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SUPPLEMENTARY NOTE 1:

MEASUREMENT-DEVICE-INDEPENDENT

WITNESSES FOR ALL STEERABLE

ASSEMBLAGES

For textural completeness, we �rst recall the standard
steering witness. The set of all local-hidden state LHS
forms a convex set [1]. Therefore, given a steerable as-
semblage {σS

a|x}, there always exists a set of positive

semide�nite operators {Fa|x � 0}, called a steering wit-

ness SW, such that [2�6]

Tr
∑
a,x

Fa|x σ
S
a|x > α := max

{σUS
a|x}∈LHS

Tr
∑
a,x

Fa|x σ
US
a|x, (1)

while

Tr
∑
a,x

Fa|x σ
US
a|x ≤ α ∀{σUS

a|x} ∈ LHS. (2)

There two conditions above can be reformulated as fol-
lows:

Tr
∑
a,x

(
Fa|x −

α

|X |
11

)
σS
a|x > 0, (3)

while

Tr
∑
a,x

(
Fa|x −

α

|X |
11

)
σUS
a|x ≤ 0 ∀{σUS

a|x} ∈ LHS, (4)

where |X | denotes the number of elements in X , i.e., the
number of measurement settings.
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Motivated by the results from Ref. [7], here we show
how to systematically construct a collection of steering
witnesses (SW) in an measurement-device-independent
(MDI) scheme, dubbed MDI-SWs. It is MDI since we cer-
tify steerability based only on the statistics {p(a, b|x, τy)}
and on the fact that {τy} forms a tomographically com-
plete set. In what follows, we would like to address the
problem within the framework of the resource theory of
steering [1], i.e., we will certify steerability of the un-
derlying assemblage {σa|x} instead of the quantum state
ρAB .
Within the framework of the resource theory of steer-

ing [1], the correlation is obtained from Bob's joint mea-
surement on the assemblage, i.e.,

p(a, 1|x, τy) = tr(E1σa|x ⊗ τy). (5)

The average payo� of an assemblage can then be de�ned
as

W
(
P, β

)
=
∑
a,x,y

βx,ya,1 p(a, 1|x, τy). (6)

where P := {p(a, 1|x, τy)}.
Now we show that for any given steerable assemblage,

one can properly choose a set of coe�cients β := {βx,ya,1 },
such that W

(
P, β

)
is a steering witness of the steerable

assemblage. That is,

given {σa|x} /∈ LHS, ∃β := {βx,ya,1 }

such that W
(
P, β

)
> 0,

W
(
P({σUSa|x}), β

)
≤ 0 ∀{σUSa|x} ∈ LHS.

(7)

Proof. Since the set of Bob's input quantum states {τy}
is a tomographically complete set, it can be used to span
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all Hermitian matrices of the same dimension:

given {Fa|x} & {τy}, ∃{βx,ya,1 }

such that Fa|x −
α

|X |
11 =

∑
y

βx,ya,1 τ
ᵀ
y ∀a, x, (8)

where {Fa|x} is a SW of the assemblage and {βx,ya,1 } is
a set of some real numbers. The transposition ᵀ is for
convenience, as will be shown later.
(i) First we prove the second requirement of Eq. (7).

Each component in the correlation {p(a, 1|x, τy)} admit-
ting a LHS model can be expressed as

p(a, 1|x, τy) = Tr
[
E1(σa|x ⊗ τy)

]
=
∑
λ

p(λ) p(a|x, λ) Tr
[
(ẼB0

1,λτy)
]
, (9)

where

ẼB0

1,λ := TrB [E1(σλ ⊗ 11)] (10)

is an e�ective POVM element. The payo� of the assem-
blage is then written as

W
(
P, β

)
:=
∑
a,x,y

βx,ya,1 p(a, 1|x, τy)

=
∑
a,x,λ

p(λ)p(a|x, λ) Tr

[
ẼB0

1,λ

(∑
y

βx,ya,1 τy

)]

= Tr

[∑
a,x

(
Fa|x −

α

|X |
11

)∑
λ

p(λ)p(a|x, λ)(ẼB0

1,λ)ᵀ

]
≤ 0,

(11)
where the inequality holds due to Eq. (4).
(ii) Now we prove the �rst requirement of Eq. (7). We

choose the joint measurement performed by Bob to be
the projection onto the maximally entangled state

|ΦBB0
1 〉 = 1/

√
dB

dB∑
i=1

|i〉 ⊗ |i〉. (12)

Therefore, each component of the correlation can be ex-
pressed as

p(a, 1|x, τy) = Tr
[
E1(σSa|x ⊗ τy)

]
= Tr

[
(|ΦBB0

1 〉〈ΦBB0
1 |)(σSa|x ⊗ τy)

]
= Tr

[
τᵀy σSa|x

]
/dB .

(13)

The average payo� is reformulated as

W
(
P, β

)
:=
∑
a,x,y

βx,ya,1 p(a, 1|x, τy)

=
∑
a,x

Tr

[(∑
y

βx,ya,1 τ
ᵀ
y

)
σSa|x

]
/dB

=
∑
a,x

Tr

[(
Fa|x −

α

|X |
11

)
σSa|x

]
/dB > 0,

(14)

where the inequality holds according to Eq. (3).
SUPPLEMENTARY NOTE 2: EQUIVALENCE

BETWEEN THE MDI-SM AND THE STEERING

FRACTION

Let us now rewrite the de�nition of the MDI steering
measure (MDI-SM), i.e., Eqs. 3 and 4 in the main text

S1 := max {W1 − 1, 0} , (15)

where

W1 := sup
β,P

W(P, β)

WLHS(β)

= sup
β,P

∑
a,x,y β

x,y
a,1 p(a, 1|x, τy)

supP̄∈LHS
∑
a,x,y β

x,y
a,1 p̄(a, 1|x, τy)

.

(16)

To show that S1 is a steering monotone and �nd out
the optimal P in Eq. (16), we rewrite Eq. (16). First,
if the trusted quantum inputs {τy} form a tomographi-
cally complete set, one can choose a set of coe�cients β
satisfying the spanned relation

Fa|x =
∑
y

βx,ya,1 τ
ᵀ
y ∀a, x, (17)

for any positive semide�nite operator {Fa|x � 0}. On
the other hand, the optimization over P is carried out
by Bob choosing a proper measurement, described by a
POVM {E1, 11 − E1}. With these in mind, Eq. (16) can
be reformulated as

W1 = sup
F�0,E1�0

∑
a,x Tr

[
E1(σa|x ⊗ F ᵀ

a|x)
]

supω∈LHS
∑
a,x Tr

[
E1(ωa|x ⊗ F ᵀ

a|x)
] ,
(18)

where F and ω, respectively, denote {Fa|x} and {ωa|x}
for brevity.
Since E1 is a POVM element, it is diagonalizable and

can be taken as a linear combination of rank-1 projectors
with coe�cients lying between 0 and 1. Since any rank-k
projector can be produced by acting a separable opera-
tion on the maximally entangled state, E1 can then be
written as

E1 =
∑
k,i

u(k)Ãki ⊗ B̃ki |Φ〉〈Φ|Ã
k†
i ⊗ B̃

k†
i ,

=
∑
k,i

Aki ⊗Bki |Φ〉〈Φ|A
k†
i ⊗B

k†
i ,

(19)

where u(k) denotes the coe�cients between 0 and 1,

Aki ⊗Bki =
√
u(k)Ãki ⊗ B̃ki (20)

is the rede�ned Kraus operators for each i, and (for

brevity) |Φ〉 denotes |ΦBB0
1 〉. Then, we can proceed to

write W1 as
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sup
F�0,Aki ,B

k
i

∑
a,x,k,i Tr

[
Aki ⊗Bki |Φ〉〈Φ|A

k†
i ⊗B

k†
i (σa|x ⊗ F ᵀ

a|x)
]

supω∈LHS
∑
a,x,k,i Tr

[
Aki ⊗Bki |Φ〉〈Φ|A

k†
i ⊗B

k†
i (ωa|x ⊗ F ᵀ

a|x)
]

= sup
F�0,Aki ,B

k
i

∑
a,x,k,i〈Φ|A

k†
i ⊗B

k†
i (σa|x ⊗ F ᵀ

a|x)Aki ⊗Bki |Φ〉

supω∈LHS
∑
a,x,k,i〈Φ|A

k†
i ⊗B

k†
i (ωa|x ⊗ F ᵀ

a|x)Aki ⊗Bki |Φ〉

= sup
F�0,Aki ,B

k
i

∑
a,x,k,i〈Φ|(A

k†
i σa|xA

k
i )⊗ (Bk†i F

ᵀ
a|xB

k
i )|Φ〉

supω∈LHS
∑
a,x,k,i〈Φ|(A

k†
i ωa|xA

k
i )⊗ (Bk†i F

ᵀ
a|xB

k
i )|Φ〉

= sup
F�0,Aki ,B

k
i

∑
a,x,k,i Tr

[
Ak†i σa|xA

k
i ·B

kᵀ
i Fa|xB

k†ᵀ
i

]
supω∈LHS

∑
a,x,k,i Tr

[
Ak†i ωa|xA

k
i ·B

kᵀ
i Fa|xB

k†ᵀ
i

]
= sup

F�0,Aki ,B
k
i

∑
a,x Tr

[
σa|x

∑
k,iA

k
iB

kᵀ
i Fa|xB

k†ᵀ
i Ak†i

]
supω∈LHS

∑
a,x Tr

[
ωa|x

∑
k,iA

k
iB

kᵀ
i Fa|xB

k†ᵀ
i Ak†i

]
≤ sup

F�0

∑
a,x Tr

[
σa|xFa|x

]
supω∈LHS

∑
a,x Tr

[
ωa|xFa|x

] .

(21)

The inequality right above is due to the fact that the
convex set F is a superset of the set after performing the
completely positive map, i.e.,

F′ := {
∑
k,i

AkiB
kᵀ
i Fa|xB

k†ᵀ
i Ak†i }a,x. (22)

The last formula in Eq. (21) is exactly the steering frac-
tion shifting with a coe�cient equal to one one [8] which
we will explicitly de�ne in the next section. Now, if Bob's
measurement is chosen as the projection onto the maxi-
mally entangled state, then

W1 :=
W(P, β)

WLHS(β)

∣∣∣
E1=|Φ〉〈Φ|

= sup
F�0

∑
a,x〈Φ|σa|x ⊗ F

ᵀ
a|x|Φ〉

supω∈LHS
∑
a,x〈Φ|ωa|x ⊗ F

ᵀ
a|x|Φ〉

= sup
F�0

∑
a,x Tr

[
σa|xFa|x

]
supω∈LHS

∑
a,x Tr

[
ωa|xFa|x

] ,
(23)

which achieves the upper bound. Therefore, the projec-
tion onto the maximally entangled state is the optimal
measurement for Bob to achieve the value of S1, i.e., the
supremum of Eq. (16), and S1 is equivalent to the steer-
ing fraction. We show below the proof of the equivalence
between the steering fraction and the steering robustness.

SUPPLEMENTARY NOTE 3: EQUIVALENCE

BETWEEN THE STEERING FRACTION AND

THE STEERING ROBUSTNESS

In this section, we explicitly prove the equivalence
between the steering fraction and the steering robust-

ness, although their equivalence is implicitly mentioned
in some references (see Ref. [4]).

The steering robustness (SR) is that the noisy assem-
blage mixing with a given assemblage {σa|x} such that
the steerability of the total assemblage is destroyed i.e.,

SR({σa|x}) = min µ

s.t.
σa|x + µπa|x

1 + µ
=
∑
λ

p(a|x, λ)p(λ)σλ,

{πa|x} is an assemblage,

(24)

which can be formulated as the following semide�nite
program (SDP):

SR({σa|x}) + 1 = min
{σ̃λ}

∑
λ

Tr (σ̃λ) (25a)

s.t.
∑
λ

D(a|x, λ)σ̃λ � σa|x ∀ a, x,

(25b)

σ̃λ � 0 ∀ λ, (25c)

where D(a|x, λ) := δa,λ(x) is the deterministic probabil-
ity distribution [5, 6]. We note that one can further de-
�ne the steering robustness of a given �quantum state"
ρAB , which is obtained by optimizing over all possible
assemblages {σa|x} Bob can obtain. It is equivalent with
the optimization over all Alice's possible measurements
{Ea|x} due to the relation σa|x = TrA(Ea|x ⊗ 11 ρAB)
for all a, x. Apparently, SR({σa|x}) is a lower bound on
SR(ρAB).

On the other hand, the steering fraction (SF) is de�ned
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as [8]

SF({σa|x}) + 1 = max
F�0

Tr
∑
a,x Fa|x σa|x

maxω∈LHS Tr
∑
a,x Fa|x ωa|x

,

(26)
which can rewritten as

SF({σa|x}) + 1 = max
F̃�0

Tr
∑
a,x

F̃a|x σa|x, (27)

where

F̃a|x :=
Fa|x

maxω∈LHS Tr
∑
a,x Fa|x ωa|x

� 0. (28)

Therefore, to prove the equivalence between Eqs. (24)
and (26), it is equivalent to prove

∑
a,x

D(a|x, λ)F̃a|x � 11 ∀λ. (29)

Proof. For each λ, the quantity 11 −
∑
a,xD(a|x, λ)F̃a|x

is multiplied by a subnormalized quantum state ρλ ≥ 0.
We take the trace, and sum over all λ:

Tr
∑
λ

(
11−

∑
a,xD(a|x, λ)Fa|x

maxω∈LHS Tr
∑
a,x Fa|xωa|x

)
ρλ

= 1−
Tr
∑
a,x Fa|xσ

US
a|x

maxω∈LHS Tr
∑
a,x Fa|xωa|x

,

(30)

which is non-negative for all ρλ � 0 and λ. Since the only
constraint between the free parameters ρλ is Tr

∑
λ ρλ =

1, we derive the condition

11−
∑
a,xD(a|x, λ)Fa|x

maxω∈LHS Tr
∑
a,x Fa|xωa|x

� 0 ∀λ, (31)

which is exactly the same as Eq. (29). With above, we
complete the proof.

SUPPLEMENTARY NOTE 4: SEMIDEFINITE

PROGRAMMING FOR

MEASUREMENT-DEVICE-INDEPENDENT

STEERING MEASURE

In this section, we show how to arrive the formulation
of the SDP described by Eq. 6 from the de�nition of Eq. 5
in the main text:

SLB1 (P) := max
{
WLB

1 (P)− 1, 0
}

(32)

The �rst step is to consider the quantity

WLB

1 (P) := sup
β

W(P, β)

WLHS(β)

=

∑
a,x,y β

x,y
a,1 p(a, 1|x, τy)

supP̄∈LHS
∑
a,x,y β

x,y
a,1 p̄(a, 1|x, τy)

(33)

and rede�ne the set of coe�cients {βx,ya,b } as

β̃x,ya,1 :=
βx,ya,1

supP̄∈LHS
∑
a,x,y β

x,y
a,1 p̄(a, 1|x, τy)

. (34)

The quantify supβWLB

1 (P) − 1 in Eq. (32) can then be
written as

max
β̃

∑
a,x,y

β̃x,ya,1 p(a, 1|x, τy)− 1, (35)

This optimization problem can be solved by the following
semide�nite program:

given {p(a, 1|x, τy)} and {τy}

max
β̃

∑
a,x,y

β̃x,ya,1 p(a, 1|x, τy)− 1

s.t. d11−
∑
a,x,y

D(a|x, λ)β̃x,ya,1 τy � 0 ∀λ

∑
y

β̃x,ya,1 τy � 0 ∀a, x,

(36)

Proof. For each λ, the quantity d11 −
∑
a,x,yD(a|x, λ)β̃x,ya,1 is multiplied by a positive semide�nite operator

TrB [|Φ〉〈Φ|(σλ ⊗ 11)], and Tr
∑
λ σλ = 1 with σλ � 0 ∀λ. After taking the trace and summing over all λ, we ob-
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tain

Tr
∑
λ

{(
d11−

∑
a,x,y

D(a|x, λ)β̃x,ya,1 τy

)
· TrB [|Φ〉〈Φ|(σλ ⊗ 11)]

}

= Tr
∑
λ

[|Φ〉〈Φ|(σλ ⊗ 11) · d]−
∑
a,x,y β

x,y
a,1

∑
λD(a|x, λ) Tr [|Φ〉〈Φ|(σλ ⊗ τy)]

maxP̄∈LHS
∑
a,x,y β

x,y
a,1 p̄(a, 1|x, τy)

= Tr
∑
λ

σλ −
∑
a,x,y β

x,y
a,1 p

LHS(a, 1|x, τy)

maxp̄∈LHS
∑
a,x,y β

x,y
a,1 p̄(a, 1|x, τy)

≥ 0.

(37)

Since the inequality holds for any positive semide�nite
operator TrB [|Φ〉〈Φ|(σλ ⊗ 11)], we obtain the �rst con-
straint in Eq. (36). The second equality in the above
equation comes from the fact that

Tr(|Φ〉〈Φ|(A⊗B)) = Tr(A ·BT)/d, (38)

and that the numerator of the second term in the second
line can be treated as a correlation obtained by Bob ap-
plying his measurement (corresponding to |Φ〉〈Φ|) on an
unsteerable assemblage, i.e.,

∑
a,x,y

βx,ya,1 Tr

[
|Φ〉〈Φ|

(∑
λ

D(a|x, λ)σλ ⊗ τy

)]
, (39)

leading to an unsteerable correlation {pLHS(a, 1|x, τy)}.
The last inequality holds because Tr

∑
λ σλ = 1 and

∑
a,x,y β

x,y
a,1 p

LHS(a, 1|x, τy)

maxp̄∈LHS

∑
a,x,y β

x,y
a,1 p̄(a, 1|x, τy)

≤ 1. (40)

The second constraint in Eq. (36) is due to the relation

F ᵀ
a|x =

∑
y

β̃x,ya,1 τy � 0 (41)

between the coe�cient {βx,ya,1 } and the standard steering

witness {Fa|x}, which is chosen to be positive semide�nite
when constructing the MDI-SM. �

With the above semide�nite program, Eq. (32) can be
computed, and it provides a lower bound on the MDI-SM
S1. Note that if one obtains an optimal set of coe�cients
β̃∗ for a correlation P1, this set β̃∗ is still a valid set,
although may not be optimal, for any other correlation
P2. That is, β̃∗ satis�es the constraints in Eq. (36) for
either P1 or P2. This means that when one obtains an
optimal set {β∗,x,ya,1 } for a given correlation, this set is also
a steering witness for some other steerable assemblages.
Therefore, we can de�ne MDI steering witnesses with the
following general formulation:∑

a,x,y

β∗,x,ya,1 p(a, 1|x, τy) ≤ 1 ∀ P ∈ LHS. (42)

SUPPLEMENTARY NOTE 5: THE OPTIMAL

TWO-QUBIT JOINT MEASUREMENT FOR BOB

Recall again that the original proposed MDI-SM is
written as (see Eqs. (15) and (16) in )

S1 := max{W1 − 1, 0}, (43)

with

W1 := sup
β

∑
axy β

x,y
a,1 p

∗(a, 1|x, τy)

supP̄∈LHS
∑
axy β

x,y
a,1 p̄(a, 1|x, τy)

, (44)

where the set of probability distributions

p∗(a, 1|x, τy) = Tr
[
E∗1 (σa|x ⊗ τy)

]
∀a, x, y (45)

is the optimal correlation obtained by performing the op-
timal projection E∗1 of Bob's joint measurement on the
assemblage {σa|x} and the quantum inputs {τy}. We
have proved that the projection onto the maximally en-
tangled state 1√

d

∑
i |i〉⊗|i〉 is the optimal one for Bob. In

what follows, we show that for Bob's assemblage {σa|x}
being a qubit, the four projections of the Bell-state mea-
surement, i.e.,

|Φ1〉 =
1√
2

(|00〉+ |11〉), |Φ2〉 =
1√
2

(|00〉 − |11〉),

|Φ3〉 =
1√
2

(|01〉+ |10〉), |Φ4〉 =
1√
2

(|01〉 − |10〉).
(46)

are all the optimal ones providing the optimal correla-
tion {p∗(a, b|x, τy)} if the set of tomographically com-
plete quantum inputs is composed of the eigenstates of
the three Pauli matrices. That is,

{τy} = {|0〉, |1〉, |V 〉, |H〉, |L〉, |R〉}, (47)

where {|0〉, |1〉}, {|V 〉, |H〉}, {|L〉, |R〉}, are, respectively,
the eigenstates of the Pauli matrices Z, X, and Y . In-
deed, the four Bell states in Eq. (46) can be transformed
into each other by applying some Pauli gates on them,
i.e.,

|Φb〉〈Φb| = (11⊗ Ub)|Φ1〉〈Φ1|(11⊗ U†b ) ∀b, (48)

where Ub ∈ {11, X, Y, Z}. Therefore, when Bob's mea-
surement outcomes correspond to the other three projec-
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tions (i.e., b 6= 1), the obtained correlation becomes

p∗∗(a, b|x, τy) := Tr
[
Eb(σa|x ⊗ τy)

]
= Tr

[
11⊗ Ub|Φ1〉〈Φ1|11⊗ U†b (σa|x ⊗ τy)

]
= Tr

[
|Φ1〉〈Φ1|11⊗ U†b (σa|x ⊗ τy)11⊗ Ub

]
= Tr

[
|Φ1〉〈Φ1|(σa|x ⊗ U†b τyUb)

]
= Tr

[
|Φ1〉〈Φ1|(σa|x ⊗ τy′)

]
= p∗(a, 1|x, τy′) ∀a, b, x, y.

(49)
It is easy to see that the elements of the set {τy′} remain
the same as that of the set {τy}. Therefore, the compo-
nents of the correlation {p∗∗(a, b 6= 1|x, τy)} are just a
permutation of the components of {p∗(a, 1|x, τy)}, which
means that these correlations can all achieve the value of
S1, i.e.,

Wb :=

sup
P∗∗,{βx,ya,b }a,x,y

∑
axy β

x,y
a,b p

∗∗(a, b|x, τy)

supP̄∈LHS
∑
axy′ β

x,y
a,b p̄(a, b|x, τy)

= sup
P∗,{βx,y

′
a,1 }a,x,y′

∑
axy′ β

x,y′

a,1 p
∗(a, 1|x, τy′)

supP̄∈LHS
∑
axy′ β

x,y′

a,1 p̄(a, 1|x, τy′)

=:W1 ∀b = 2, 3, 4.
(50)

SUPPLEMENTARY NOTE 6: BOUND

RELATIONS BETWEEN THE STEERING

ROBUSTNESS, THE ENTANGLEMENT

ROBUSTNESS, AND THE INCOMPATIBILITY

ROBUSTNESS

For readers' reference, in this section we brie�y review
the detailed formulation of the quantities mentioned in
the main text, including the steering robustness [6], the
entanglement robustness [9, 10], and the incompatibil-
ity robustness [11]. We also brie�y review their bound
relations proposed in Ref. [6, 12�14].

The entanglement robustness [9, 10] of a given quan-
tum state ER(ρAB) is the minimum amount the noisy
state one has to mix with, such that the mixture becomes
a separable state. That is,

ER(ρAB) = min t

s.t.
ρAB + tωAB

1 + t
is separable,

ωAB is a quantum state.

(51)

In general, it is hard to characterize the set of separa-
ble states. However, one can still relax this set to the
positive-partial-transposition states. Through this way,
a lower bound on the above solution can be obtained by

solving the following semide�nite program [15]:

min
ω̃AB

Tr(ω̃AB)− 1

s.t. ω̃TAAB � 0, ω̃AB � ρAB ,
(52)

where � denotes a matrix being positive semide�nite and
TA the partial transposition of the operator with respect
to the Hilbert space of A. In particular, if the given state
ρAB is a qubit-qubit or a qubit-qutrit state, which is also
the case we consider in this work, it has been shown that
this lower bound is tight [16].
In quantum theory, not all observables can be mea-

sured simultaneously. Such a property can be formulated
as that there is no single POVM describing a non-jointly
measurable measurement [17], i.e.,

Ea|x 6=
∑
λ

p(a|x, λ)Gλ, (53)

for some a, x, where {Ea|x}a is the POVM representing
the measurement input x and a is a measurement out-
come. Note that Gλ � 0 ∀λ and

∑
λGλ = 11. Here,

p(a|x, λ) is a probability distribution, and can be chosen,
without loss of generality, to be p(a|x, λ) = D(a|x, λ) :=
δa,λ(x). A way to quantify the incompatibility of given
measurements is to minimize the ratio of noisy measure-
ments one has to mix with, such that the mixture be-
comes jointly measurable. This incompatibility robust-

ness is formulated as [11],

IR({Ea|x}) = min r

s.t.
Ea|x + rNa|x

1 + r
=
∑
λ

p(a|x, λ)Gλ ∀a, x,

{Na|x}a is a POVM ∀x,

(54)

which can be solved by the following semide�nite pro-
gram:

IR({Ea|x}) = min
{G̃λ}

1

d

∑
λ

Tr[G̃λ]− 1

s.t.
∑
λ

D(a|x, λ)G̃λ � Ea|x ∀ a, x,

G̃λ � 0 ∀ λ,∑
λ

G̃λ = 11
1

d

∑
λ

Tr[G̃λ],

(55)

where d is the dimension of Ea|x.
Finally, let us review the bound relations used in our

work. In Ref. [6], it has been shown that the steering
robustness of the underlying quantum state is a lower
bound on the entanglement robustness, i.e.,

ER(ρAB) ≥ SR(ρAB) ≥ SR({σa|x}). (56)

On the other hand, it has been shown that the steer-
ing robustness of the assemblage is a lower bound on
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the incompatibility robustness of the involved measure-
ments [12�14], i.e.,

IR({Ea|x}) ≥ SR({σa|x}). (57)

With the above bound relations, we use the quantity
SLB1 (P) in the main text, with the fact SLB1 (P) ≤ S1 =
SR({σa|x}), to estimate the degree of entanglement of the
underlying state and the incompatibility of the involved
measurements.

SUPPLEMENTARY NOTE 7: EXPERIMENTAL

DETAILS

In this section, we give a detailed description of our ex-
perimental setup, including the preparation of the system
state, the auxiliary input states, and the implementation
of the Bell-state measurement. In addition, a simple cir-
cuit diagram for our experimental MDI-SM scenario is
presented in Fig. 1.

System

Ancilla

x

FIG. 1. Quantum circuit diagram for our exper-

imental MDI-SM scenario. The symbols marked with
pink and blue color represent Alice's and Bob's operations
respectively. The Werner state ρAB is prepared by the op-
eration Ω which generates the white noise on the system
|ψ−〉 = 1/

√
2(|HV 〉 − |V H〉). On Alice's side, the qubit-

measurement with classical input {x} is realized by the oper-
ator {Ux} and the measurement on the computational basis.
On Bob's side, the ancilla state {τy} is prepared by {Uτy},
then a Bell-state measurement is implemented by the CNOT
gate and the joint measurement of the control qubit and the
target qubit. More details can be referred to the setup dia-
gram of Fig. 2 in the main text.

A. Preparation of the system state

A 100 mW continuous laser beam passes through
a HWP@404 nm to make the horizontally polarized
(H) component and vertically polarized (V ) compo-
nent balanced. The beam is focused on two type-I
phase-matched β-barium borate crystals (BBO) (0.5 mm
×6 mm×6 mm), whose optical axes are normal to each
other, to produce a pair of entangled photons with 808
nm. The photons are sent to Alice and Bob through the
single-mode �bers. The set of components marked as Ω is
where the photon is re�ected by or transmitted through
a 50:50 BS. In our experiment, the photons are �ltered

by 3 nm bandwidth interference �lters (IF), creating a
coherence length of about 269λ. When the photon is re-
�ected and takes the long path, the wave packet of the
photon will be split into four incoherent parts via the
three 386λ quartz plates (QP) and a 22.5◦ rotated HWP,
and the system state will dephase to a completely mixed
state [18, 19]. At last, the re�ected part, combined with
the transmission part, incoherently prepare the Werner
state, and the visibility v can be tuned by the attenu-
ators. Note that, here, the path di�erence between the
two BSs is 0.15 m, which is much longer than the coher-
ence length. Therefore, the prepared Werner state is an
incoherent mixture, instead of a coherent superposition.

In our experiment, the detailed forms of the prepared
states are obtained by standard tomography, and the
local measurements are realized by properly adjusting
the con�guration of the experimental setup shown in
Fig. 2 of the main text. To be speci�c, Bob adjusts
H2 to the angle of 0◦ to make the photon pass through
Path-1 entirely, and then uses the QWP, HWP combined
with the following polarizing beam splitter (PBS), to
complete the standard polarization analysis; while Q1,
H1 and the PBS are used on Alice's side. In our ex-
periment, we prepare the Werner states with the visi-
bilities v = 0.9934(11), 0.8575(56), 0.7250(72), 0.5870(77)
and 0.4689(72), and the corresponding �delities are
0.996(1), 0.980(7), 0.958(6), 0.959(12) and 0.977(2) re-
spectively. By projecting onto |HH〉〈HH| and
|V V 〉〈V V |, the visibilities of the Werner states can be
obtained through

v = 1− 2(Tr[ρAB(|HH〉〈HH|+ |V V 〉〈V V |)]. (58)

B. Preparation of the auxiliary input state

On Bob's side, the quantum input τy is encoded on the
path degree of freedom of Bob's particle. The blue box la-
belled τy in Fig. 2 (the detailed structure is shown below)
behaves like a non-polarization beam splitter. Here, the
main component is the designed beam displacer (BD),
which can make the V light pass through it directly and
make the H light pass through it with a 4 mm displacer
at behaves 808 nm parallel with V . First, the photons
are separated into two beams with the �rst BD; then a
cut HWP is used to unify the polarization of the photons.
The second BD splits the H(V ) component of the input
light once again into 0H and 1H (0V and 1V ) with the
ratio cos2 θ/ sin2 θ, where θ is the rotation angle of the
half-wave plate H2. At last, the third BD combines the
0H and 0V components into the output light 0, and 1H
and 1V components into the output light 1. By slightly
tilting the third BD, we can compensate the phase of the
two-photon state |HV 〉 − |V H〉. At the same time, the
phase between 1H and 1V is controlled by tilting the
HWP.
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C. Bell state measurement

Now let us illustrate the way to implement Bob's op-
timal joint measurement, i.e., Bell-state measurement.
The photons in path 1 undergo a bit-�ip operation
while the photons in path 0 undergo an identity oper-
ation. The two operations together are equivalent to

a controlled-NOT (CNOT) gate. The following steps
are joint measurements of the control qubit and the tar-
get qubit of the CNOT gate. The ports D1, D2, D3
and D4 correspond to the measurements in the basis
H⊗(0+1), H⊗(0−1), V ⊗(0+1), and V ⊗(0−1), respec-
tively, implementing a complete Bell-state measurement.
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