,+,n B+,+,n 0 0



, (S20)

where B±,0 = µ̃0E(t) exp(−iω±,0t), and Bs,±,n = µ̃sE(t) exp[i(ωs,n − ω±,n)t].

We now derive an analytical solution of the time-dependent wave function within a pulse-driven

quantum JC model described by Eqs.(S19) and (S20) without the rotating-wave approximation.

However, it remains challenging to derive a general solution. As highlighted in the main text, we

consider a five-level model including the lowest three states |0; 0⟩ and |±; 0⟩ and the second higher-

lying doublet states |±; 1⟩. The time-dependent wave function |ψ(t)⟩ of the hybrid entangled states

is given by

|ψ(t)⟩ =
∑
ℓ=0,±

Cℓ,0e−iωℓ,0t|ℓ; 0⟩ +
∑
ℓ′=±

Cℓ′,1e−iωℓ′ ,1t|ℓ′; 1⟩, (S21)

where Cℓ,0 denote the complex coefficients of the lowest three states |0; 0⟩ and |±; 0⟩, and C±,1

correspond to the complex coefficients of the higher-lying doublet states |±; 1⟩.
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It is still difficult to directly derive an analytical solution for such a five-level system. To solve

this problem, we use an effective three-level system in Fig. S3 (a) to describe the transitions from

the vacuum ground state |0; 0⟩ to the excited doublet states |±; 0⟩ and |±; 1⟩. The Hamiltonian of

the three-level system that consists of states |A0⟩, |A1⟩ and |A2⟩ can be written as

Heff(t) =
2∑

q=0

qω′|Aq⟩⟨Aq| − E
′(t)µ′01(|A0⟩⟨A1| + |A1⟩⟨A0|)

−E′(t)µ′12(|A1⟩⟨A2| + |A2⟩⟨A1|), (S22)

where µ′01 and µ′12 denote the effective transition dipole moments between the states with a transi-

tion frequency ω′, and E′(t) describes an effective control field. The corresponding Hamiltonian

in the interaction picture is given by

HI
eff(t) = −


0 µ′01E

′(t)e−iω′t 0

µ′01E
′(t)eiω′t 0 µ′12E

′(t)e−iω′t

0 µ′12E
′(t)eiω′t 0

 . (S23)

The time dependent wave function of the system starting from a given initial state |A0⟩ is given

by |ψeff(t)⟩I = Ueff(t, t0)|A0⟩ with Ueff(t0, t0) = I. To obtain an analytical solution of |ψeff(t)⟩I , we

expand the unitary operator Ueff(t, t0) by using Magnus expansion

Ueff(t, t0) = exp

 ∞∑
n=1

Ŝ (n)(t)

 , (S24)

where the first three leading terms can be given by means of the Baker-Campbell-Hausdorff for-

mula as Ŝ (1)(t) = −i
∫ t

t0
dt1HI(t1), Ŝ (2)(t) = (−i)2

∫ t

0
dt1

∫ t1
0

dt2[HI(t1),HI(t2)], Ŝ (3)(t) = (−i)3
∫ t

0
dt1

∫ t1
0

dt2

∫ t1
0

dt3{HI(t1), [HI(t2),HI(t3)]}. We now consider the case by solely involving the first-order

term in the Magnus expansion

Ŝ (1)(t) = −i
∫ t

t0
dt1HI

e f f (t1)

= i


0 θ∗0(t) 0

θ0(t) 0 θ∗1(t)

0 θ1(t) 0

 , (S25)

where we take θ0(t) =
∣∣∣∣µ′01

∫ t

t0
dt′E′(t′)eiω′t′

∣∣∣∣ = √
|θ−,0(t)|2 + |θ+,0(t)|2, and θ1(t) =

∣∣∣∣µ′12

∫ t

t0
dt′E′(t′)eiω′t′

∣∣∣∣ =√
|θ−,1(t)|2 + |θ+,1(t)|2. By diagonalizing the matrix Ŝ (1)(t), the unitary operator corresponding to

the first-order term Ŝ (1)(t) becomes

U (1)(t, t0) =
∑

l=0,−,+

exp[iλl(t)]|λl⟩⟨λl| (S26)
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where λ0(t) = 0, λ±(t) = ±θ(t) = ±
√
θ2

0(t) + θ2
1(t) are the eigenvalues of Ŝ (1)(t), and the corre-

sponding eigenstates are

|λ0⟩ =
|θ1(t)|
θ(t)

(
|A0⟩ −

θ0(t)
θ1(t)
|A2⟩

)
,

|λ−⟩ =
|θ0(t)|
√

2θ(t)

(
|A0⟩ −

θ(t)
θ∗0(t)
|A1⟩ +

θ1(t)
θ∗0(t)
|A2⟩

)
,

|λ+⟩ =
|θ0(t)|
√

2θ(t)

(
|A0⟩ +

θ(t)
θ∗0(t)
|A1⟩ +

θ1(t)
θ∗0(t)
|A2⟩

)
. (S27)

The corresponding wave functions in terms of the first-order Magnus expansion can be obtained

by using |ψe f f (t)⟩I = U (1)
e f f (t, t0)|A0⟩, i.e.,

|ψe f f (t)⟩I =

[
|θ1(t)|2 + |θ0(t)|2 cos θ(t)

]
θ2(t)

|A0⟩

+
iθ0(t) sin θ(t)

θ(t)
|A1⟩

+
θ0(t)θ1(t)
θ2(t)

[cos θ(t) − 1] |A2⟩. (S28)

This solution can be used to calculate the final population distributions in the states |A0⟩, |A1⟩ and

|A2⟩, which correspond to the total populations in the vacuum ground state |0; 0⟩, the first doublet

states |±; 0⟩ and the second doublet states |±; 1⟩. Since the vacuum ground state is a singlet state,

the time evolution of this state is the same as the state |A0⟩. To obtain the population distributions

(expansion coefficients) of |±; 0⟩ and |±; 1⟩, we split the states |A1⟩ and |A2⟩ into |±; 0⟩ and |±; 1⟩,

respectively, as shown in Fig. S3(b). By making resolution of θ0(t) and θ1(t) into complex pulse

areas θ±,0(t) and θ±,±,1(t) in Eq. (S28), we can obtain the time-dependent wave function in the

interaction picture as

|ψ(1)(t)⟩I =
|θ1(t)|2 + |θ0(t)|2 cos θ(t)

θ2(t)
|0; 0⟩ +

i sin θ(t)
θ(t)

∑
ℓ=±

θl,0(t)|ℓ; 0⟩

+
cos θ(t) − 1

θ2(t)

∑
ℓ=±

∑
s=±

θs,0(t)θs,ℓ,1(t)|ℓ; 1⟩. (S29)

As demonstrated in the main text, we see that this analytical solution can reproduce population

distributions in the five states with high accuracy.
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IV. THE OPTIMAL AMPLITUDE AND PHASE CONDITIONS FOR ANALYTICALLY DE-

SIGNING MOLECULE-DRIVING PULSES

By blocking optical transitions from |±, 0⟩ to |±; 1⟩ with |θ±,1(t f )| = 0 in Eq. (S29), the five-

level system reduces to a three-level one, consisting of the lowest three states |0; 0⟩, |±; 0⟩. The

time-dependent wave function in Eq. (S29) becomes

|ψ(t)⟩I = cos (θ0 (t)) |0; 0⟩ +
iθ−,0
θ0 (t)

sin (θ0 (t)) |−; 0⟩ +
iθ+,0
θ0 (t)

sin (θ0 (t)) |+; 0⟩ . (S30)

Note that Eq. (S30) can be directly derived by using a V-type three-level system [5], consisting

of the states |0; 0⟩ and |±; 0⟩. Based on the above analysis, the maximum degree of orientation in

Sec. II requires that |θ±,0| satisfies the following relations:∣∣∣C0,0(t f )
∣∣∣ = ∣∣∣cos(θ0(t f ))

∣∣∣ = √2
2
,∣∣∣C−,0(t f )

∣∣∣ = ∣∣∣∣∣∣ iθ−,0(t f )
θ0(t f )

sin(θ0(t f ))

∣∣∣∣∣∣ = 1
2
,

∣∣∣C+,0(t f )
∣∣∣ = ∣∣∣∣∣∣ iθ+,0(t f )

θ0(t f )
sin(θ0(t f ))

∣∣∣∣∣∣ = 1
2
. (S31)

From Eq. (S31), we can derive

|θ−,0(t f )|
|θ+,0(t f )|

= 1. (S32)

Thus the amplitude condition for generating the maximum orientation is∣∣∣∣θ−,0 (
t f

)∣∣∣∣ = ∣∣∣∣θ+,0 (
t f

)∣∣∣∣ = √2π
8

. (S33)

To meet the relation ω−,0ϕ+,0 − ω+,0ϕ−,0 = 2gkπ, θ−,0(t f ) and θ+,0(t f ) in Eq. (S30) are required to

satisfy the phase condition

ω−,0 arg[θ+,0(t f )] − ω+,0 arg[θ−,0(t f )] = ±gπ + 2gkπ. (S34)

As shown in the main text, the theoretical maximum degree of orientation can be realized by

analytically designing a composite pulse that satisfies the amplitude and phase conditions by Eqs.

(S33) and (S34), while blocking optical transitions by controlling its bandwidth.

We also examined the effects of other states by including higher photon states of n > 1 and

higher rotational states of J > 1 into the calculations. Figure S4 shows the populations of other

states versus the bandwidth of the THz pulses used in Fig. 5 of the main text by excluding the

populations of the lowest five states |0; 0⟩, |±; 0⟩ and |±; 1⟩. We can see that the calculations by
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FIG. S4. The populations of other states versus the bandwidth of the THz pulses used in Fig. 5 of the main

text by excluding the populations of the lowest five states |0; 0⟩, |±; 0⟩ and |±; 1⟩.

considering n = 1 and J = 1 are sufficient for describing, with a high precision, the polariton

dynamics in the present work.
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