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Wave-particle duality relations are fundamental for quantum physics. Previous experimental studies of duality relations mainly
focus on the quadratic relation D? 4+ V2 < 1, based on symmetric beam interference, while a linear form of the duality relation,
predicated earlier theoretically, has never been experimentally tested. In addition, the difference between the quadratic form and
the linear form has not been explored yet. In this work, with a designed asymmetric beam interference and by utilizing the
polarization degree of freedom of the photon as a which-way detector, we experimentally confirm both forms of the duality
relations. The results show that more path information is obtained in the quadratic case. Our findings reveal the difference between
the two duality relations and have fundamental implications in better understanding these important duality relations.
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INTRODUCTION

Bohr's complementarity principle initially conceptualized the
controversial nature of light. It states that a photon possesses
two mutually exclusive properties, wave and particle, ie, the
wave-particle duality. It is well known that this duality can be
formulated by duality relations, which quantitatively describe the
trade-off between wave and particle behaviours, ie, the
emergence of one behaviour will suppress the appearance of
the other. In the past years, the duality relations have drawn
increasing attention because they are fundamental in quantum
physics. Experimental and theoretical interests in duality relations
have never vanished since the early days of quantum theory''4,

The authors in'> quantified the wave-particle duality in a
double-slit interference scenario and concluded that the simulta-
neous observation of wave and particle behaviours was possible.
The complementarity relation P2 + Vo2 <1, where P is the
predictability of the photon passing through the two paths and
V, is the a priori interference visibility, was derived in'® and'’. Also,
ref. 7 considered the case in which a which-way detector (WWD)
was involved, and obtained the inequality

D+ V%<1, (1

where P was replaced by the distinguishability D,,, and V, was
replaced by the fringe visibility V at the output. The predictability P
is different from the distinguishability D,,, in that P is the difference
of the probabilities of the photon taking the two paths, while D,,
is the which-way information stored in the WWD, which depends
on the final states of the WWD and the way which we apply to
retrieve the information. The distinguishability quantified in'” is
the maximum likelihood for guessing the way right, which
coincides with the minimum error discrimination (MED) of the
WWD'’s states.

Applying different strategies to distinguish the WWD's states
gives different amounts of which-way information. Another
strategy of retrieving which-way information from the WWD is
the unambiguous quantum state discrimination (UQSD), which

has been applied to study the wave-particle duality relation in
recent years'®-23, Reference'® quantified the distinguishability by
the upper bound of the probability of an unambiguous result and
obtained the linear duality relation

D,+V=1, )]

where D, is the distinguishability derived from the UQSD strategy.
A similar relation was obtained in multipath interference?'-2,

The quaderatic relation (1) based on the MED strategy has been
experimentally confirmed using various systems®24=3'. However,
the linear relation in Eq. (2), which is based on the UQSD strategy,
has not been experimentally tested so far. Existing studies on the
duality relation mostly focus on the case of symmetric beam
interference, where the photon is equally likely to go through
both paths. Nevertheless, the asymmetric case, where the beam
splitters (BSs) are not balanced or the photon suffers from loss on
the BSs, has not been investigated as much as the symmetric case.
Over the past years, several theoretical analyses of asymmetric
interference with a WWD have been presented'®32-35,

In this work, we experimentally realize asymmetric beam
interference with a WWD to study the wave-particle duality. The
WWD is implemented by utilizing the polarization degree of
freedom of the photon. The visibility V is characterized by the
fringe emerging after the interferometer. We quantify the
distinguishability in two ways. One corresponds to the probability
of obtaining an unambiguous result, i.e., by adopting the UQSD
strategy to discriminate the WWD's states; while the other
corresponds to the maximum likelihood for guessing the right
path, i.e., by adopting the MED strategy to discriminate the WWD's
states.

In our experiment, both quadratic and linear forms of the
duality relation, described by Egs. (1) and (2), are confirmed with
different degrees of asymmetry of the beam interference and
different degrees of nonorthogonality of the WWD's states. We
show that the amounts of which-way information, gained through
the two strategies, are different. Our experiment demonstrates the
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linear duality relation and also investigates the difference between
the two duality relations.

RESULTS
Theory

In quantum physics, quantum states, which are orthogonal to
each other, can be discriminated via a single measurement. While
for nonorthogonal quantum states, one is unable to discriminate
them within a single measurement. To retrieve information from
nonorthogonal quantum states, different strategies are applied
with different objectives. The UQSD3¢° and the MED*'*? are the
two most investigated strategies.

Assume that one is told to discriminate two nonorthogonal
states |d1) = |h) and |d,) = sin 26|h) — cos 26|v) of a photon, with
a priori probabilities p; and p,, respectively. Here, the state |h) (|v))
denotes the horizontal (vertical) polarization state, and the
probabilities satisfy p; + p, =1. Without loss of generality, we
assume p,<p;. The UQSD and the MED follow different
procedures as follows.

In UQSD, an unambiguous result is possible by allowing an
inconclusive result. The polarization degree of freedom of the
photon is coupled with another degree of freedom to form a
higher dimensional space. Then |d;) and |d,) are projected onto
the orthogonal basis

dv) = alay) + Blay), |d2) = v|qs) + 6]q,), 3)

where [(glg)| =6 |q;) and |gs5) correspond to unambiguous
results, |g,) corresponds to an inconclusive result. The geometric
representation of the principle of UQSD is shown in Fig. 1a. The
probability of obtaining an unambiguous result is D, = p,|a|* +
p-ly|% and it is given by*

Dy =1—2,/p,p;sin26, p,/p, >sin?26, 4
Dy = p;(1 —sin?26), p,/p; < sin®20. (5)
v v Q1
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Fig. 1 Geometric representation of the principles of nonortho-
gonal state discrimination. Principles of (a) unambiguous quantum
state discrimination (UQSD) and (b) minimum error discrimination
(MED) strategies. The moduli of the vectors represent the square
roots of the a priori probabilities of the states. In UQSD, the states
|di) and |d,) are first rotated, then the horizontal component is
separated into two parts, one is the common state (|g,))
corresponding to an inconclusive result. The residuals, |g,) and
|gs), are orthogonal, which can be discriminated by a positive
operator-valued measure. In MED, the states |di) and |d,) are
rotated, then a positive operator-valued measure is performed to
project the states onto the basis states |h) and |v). When we detect
the photon in the |h) state, we guess the state is |d,), otherwise we
guess it as |d;). Since the measurement result is probabilistic, there
is a probability of guessing wrongly.
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On the other hand, in MED, each measurement returns a result,
and the quantum state is determined by the best guess. The
protocol aims at minimizing the guessing error. The principle of
MED is shown in Fig. 1b. The maximum probability of correctly
guessing the quantum state is given by the Helstrom bound**

Pr:%(1+\/m>- (©)

Research on the wave-particle duality is generally based on two
scenarios, the double-slit interference and the standard Mach-
Zehnder interferometer (MZI) (see Fig. 2). In the double-slit
interference, the light passes through two separated slits, behind
which a screen is placed. One can observe fringes on the screen,
which are not simply the sum of the light passing through an
individual slit when the other is blocked. In the standard MZI, the
input light is separated by a symmetric beam splitter (BS), then the
light travelling along the two arms interferes on the second BS.
Changing the phase of the light in one arm gives rise to a change
of the intensity of the output light. When the second BS is
removed, the phase change will not induce the change of the
output intensity. In this case, we declare that the photons reveal
particle behaviour in an open interferometer. The double-slit
interference is more often employed to intuitively show the
interference of photons, while the standard MZI is more suitable in
practical experiments. In studies of wave-particle duality, these
two scenarios are equivalent.

The scenario we consider is an MZI with a WWD inserted in the
interferometer (Fig. 2b). The first BS is unbalanced, such that it
causes the photon to propagate along two paths with unequal
probabilities, p; and p,. The WWD is a quantum detector, which
interacts with the photon and then gets correlated with the
photon’s path.

Assume now that the initial state of the WWD is |do), and the
state of the photon after passing through the unbalanced BS is
v/P10) + 1/P;|1), where |0) and |1) denote the two path states.
The interaction between the WWD and the photon leads to a

(@)

input light

double slit

screen

path l|1 "

(b)

mirror beam splitter

path lloll

path "1"
input light

path lloll
» >

beam splitter WWD mirror

Fig. 2 Scenarios for studying wave-particle duality. a Double-slit
interference setup includes a double-slit and a screen for observing
the fringes. b A Mach-Zehnder interferometer consists of two beam

splitters. WWD which-way detector.
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Fig. 3 Schematic of the experiment. (1): asymmetric interference. The photon transmits through the first PBS and is then rotated by the first
half-wave plate H1. The blue half of the cBS works as a PBS to split different polarization components. The photon traverses the two paths in
the Sagnac-like structure and recombines on the black half of the cBS. H2 and H3 determine the final states of the WWD. PP introduces a
phase between the two paths. (2): polarization measurement. The polarization of the photon is analysed in the Sagnac-like structure. See
Methods for the details of the implementation. The inset shows that the ¢BS is equivalent to an assembly of a PBS and a NPBS. When the
photon is incident on the blue region, it works as a PBS; while when the photon is incident on the black region, it works as a NPBS. PBS
polarization beam splitter, NPBS non-polarizing beam splitter, PP phase plate, cBS cubic beam splitter, M mirror, H1~H7 half-wave

plates, D,, Do, Dy, and D, single-photon detectors.

controlled-unitary transformation

(VP110) + VP2 1))ldo) — v/P1[0)|dh) + V2| 1)|d2).- )

To distinguish the paths of the photon is equivalent to distinguish
the final states of the WWD. Note that |di) and |d,) are not
necessarily orthogonal. When [(d,|d,)| = 1, which means |d;) and
|d>) are identical, no path information can be retrieved from the
WWD. When [(d;|d:)|=0, |di) and |d;) can be perfectly
distinguished. In the intermediate case, i.e, |(di|d2)| = sin26,
one can only obtain a partial which-way information by means of
nonorthogonal quantum state discrimination.

We utilize the photon’s polarization degree of freedom as the
WWD. Let the initial state of the WWD be |h). The polarization of
the photon in path 1 is rotated due to the interaction between the
WWD and the photon. The quantum state after the interaction
becomes /p;|0, h) + /p;|1,s), where |s) = sin 26|h) — cos 26|v).
After the second balanced BS, the probability of detecting the
photon at path 0 is p = (1 4 2,/p;p, sin 26 cos ) /2. Here ¢ is the
phase between the two paths. Thus the visibility is given by

Pmax — Pmin f
V=" =2 /pp, sin 20. 8
Prmax + Prin 2 ( )

To retrieve the which-way information, one could perform the
UQSD strategy on the polarization of the photon. The maximum
probability of unambiguously discriminating the polarization
states is given by Egs. (4) and (5). We now have

Dy+V =1, py/p, >sin26, (9)

Dy +V = p,cos?20 + 2,/p,p, sin 20, p,/p, < sin®26. (10)

Published in partnership with The University of New South Wales

Equations (9) and (10) coincides with the results in ref. '® which
considers a double-slit scenario.

On the other hand, the which-way information can also be
retrieved by the MED strategy. The probability of the correct guess
is given by Eq. (6). Thus the distinguishability becomes D, =2
P, — 1. Using Eq. (8), we recover

D2 +V2=1. an

Since we consider a pure state as the input, the duality relation
is an equality. If we consider a more general case (e.g., the
input being a mixed state), it would be an inequality. In recent
years, constraints of the entanglement on the duality relation
Eg. (11) have been fruitfully discussed in both classical and
quantum domains**~>', In particular, ref. >> demonstrated the
constraints of the purity of the photon source on the duality
relation Eq. (11) from a source point of view®? by adjusting the
amplitudes of the seed laser, where the photon source was
generated through an entangled nonlinear bi-photon
source model.

Experimental setup

To implement the forementioned asymmetric beam interference,
our experimental setup consists of two Sagnac-like structures.
The first Sagnace loop realizes the asymmetric beam inter-
ference, while the second one realizes the polarization measure-
ment, as is shown in Fig. 3. The photon source is a single photon
generated through a nonlinear process (See Methods for details).
The polarization of the photon is prepared to be horizontal by
the first polarization beam splitter (PBS). A half-wave plate (H1)

npj Quantum Information (2022) 101
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and a cubic beam splitter (cBS) work as a variable beam splitter.
The ¢BS, which is part of the Sagnac-like structure, is customized
such that the coating inside the crystal consists of two parts, a
blue part and a black part. It functions as a PBS when the photon
is incident on the blue half of the crystal, while it functions as a
non-polarizing beam splitter when the photon is incident on the
black half. The ¢BS is functionally equivalent to an assembly of a
PBS and a non-polarizing beam splitter, as is shown in the inset.
Such a compact structure enables relative stability of the Sagnac-
like structure. Therefore, when H1 is oriented at 6, and the
photon is incident on the blue half of the cBS, the photon travels
along path 0 or path 1, depending on the polarization, with
probabilities p, = cos?26, and p, = sin®26,, respectively. The
photon in path 0 is vertically polarized while the photon in path
1 is horizontally polarized. The split ratio p,/p; = tan?26,
determines the asymmetry of the interference. At this step,
since the polarization correlates with the path, the polarization is
regarded as the WWD.

Inside the first Sagnac loop, a half-wave plate H2 oriented at 6,,
is inserted in path 1 to set the nonorthogonality of the final
states of the WWD. To maintain the coherent superposition of
the two paths, another half-wave plate (H3) oriented at 0° is
inserted in path 0 to compensate the optical path. The photon
from the two paths interferes on the black half of the ¢BS. The
output states, which correspond to the two exits of the ¢BS, are
given by

) = —=(cos 26,|d;) — € sin 26,|d>)), (12)

- S‘_.
N

|wd> ZE(COS 29a|d1> +ei<p sin 29a|d2>)7 (13)
where |dq) = |h) and |d;) = sin26,|h) — cos 20,|v) are the final
states of the WWD, whose nonorthogonality is determined by
[(d1]d2)| = sin26y; and |dy) = sin 26,|h) + cos 26,|v). The state
|,) is detected immediately by D, for measurement of the
visibility
Ve max(N) — min(N)
" max(N) 4+ min(N)’

where N is the photon count at D,, max(-) and min(-) are the
extreme values with respect to ¢, which is the phase introduced
by the phase plate in path 1. Afterwards, the photon in the state
|pq) enters the second Sagnac-like structure for the distinguish-
ability measurement. The which-way information of the photon
implies the path along which the photon travels in the first
Sagnac loop.

(14)

Experimental linear and quadratic duality relations

We now perform a nonorthogonal state discrimination on the
states |d;) and |dy) to measure the distinguishability. We first
quantify the distinguishability as the probability of an error-free
result, i.e., by adopting the UQSD strategy. The procedure is
analogous to discriminating two nonorthogonal states with
equal a priori probabilities apart from additional basis rota-
tions®*. The half-wave plates H4 ~H7 are properly rotated to
realize the basis transformation (See Methods for details). Here, a
click at D, corresponds to an inconclusive result, indicating that
the photon may come from path 0 or path 1. A click at D,
indicates that the photon deterministically comes from path 1,
and a click at Dy indicates the photon deterministically comes
from path 0. In this setup, the photon count of path 0 is
N>o + Noo, and the photon count of path 1 is N,y + Ny;, where Nj;
is the photon count at D; when path j is open in the first Sagnac
loop. The photon count, corresponding to an unambiguous
result, is Ni1 + Noo. The distinguishability D, is quantified by the

npj Quantum Information (2022) 101

probability of getting an unambiguous result

Noo + N1
(N2g + Nog) 4+ (Na1 + Nyq)~

Dy = (15)

Figure 4 shows the photon counts at Dy, D,, and D, with respect
to ¢ when (a) tan 26, = 0.38, sin 26, = 0.2 and (b) tan 26, = 0.28,
sin 26, = 0.9. The sinusoidal change of the photon count at D, is
due to the interference between the common parts of |d;) and
|d2). In Fig. 4a, when tan 26, > sin 26, the minimum photon count
at D, is zero. This implies that the common part is equally likely to
come from |dy) or |d;) (equal lengths of the common parts in
Fig. 1a). While in Fig. 4b, when tan 26, < sin 26, the minimum
photon count at D, is zero since the photon in the common part is
more likely to come from path 0; in other words, some which-way
information is stored in the common part.

Next we perform the MED strategy to extract the which-way
information. As illustrated in Fig. 1b, to realize the MED strategy,
the H4 first rotates the polarization suitably. The H5 and the H7 are
constantly kept at 0° (see Methods for details). Under such
configuration, |d;) and |d,) are first rotated and then projected
onto the |h) and |v) basis. The horizontal component is detected
by D, and the vertical component is detected by Do,. When D,
clicks, we guess the photon comes from path 0; while when Dy
clicks, we guess the photon comes from path 1. Thus, a right
guess, with photon count of Ny, + N5y, means either D, clicks
when the photon comes from path 0, or Dy clicks when the
photon comes from path 1; while a wrong guess is the opposite,
with photon count of Nyy+ Ny;. The distinguishability is
quantified by the difference between the right guess and the
wrong guess

_ Not + Nao — Noo — Na
No1 + N + Noo + N

Dm (16)

Figure 5 shows our experimental results, where the horizontal
label symmetry signifies the symmetry of the interference and it is
quantified by tan 26,. We test the two cases when (i) the linear
form applies (Fig. 5a), and (ii) the linear form does not apply
(Fig. 5b), when using the UQSD strategy. For comparison, we also
test the quadratic form by using the MED strategy with the same
configurations in Fig. 5c and d, respectively. Note that the
applicability of the linear form requires sin 26, < tan 26,; there-
fore, we set sin 26, = 0.2 in this case to ensure a relatively wide
range in which the value of tan 26, could be set. One can see from
Fig. 5a that the experimental summation of (V+ D) is close to 1
with small deviations.

On the other hand, for the case where the linear relation does
not apply, we set sin26, = 0.9 in Fig. 5b, since the inequality

1.0 1.0
(a) — Dy (b) Dy
=08 —n,|| 0.8
=] —D,
806 0.6
[
A 0.4
=
0.2 0.2
/“—’\\ ——

00 05 10 15 20 00 05 10 15 20

o/ o/

Fig. 4 Normalized photon counts at DO, D1, and D2. a
tan 20, = 0.38, sin26, = 0.2 and (b) tan26, = 0.28, sin26, = 0.9.
The photon counts are divided by the total photon count of
D, + Do + D; 4+ D,. The dots are the experimental data, while the
solid lines are the theoretical values. The error of the photon count
at D, in (b) is ~O(107%), thus the error bar is almost invisible in the
figure. The error bars indicate one standard deviation.
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Fig. 5 Experimental results. Duality relations when the nonortho-
gonality of the final states of the WWD is (a, ¢) sin26, = 0.2 and
(b, d) sin 26, = 0.9. (a, b): Confirmation of the linear duality relation.
(c, d) Confirmation of the quadratic duality relation. The experi-
mental visibility in (¢, d) is the same as that in (a, b), both are
calculated through Eq. (14). The label symmetry signifies the
symmetry of the interference and it is quantified by tan28,. The
dots are experimental values while the solid lines are theoretical
values. The error bars indicate one standard deviation.

sin 26,, > tan 26, should be satisfied. One could see that the linear
relation is no longer valid in this case, because partial which-way
information is stored in the common part when the degree of
asymmetry is larger than the degree of nonorthogonality. On the
contrary, in Fig. 5(c, d), the quadratic relation always applies. One
notices that the (V+D,) and (V2+D2) in Fig. 5 exceed
the theoretical maximum at some data points, this is because
the visibility and the distinguishability are not measured with the
same photons. The visibility is measured through the statistics of
photon counts at detector D, while varying the phase ¢; whereas
the distinguishability is measured through the polarization
analysis in the second Sagnac loop. On the other hand, the non-
ideal coating of the cBS on the black half (i.e., the part acting as an
NPBS) causes errors to the measurements of the visibility and the
distinguishability. Therefore, the measured (V + D) and (V2 + D)
may exceed the theoretical maximum.

Relation between the two forms of the duality relation

The linear duality relation characterized by Egs. (9) and (10) is
tighter than the quadratic duality relation characterized by Eq.
(11). This can be seen from the mutual information gained after
performing the measurement. The mutual information between
Alice (A) and Bob (B) is

o T Tr(pi1))
H(A:B) = iij,Tr(p,n,) log <Tr(ﬁ)frj))7 (17)

where the quantum state p; is prepared by Alice with a priori
probability p; and Bob performs a positive operator-valued
measure {m;} with >3, =1 and p=3 pp. The mutual
information given by Eq. (17) quantifies how much information
is obtained by Bob through the measurement (See Methods). The
UQSD strategy is closely related to the maximum confidence
strategy for quantum state discrimination®>, which maximizes the
conditional probability P(p;]i), i.e., the probability that the state is
p; when obtaining the result i. The MED strategy minimizes the
guessing error and in some cases it coincides with the maximum
mutual information strategy®®’. Figure 6 shows the mutual

Published in partnership with The University of New South Wales
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Fig. 6 Mutual information gained via MED and UQSD strategies.
The nonorthogonality is (a) sin 26, = 0.2 and (b) sin 26, = 0.9. The
dots are experimental values, while the solid lines are theoretical
values. The error bars indicate one standard deviation.

information obtained by using USQD and MED strategies. We can
see that the mutual information obtained through the MED
strategy is more than that obtained through the UQSD strategy.
This means that more which-way information is extracted through
the MED strategy.

DISCUSSION

In our work, we measure the visibility by changing the relative
phase between the two paths of the first Sagnac loop, while the
distinguishability is measured through the polarization measure-
ment in the second Sagnac loop. The visibility and the
distinguishability are measured with different photon samples.
This, in some sense, implies that they are measured with different
setups. While the essence of the duality relations emphasizes the
complementarity between the wave behaviour and the particle
behaviour of the same photon, we remark that such a method to
measure the two quantities has been employed in the study of
duality relations?>3°. Due to the destruction of the photon at the
detector, we are not able to measure the distinguishability and the
visibility with the same photon.

We have realized an asymmetric beam interference experiment
to study the wave-particle duality by utilizing the polarization
degree of freedom of the photon as a which-way detector. In our
experiment, both the linear duality relation and the quadratic
duality relation have been confirmed. We have shown that the
distinguishability in the linear form corresponds to the probability
of obtaining an unambiguous result, while the distinguishability in
the quadratic duality relation corresponds to the maximum
likelihood for the right guess. We have also shown that the
difference between the UQSD strategy and the MED strategy can
be understood by calculating the mutual information gained
through the measurements. Since less mutual information is
gained in the UQSD strategy, the linear form is tighter than the
quadratic form. Our results reveal the difference between the two
duality relations, which will have fundamental implications in
better understanding the duality relation quantitatively. Further-
more, since the distinguishability is closely related to the
discrimination of the states of the which-way detector, our work
might motivate future studies on quantum state discrimination in
duality relations and may have other potential applications in
quantum information science and technology.

METHODS

Details of the experiment

The single-photon source is generated through spontaneous parametric
down-conversion process by pumping a type-l phase matched nonlinear
B-barium-borate crystal. The pump laser is a CW single frequency laser
operating at a center wavelength of 404 nm with power of 130 mW. The
photon pair with wavelength of 808 nm is filtered by a pair of interference
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filters with a 3 nm bandwidth. The idler photon is detected by a single-
photon detector for coincidence counting. The signal photon is thus
heralded and delivered to the experimental setup shown in Fig. 3. The
averaged photon count is approximately 10,000 per second.

The interference visibility of both Sagnac loops is higher than 98.67%.
The photon counts are measured five times for calculating the deviations,
with duration of 0.5 s for each measurement. The error bars in Figs. 4-6 are
small because the fluctuation of the photon count is relatively small.

Settings for performing UQSD and MED strategies

We follow Fig. 1 in the main text to clarify the measurement settings for
performing the nonorthogonal quantum state discrimination strategies,
UQSD and MED.

(i) UQSD strategy. When tan 26, > sin 26,,, the H4 rotates the polarization
suitably such that the line connecting the endpoints of the state vectors is
perpendicular to the horizontal line, thus maximizing the probability of
obtaining an unambiguous result. In this way, the states |d;) and |d,) have
the same amount of horizontal component, as shown in Supplementary
Fig. 1a. Then H5 separates the horizontal components of both states into
two parts. One part corresponds to the common state |g,) (an inconclusive
result); while the other, when superposed with the vertical components,
turns the states |d;) and |d,) into orthogonal states |g,) and |g3). The H6 is
fixed at 45°. Finally, |g;) and |g;) are unambiguously discriminated by a
projective measurement consisting of H7 and a PBS. The angles of H4, H5
and H7 are

1 sin 26, — cot 26,
6, =—arctan—— 18
*T2 cos 26, ’ (18)
1 v/tan 26, sin 26,
65 = —arccos ———————— | (19)
) C0s 26, '
sin 26,

1
6; = —arccot (20)

2 €05 260, 5in 265’
where 6, and 6, are the orientations of H1 and H2, respectively. Here, we
omit the reflections on the mirrors. When tan 26, < sin26,, the H4
transforms |d) to |h), as is shown in Supplementary Fig. 1d. The H5 ~ H7
are fixed at 0°, 45° and 0°, respectively. Both of these states have a
horizontal component, thus a detection of the |h) state (i.e., D, clicks)
signifies an inconclusive result. While Dy clicks if and only if the state is
|d1). The orientation of H4 is

64:9n_%» (21)

(i) MED strategy. As shown in Supplementary Fig. 1e, to realize the MED
strategy, the polarization is suitably rotated by H4, followed by a projective
measurement. Note that though a simpler setup is sufficient to realize the
MED strategy: we maintain the setup unchanged such that it is the same as
the one when performing the UQSD strategy. Thus, the H5 ~ H7 are fixed
at 0°, 45° and 07, respectively. The orientation of H4 is

0=1G-9).
where

cos220, + sin®20, cos 46,

23
sin?26, sin 46, @3)

¢ = arctan

Evaluation of the mutual information

We evaluate the mutual information obtained through the polarization
measurement  for two nonorthogonal states |di) =|h) and
|d2) = sin20,|h) — cos26,|v), with a priori probabilities p; = cos?20,
and p, = sin?20,, respectively. For UQSD, the states |d;) and |d>) are
projected onto a three-dimensional space spanned by the basis states

{lar),192), 193) }, with the projective operators 71 = |q1){(q:1, 712 = |q2)(da,
and 713 = |g5)(qs|. The basis states have the following forms

la1) = Rl (ByG1 B + PuRIP R, 1), (24)
|92) = RluPhRlis|h),. (25)
lgs) = RL4(‘BV‘f1 Py + ﬁhRLsﬁV)RLﬂWn (26)

npj Quantum Information (2022) 101

where 0 is the Pauli operator, f’h(v) projects the state onto |h(v)), and RE.)
is the Hermitian conjugate of the Jones matrix of the half-wave plate. The
subscripts / and r indicate different paths in the three-dimensional space,
because the path degree of freedom of the photon is coupled with the
polarization degree of freedom to form a higher space. The eigenvalue of
i, corresponds to an inconclusive result, while the eigenvalues of 7, and
713 correspond to unambiguous results that the photon comes from path 0
and path 1, respectively.
While for MED, the projective operators are

1 = Rl |h) (h|Rua, 7)

72 = Rl V) (v|Rua, (28)

which means that the states are projected onto the basis states |h) and |v)
after transformed by H4.
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