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S1. THEORETICAL TOOLS

A quantum resource theory (QRT) has several indispensable ingredients, including: constraints, states which contain
no resource, and a measure for how much resource a state possesses. The constraints, known as free operations,
in a QRT are often desirable from a practical perspective that reflects current experimental capabilities. The states
that contain no resource are often referred to as free states, and these can be generated by free operations without
any cost. In the following, let us first briefly recall some basic information about free states and free operations in
coherence theory.

A. Free states in the resource theory of quantum coherence

The free states in the resource theory of quantum coherence are incoherent states [1]. A quantum state ρ is said to
be incoherent in a given reference basis {|i〉} if that state is diagonal in this basis, i.e.,

ρ =
∑

i

pi |i〉〈i|, (S1)

where 0 ≤ pi ≤ 1, for all i, and
∑

i pi = 1. The reference basis is often chosen according to the context of the story,
usually motivated by physical grounds of being easy to synthesize or store, e.g., eigenbasis of the Hamiltonian in
quantum thermodynamics, polarization or path degree of a photon, internal states of an ionic atom, and so on.

For bipartite systems partitioned by A and B, each with respective local reference bases {|i〉A} and {| j〉B}, the
incoherent states take the form

χAB =
∑

i j

pi j |i〉〈i|A ⊗ | j〉〈 j|B, (S2)

where 0 ≤ pi j ≤ 1, and
∑

i j pi j = 1. Note that in the aforementioned bipartite systems, we can also choose an
orthogonal complete set of entangled pure states as the reference basis. In this case, the bipartite systems are viewed
as a single physical system.

In the above case, coherence in both A and B are viewed as resources. In the task of assisted distillation of quantum
coherence [2], involving a bipartite system (Alice and Bob) where only the coherence of Bob is viewed as a resource,
the quantum-incoherent (QI) states are introduced and can be regarded as free states,

χA|B =
∑

i

pi σ
A
i ⊗ |i〉〈i|

B. (S3)

Here, σA
i is an arbitrary quantum state on Alice’s side and the state |i〉B belongs to the local incoherent basis of Bob.
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B. Quantification of quantum coherence in single and bipartite systems

Several coherence measures have been proposed, for quantifying the degree of coherence in both single systems
and bipartite systems.

Regarding the degree of coherence in a single system, we adopt the most popular quantifier: the relative entropy of
coherence (REC). The REC captures how far a given state ρ is from the set of incoherent states,

Cr(ρ) = min
χ∈I

S(ρ‖χ), (S4)

where S(ρ‖χ) denotes the relative entropy between two quantum states ρ and χ,

S(ρ‖χ) = Tr(ρ log2 ρ − ρ log2 χ), (S5)

and the minimization in Eq. (S4) is taken over all incoherent states. Another representation of REC is

Cr(ρ) = S[∆(ρ)] − S(ρ), (S6)

where ∆ denotes the dephasing operation in the incoherent basis, and S(ρ) denotes the von Neumann entropy of a
quantum state ρ,

S(ρ) = −Tr(ρ log2 ρ). (S7)

The REC has operational significance as it equals the distillable coherence (DC) Cd [3],

Cd
(
ρ
)

= sup
{
R : lim

n→∞

(
inf
Λ
‖Λ

[
ρ⊗n]

−Φ⊗bRnc
2 ‖

)
= 0

}
, (S8)

where, ‖A‖ = Tr
√

A†A is the trace norm, and the infimum is taken over all incoherent operations Λ. Similar to the
entanglement distillation, general quantum states ρ can be used for asymptotic distillation of maximally coherent
states via incoherent operations.

Regarding the quantification of coherence on one subsystem in a bipartite system, the quantum-incoherent relative
entropy of coherence (QI REC) is defined as [2]

CA|B
r (ρAB) = min

χA|B∈IA|B
S(ρAB

‖χA|B), (S9)

where the minimum is taken over the set of QI states. The QI REC CA|B
r captures how close a quantum state is from the

set of QI states. Another expression is [2]

CA|B
r (ρAB) = S[∆B(ρAB)] − S(ρAB), (S10)

where ∆B denotes dephasing in the incoherent basis of Bob.

C. Free operations in the resource theory of quantum coherence

The free operations in the QRT of coherence in a single system are operations that do not create coherence from
incoherent states,

Λ(ρ) ∈ I, ∀ρ ∈ I, (S11)

where I denotes the set of incoherent states. Such operations constitute the largest possible set that are free and
referred to as maximally incoherent operations. One subset of such free operations are incoherent operations, which
were first introduced in [1], specified by a set of Kraus operators {Kn}, satisfying that each of its Kraus operators is
incoherent,

KnIK†n ⊂ I
∗, ∀n, (S12)

where I∗ denotes the set of diagonal semi-definite Hermitian operators. A general completely positive and trace
preserving (CPTP) map Λ is incoherent if there exists at least one incoherent Kraus representation. Then the dephasing-
covariant incoherent operations (DIO) are maps Λ which commute with the dephasing operation ∆, i.e., ∆[Λ(ρ)] =
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Λ[∆(ρ)]. And finally, the strictly incoherent operations form the smallest set of free operations, where both Kn and K†n
are incoherent operators.

Regarding the resource theory of coherence in a bipartite scenario, where the coherence of one subsystem is viewed
as resource, the local quantum-incoherent operations and classical communications (LQICC) protocol was first introduced
in [2]. In a bipartite system involving Alice and Bob, Bob is restricted to perform only local incoherent operations
while Alice can perform arbitrary quantum operations on her system. Classical communications between them
are allowed. The QI REC has the operational meaning that it upper bounds the optimal generation rate of the
maximally coherent state |Φ2〉 on Bob’s side in the LQICC protocol. The distillable coherence of collaboration (DCC) was
first introduced in [2],

CA|B
d

(
ρAB

)
= sup

{
R : lim

n→∞

(
inf
Λ
‖Λ

[(
ρAB

)⊗n
]
−Φ⊗bRnc

2 ‖

)
= 0

}
, (S13)

where the infimum is taken over all LQICC operations Λ and bxc returns the maximum integer no larger than x. This
quantity is upper bounded by CA|B

r (ρAB) for general mixed quantum states ρAB, and the equality can be achieved for
pure bipartite resource state |Φ〉AB and specific class of mixed states like maximally correlated states. But for general
states, like Werner states, the upper bound cannot be reached.

D. Relation between the QI relative entropy of coherence and the steering induced coherence

First we introduce a relation between the QI REC and the steering induced coherence (SIC).

Proposition 1—For a bipartite state ρAB, the SIC is upper bounded by the QI REC; i.e., we have

CA|B
r (ρAB) ≥ C̄B

r (ρAB). (S14)

Proof —Note that the QI REC can be expressed as

CA|B
r (ρAB) = min

χA|B∈IA|B
S(ρAB

||χA|B) = S[ρAB
||∆B(ρAB)]. (S15)

Recall that the quantum relative entropy has many important properties, such that [4, 5]:

(a) S[Λ(ρ)||Λ(σ)] ≤ S(ρ||σ), (S16a)

(b)
∑

i

piS
(
KiρK†i /pi||KiσK†i /qi

)
≤

∑
i

S
(
KiρK†i ||KiσK†i

)
, (S16b)

(c) S

∑
i

PiρPi||
∑

i

PiσPi

 =
∑

i

S
(
PiρPi||PiσPi

)
, (S16c)

(d) S
(
Pi ⊗ ρ||Pi ⊗ σ

)
= S(ρ||σ), (S16d)

(e) S
(
Trpρ||Trpσ

)
≤ S(ρ||σ) (S16e)

where pi = Tr
(
KiρK†i

)
, qi = Tr

(
KiσK†i

)
, and {Pi} is a set of orthogonal projectors.

Note that {MA
n } is a set of local measurement operators on Alice’s system, corresponding to the measurement

outcome n. Thus with property (a) in Eq. (S16), we have

CA|B
r (ρAB) = S[ρAB

||∆B(ρAB)] ≥ S

∑
n

MA
nρ

AB(MA
n )†||

∑
n

MA
n ∆B(ρAB)(MA

n )†
 . (S17)

Following (b) in Eq. (S16) and [5], if we denote δB
n = TrAMA

nρ
AB(MA

n )†, pn = Tr(δB
n), and ρB

n =
δB

n
pn

, we have

S

∑
n

MA
nρ

AB(MA
n )†||

∑
n

MA
n ∆B(ρAB)(MA

n )†
 ≥∑

n

pnS
[
MA

nρ
AB(MA

n )†/pn||MA
n ∆B(ρAB)(MA

n )†/qn

]
. (S18)
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Then with property (e) in Eq. (S16), we can obtain∑
n

pnS
[
MA

nρ
AB(MA

n )†/pn||MA
n ∆B(ρAB)(MA

n )†/qn

]
≥

∑
n

pnS
[
ρB

n ||∆
B
(
ρB

n

)]
=

∑
n

pnCB
r

(
ρB

n

)
. (S19)

Note that
∑

n pnCB
r (ρB

n) is the average coherence that Bob can obtain with Alice’s measurement choice {MA
n } and

classical communications. No matter what measurement Alice actually chooses, Bob will reach an average coherence
no greater than CA|B

r (ρAB). Hence, we have CA|B
r (ρAB) ≥ C̄B

r (ρAB).

E. Difference between the QI relative entropy of coherence and quantum correlations

Note that the QI REC is essentially different from the measures of quantum correlations. First, any state that is
not quantum-incoherent has nonzero QI REC. The difference between the measures of quantum correlations and
the QI REC is that the latter is basis-dependent. One of the most popular measures of quantum correlations is the
relative entropy of quantum discord [6–8], defined as

D(ρAB) = min
δAB∈CC

S(ρAB
||δAB) (S20)

where CC denotes the set of classical correlated states that can be written in the form of the sum of projectors

δAB =
∑

k,l

pkl |k〉〈k|A ⊗ |l〉〈l|B. (S21)

Now consider a family of bipartite states

f AB =
∑
k,m

pkm |k〉〈k|A ⊗ |m〉〈m|B, (S22)

where |k〉A is any orthonormal basis of Alice, and |m〉B is any orthonormal basis of Bob that is not incoherent. Obviously,
f AB is not quantum-incoherent and thus has a nonzero QI REC, while f AB has zero discord or entanglement.
Moreover, we can also construct states that are quantum-incoherent but have nonzero quantum discord.

F. Concurrence

The concurrence is an entanglement monotone, defined for a mixed state of two qubits as:

EAB
c (ρ) ≡ max (0, λ1 − λ2 − λ3 − λ4) , (S23)

where λ1, ..., λ4 are the eigenvalues of the Hermitian matrix R =
√
√
ρρ̃
√
ρ, with

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (S24)

where ρ∗ denotes the spin-flipped state of ρ, σy a Pauli spin matrix, and the eigenvalues are listed in decreasing order.

S2. DYNAMICAL BEHAVIORS OF THE INFORMATION CARRIERS BASED ON COHERENCE IN OPEN SYSTEMS:
THEORETICAL PROOF

Proof of Lemma 1—The family of IOSDs will preserve incoherent states; i.e., for each ρ ∈ I, we have

Λt(ρ) ∈ I, (S25)

for any t ≥ 0. Let us denote the quantum states after evolution time s and t (0 ≤ s ≤ t) are ρs and ρt. Then the REC
of ρt and ρs can be evaluated as

Cr(ρt) = S[ρt||∆(ρt)], (S26a)
Cr(ρs) = S[ρs||∆(ρs)]. (S26b)
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Note that if {Λt} is Markovian, we have Λt = Λt,sΛs,0, and Λt,s is CPTP. Hence, we can use the relation

S[ρt||∆(ρt)] ≤ S[Λt,s(ρs)||Λt,s∆(ρs)], (S27)

and the definition of coherence measure yields

Cr(ρt) = min
δt∈I

S(ρt||δt) ≤ S[ρt||Λt,s∆(ρs)]. (S28)

Then we can obtain

Cr(ρt) ≤ S[Λt,s(ρs)||Λt,s∆(ρs)] ≤ Cr(ρs). (S29)

We have also used the property in Eq. (S16) that the quantum relative entropy is contractive under CPTP maps.
Thus we complete the proof.

Proof of Lemma 2—Following [9] and the proof of Lemma 1, with

Cr(ρAB
t ) = S[ρAB

t ||∆
AB(ρAB

t )], (S30a)

Cr(ρAB
s ) = S[ρAB

s ||∆
AB(ρAB

s )], (S30b)

we have

Cr(ρAB
t ) ≤ S[ΛA

t,s(ρ
AB
s )||ΛA

t,s∆
AB(ρAB

s )] ≤ Cr(ρAB
s ). (S31)

Thus we see the dynamical behavior of the extended coherence during an IOSD.

From the above two Lemmas, we can see that both the coherence of the open system and the extended coherence
of the open system and the ancilla decrease monotonically during an IOSD, and they can be used for efficiently
detecting non-Markovianity in IOSDs. However, there are dynamics that are not incoherent. Hence, both of these
information carriers will not decrease monotonically in these processes. We then prove Theorem 1, showing the
monotonic behaviors of the QI REC during general open system dynamics.

Proof of Theorem 1—First we prove that the QI REC decreases monotonically during a Markovian evolution on
Alice. The quantum states (initially ρAB) after evolution time s and t (0 ≤ s ≤ t) are ρAB

s and ρAB
t . We can express the

QI REC as follows,

CA|B
r (ρAB

t ) = S[ρAB
t ‖∆

B(ρAB
t )] = S[ΛA

t,s(ρ
AB
s )‖∆BΛA

t,s(ρ
AB
s )]. (S32)

As ∆B acts only on B, and ΛA
t,s acts only on A, we have

∆BΛA
t,s(·) = ΛA

t,s∆
B(·). (S33)

Combining the contractive property, if the intermediate map ΛA
t,s is CP, we have

S[ρAB
t ‖∆

B(ρAB
t )] ≤ S[ρAB

s ‖∆
B(ρAB

s )]. (S34)

Thus during a Markovian process, the QI REC decreases monotonically.
Proof of Theorem 2—Then we prove that the SIC decreases monotonically during a Markovian evolution on Alice.

It is well known that any CPTP operation on Alice can be constructed by first implementing a unitary U to A and an
ancilla A′, then discarding A′. The corresponding mathematical formulation can be described by

Λ(ρA) = TrA′ [U(ρA
⊗ ρA′ )U†], (S35)

where ρA and ρA′ denote the quantum states of A and A′.
Note that if Bob shares a multipartite state ρA1...AnB made of n parties A1,An, ...An, the generalized steering-induced

coherence can be expressed as

C̄B
r (ρA1...AnB) = max

MA1 ...An

∑
m

pmCr(ρB
m), (S36)
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whereMA1...An denotes the collective measurements across n particles. In our case, Alice (A), Bob and the ancilla A′

share a tripartite state before the unitary U, where A and A′ are uncorrelated. The overall state admits the form

ρA′AB = ρA′
⊗ ρAB. (S37)

As any collective measurement on A and A′ will reduce to a positive-operator valued measure (POVM) on A, and the set
of all collective measurements on AA′ forms a strict larger set than the set of all local measurements, yielding higher
average coherence that can be obtained on Bob’s system in general. Thus, we obtain the following relation,

C̄B
r (ρA′AB) = max

MAA′

∑
m

pmCr(ρB
m) ≥ C̄B

r (ρAB). (S38)

The above inequality is valid in a more general case when A and A′ are correlated. However, in the case when A′

and A are product states, we have

C̄B
r (ρA′AB) = C̄B

r (ρAB). (S39)

First we present the proof of this statement. Consider a collective measurement, specified by

{M
k
A′A =

∑
i

sk
i |s

k
i 〉〈s

k
i |}, (S40)

which acts on A and A′, where {sk
i } and {|sk

i 〉} are the eigenvalues and eigenvectors of Mk
A′A. The normalization

condition leads to ∑
k

M
k
A′A = I, (S41)

where I denotes the identity operator on A and A′. The reduced POVM on A satisfies

Tr
(
Mk

Aρ
A
)

= Tr
(
M

k
A′Aρ

A′
⊗ ρA

)
. (S42)

Here Mk
A denotes a local measurement operator corresponding to k, which can be constructed by

Mk
A =

∑
a′,i

sk
i 〈a
′
|sk

i 〉〈s
k
i |ρ

A′
|a′〉, (S43)

which corresponds to the auxiliary state ρA′ , and |a′〉 denotes orthogonal basis on A′. Then after implementing the
POVM, Bob can obtain the state ρB

k from according to each Mk
A. The state of Bob can be expressed as

ρB
k =

TrAMA
k ρ

AB

TrABMA
k ρ

AB
. (S44)

Denoting pk = TrABMA
k ρ

AB, the average coherence obtained by Bob after the implementation of the POVM can be
expressed as

C̄B
r (ρAB

|MA) =
∑

k

pkCB
r (ρB

k ). (S45)

If we denote the state ρB
k|AA′ as Bob’s state after Alice’s and the ancilla’s measurement Mk

AA′ , then we have

ρB
k|AA′ =

TrAA′
∑

i sk
i |s

k
i 〉〈s

k
i |ρ

A′
⊗ ρAB

TrA′AB
∑

i sk
i |s

k
i 〉〈s

k
i |ρ

A′ ⊗ ρAB
=

TrA
∑

i,a′ sk
i 〈a
′
|sk

i 〉〈s
k
i |ρ

A′
|a′〉ρAB

TrAB
∑

i,a′ sk
i 〈a
′|sk

i 〉〈s
k
i |ρ

A′ |a′〉ρAB
= ρB

k . (S46)

We can see that each measurement on AA′ can be realized by a measurement on A, while does not change the Bob’s
steered state.

From this we can see that the average coherence, obtained from any collective measurement on A′ and A, is no
greater than that is obtained from a proper designed measurement on A if A and A′ are product states. After the
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CPTP operation on A, which is realized by the unitary on A′ and A, the maximum of the average coherence obtained
from the collective measurement remains unchanged, i.e.,

C̄B
r (ρA′AB) = C̄B

r (ρA′AB
U ), (S47)

where ρA′AB
U = UAA′ρA′AB(UAA′ )†. The average coherence obtained from the collective measurement on A and A′ is

upper bounded by C̄B
r (ρAB). After the unitary U, we have

C̄B
r (ρA′AB

U ) = C̄B
r (ρAB). (S48)

When tracing over A′, the set of measurements on A is a strict subset of the reduced POVMs corresponding to
collective measurements on A and A′. Thus, we have

C̄B
r (ρAB

U ) ≤ C̄B
r (ρA′AB

U ), (S49)

where ρAB
U denotes the final states of Alice and Bob after the implementation of U,

ρAB
U = TrA′ (ρA′AB

U ). (S50)

Using the fact that any CPTP map on A can be constructed by unitary interaction between A and an uncorrelated A′,
as denoted in Eq. (S35), the SIC of B will decrease under a CPTP map on A,

C̄B
r [ΛA(ρAB)] ≤ C̄B

r (ρAB). (S51)

Thus we complete the proof. This result shows that the Markovianity on Alice’s evolution will reduce the steerability of
Alice to Bob’s state, shrinking the accessible states of Bob, while the local state of Bob ρB will remain unchanged.

S3. NUMERICAL SIMULATIONS FOR DIFFERENT PROCESSES

In this section we present the numerical simulations to show the behaviors of the local coherence of a single
system, the extended coherence with an ancilla, the QI REC, and the SIC, under different non-Markovian quantum
dynamics. To simulate the behavior of the REC of a single qubit system, we use the initial pure state

|ψ0〉
A =

1
2

(√
3|0〉 + |1〉

)
. (S52)

And to simulate the dynamical behaviors of the extended coherence with an ancilla, the QI REC, and the SIC on a
bipartite system, we choose the initial two-qubit entangled state

|ψ0〉
AB =

1
4

(√
6|00〉 +

√

2|01〉 +
√

2|10〉 +
√

6|11〉
)
. (S53)

We consider two kinds of quantum dynamics: the amplitude-damping channels and the multiple decoherence
channels.

A. Amplitude-damping channels

We now consider the single-qubit amplitude-damping channels modeled by the Hamiltonian

Htot =
1
2
ω0σz +

∑
i

ωia†i ai +
∑

i

(
giσ+ai + g∗iσ−a†i

)
(S54)

where,ωi denotes frequency of the noise, gk is the coupling constant, σ+ and σ− are the raising and lowering operators
for the qubit. The master equation corresponding to the Hamiltonian in Eq. (S54) is given by

d
dt
ρt = −

i
4

S(t)
[
σz, ρ

]
+ γ(t)

(
σ−ρtσ+ −

1
2
{σ+ρtσ− − ρt}

)
(S55)
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where the qualities S(t) and γ(t) read

S(t) = −2Im
Ġ(t)
G(t)

, (S56a)

γ(t) = −2Re
Ġ(t)
G(t)

, (S56b)

and the decoherence function G(t) depends on the spectral density J(ω). Considering a Lorentzian shape spectral
density,

J(ω) =
γ0λ2

[(ω0 + δ − ω)2 + λ2]
, (S57)

and letting δ = 0, one obtains the decoherence function G(t) as

G(t) = exp
(
−λt

2

) [
cosh

(
dt
2

)
+
λ
d

sinh
(

dt
2

)]
(S58)

where d =
√
λ2 − 2γ0λ.

Here, we consider both Markovian dynamics (when γ0 < λ/2), and non-Markovian dynamics (when γ0 > λ/2).
The corresponding results are shown in Fig. S1 and Fig. S2, respectively.

In the Markovian regime, we choose γ0 = 0.2λ, the dynamical behaviors of the QI REC, the extended coherence,
and the local coherence, with respect to different bases are shown in Fig. S1. We simulate the dynamical behaviors
of the above coherence measures in different reference bases. In the Markovian regime of the amplitude-damping
channels, the QI REC and the extended coherence behaves monotonically. However, the local coherence behaves
differently in different reference bases; i.e., the monotonicity depends on the choice of reference basis. Note that
although the extended coherence of Alice and Bob behaves monotonically in all reference bases in the Markovian
regime of the amplitude-damping channel, it cannot be used for detecting non-Markovianity in the general evolution
as the case we have experimentally shown in the main text.

In the non-Markovian regime, we choose γ0 = 25λ, resulting in the non-Markovianity of the open system dynamics.
In this case, we simulate both the QI REC and the SIC with respect to different bases (as shown in Fig. S2). From
the simulation, we can see that during the amplitude-damping channel, the non-Markovianity can be detected with
both the QI REC and the SIC (note that in the above case the values of the SIC are coincident in all reference bases)
independent of the reference basis we choose.

B. Multiple decoherence channels

The dynamics of a single qubit in multiple decoherence channels can be considered for a two-level system with
the master equation

d
dt
ρt =

1
2

3∑
i=1

γi(t)(σiρtσi − ρt), (S59)

where σi denotes the ith Pauli matrix and γi denotes the relaxation rate. The dynamical map corresponding to
Eq. (S59) can be exactly worked out and is given by the random unitary dynamics

Λt(ρ) =

3∑
i=0

pi(t)σiρσi. (S60)

Here, for the Markovian dynamics, we set the paramaters γi(t) as follows

γ1(t) = γ2(t) = γ3(t) =
c
2
, (S61)

and for the non-Markovian dynamics, we set the aforementioned parameters as

γ1(t) = γ2(t) =
c
2
, (S62a)

γ3(t) =
cλ cos ct

2
, (S62b)
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( a )

( c )

( b )

( d )

Figure S1. Theoretical simulations for the Markovian amplitude-damping channels. In the Markovian regime, the simulations
of the dynamical behaviors of the QI REC (b), the extended coherence (c), and the local coherence (d) are shown. The reference
bases of Alice (Bob) are chosen as the eigenbasis of σ · n[θA(B)

i ] with different θA(B)
i , where n(θB

i ) = sin 2θB
i eX + cos 2θB

i eZ. During
the Markovian evolution, when γ0 = 0.2λ, both the QI REC and the extended coherence of ρAB decrease monotonically. The
dynamical behavior of the local coherence of A is non-monotonic and depends on the basis we choose.

where c > 0, and λ > 0, controlling the degree of non-Markovianity.

In the Markovian regime, the dynamics of the system can be exactly solved as

p0(t) =
1 + 3 exp(−2ct)

4
, (S63a)

p1(t) = p2(t) = p3(t) =
1 − exp(−2ct)

4
. (S63b)

The numerical simulations of the dynamical behaviors of the QI REC, the extended coherence, and the local
coherence, with respect to different bases (as shown in Fig. S3). In this case, all the above coherence measures behave
monotonically during the Markovian dynamics.
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ct
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Figure S2. Theoretical simulations for the non-Markovian amplitude-damping channels. In the non-Markovian regime,
γ0 = 25λ, the non-Markovianity can be captured by the QI REC (b) and the SIC (c), where the SIC behaves exactly the same in all
reference bases, chosen as the eigenbasis of σ · n(θB

i ) with different θB
i , where n(θB

i ) = sin 2θB
i eX + cos 2θB

i eZ.

In the non-Markovian regime, the dynamics of the system can be solved as

p0(t) =
1 + exp(−2ct) + 2 exp(−ct − λ sin ct)

4
, (S64a)

p1(t) = p2(t) =
1 − exp(−2ct)

4
, (S64b)

p3(t) =
1 + exp(−2ct) − 2 exp(−ct − λ sin ct)

4
. (S64c)

We set λ = 3.8. The dynamical behaviors of the QI REC, and the SIC are simulated with respect to different
bases, as shown in Fig. S4. We can see that in all reference bases chosen, the non-Markovianity can be captured by
both the temporal increase of the QI REC and the SIC. It should be noticed that our methods cannot capture the
non-Markovianity of all parameters of multiple decoherence channels.

S4. NON-MARKOVIANITY MEASURE BASED ON THE QI REC

In this section, we define a new method for non-Markovianity measure based on the QI REC, which is

NQI(Λ) = max
|i〉B

∫
σ>0

σ(t, |i〉B), (S65)

where

σ(t, |i〉B) =
∂CA|Bi

r [Λ ⊗ I(|Φ〉〈Φ|)]
∂t

, (S66)

CA|Bi
r denotes theQI REC with respect to the reference basis {|i〉B} of Bob, and |Φ〉 can be any pure bipartite maximally

entangled state. Thus, this definition only needs optimization over all local bases of Bob’s system.
In order to figure out the property of this non-Markovianity measure, let us first recall two popular non-Markovian

measures. One was defined by Breuer, Laine, and Piilo (BLP) [10]. A dynamical map {Λt} is Markovian if the
distinguishability of any two evolving quantum states ρ and τ decreases, and the associated measure for non-
Markovianity measure is then defined as

NBLP = max
ρ,τ

∫
(∂‖ρt−τt‖/∂t)>0

∂‖ρt − τt‖

∂t
dt. (S67)
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Figure S3. Theoretical simulations for the Markovian multiple decoherence channels. In the Markovian regime, the numerical
simulations of the dynamical behaviors of theQI REC (b), the extended coherence (c), and the local coherence (d) are shown. The
reference basis of Alice (Bob) is chosen as the eigenbasis of σ · n[θA(B)

i ] with different θA(B)
i , where n(θB

i ) = sin 2θB
i eX + cos 2θB

i eZ. In
the Markovian regime, all information quantifiers behave monotonically independent of the basis chosen.

Here ρ and τ denote the initial pairs of quantum states, and ‖ · ‖ denotes the trace distance. However, this involves
a formidable optimization over all pairs of density operators, which is relatively harder to carry out when working
with a high-dimensional system.

The other one was proposed by Rivas, Huelga, and Plenio (RHP) in [11]:

NRHP =

∫
∞

0
lim
ε→0

Tr‖Λt+ε,t ⊗ I(|Φ〉〈Φ|)‖ − 1
ε

dt (S68)

where |Φ〉 denotes a maximally entangled state shared by the open system and ancilla. However, this approach needs
the computation of the transition map Λt+ε,t, which cannot be evaluated in general. Moreover, an entanglement
measure is often difficult to evaluate itself especially in a high-dimensional system.

Another advantage of this method in detecting non-Markovianity is that an initial entanglement or correlations
are not necessary. For example, consider an initial state

ρAB
0 =

1
2
|Φ+〉〈Φ + | +

1
2
|Ψ+〉〈Ψ + |, (S69)
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( a ) ( b ) ( c )

Figure S4. Theoretical simulations for the non-Markovian multiple decoherence channels. In the non-Markovian regime, the
non-Markovianity can be simultaneously captured by the temporal increase of the QI REC (b) and the SIC (c), in all reference
bases of Bob, chosen as the eigenbasis of σ · n(θB

i ) with different θB
i , where n(θB

i ) = sin 2θB
i eX + cos 2θB

i eZ.

where |Φ+〉 and |Ψ+〉 are Bell states

|Φ+〉 =
1
√

2
(|00〉 + |11〉),

|Ψ+〉 =
1
√

2
(|01〉 + |10〉).

(S70)

The initial ρAB has zero entanglement and discord but non-zero QI REC, i.e.,

EAB
0 (ρAB

0 ) = DAB
0 (ρAB

0 ) = 0,CA|B
r (ρAB

0 ) = 1. (S71)

Considering the dynamics in our experiments, the behavior of entanglement or discord is rather trivial and we
will not observe the non-Markovianity-induced temporal increase of these quantities. However, we can observe
an increase in the QI REC when the dynamics is not CP divisible. Thus we can use these states for detecting
non-Markovinaity via QI REC.

S5. EXPERIMENTAL ASPECTS

A. State preparation

In the state preparation module (I), two type-I phase-matched β-barium borate (BBO) crystals, whose optical axes
are normal to each other, are pumped by a continuous-wave Ar+ laser at 351.1 nm, with a power of around 50 mW, for
the generation of photon pairs with a central wavelength at λ=702.2 nm via a spontaneous parametric down-conversion
process (SPDC). A half-wave plate working at 351.1 nm set before the lense and BBO crystals is used to control the
polarization of the pump laser. The two polarization-entangled photons are then separately distributed through two
single-mode fibers (SMF), where one represents Bob and the other Alice. Two interference filters with a 4 nm full
width at half maximum (FWHM) are placed to filter out proper transmission peaks. HWPs at both ends of the SMFs
are used to control the polarization of both photons. A quarter-wave plate in Bob’s arm is used to compensate the
phase for the desired prepared state. A Fabry-Pérot cavity which is 0.06 mm thick and coated with a partial reflecting
coating on each side at 702.2 nm (actually the experimental accessible FP cavity is coated with a reflectivity of around
0.85 of both sides at 780 nm, which is close to the value of the reflectivity at 702.2 nm) can be inserted into Alice’s
arm to change her initial environment. The setup can generate arbitrary pure bipartite states

|ΨAB
〉 = |ψ(θ)〉AB

⊗ |χ〉A, (S72)
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where |ψ(θ)〉AB denotes the entangled pure states shared by Alice and Bob,

|ψ(θ)〉AB = cos 2θ|00〉 + sin 2θ|11〉, (S73)

with arbitrary tunable θ, and 0 ≡ H, 1 ≡ V, representing an incoherent basis. The maximally entangled state |ψ(π8 )〉
can be prepared with a fidelity of 0.985, with an interference visibility CDD : CDA & 100, where CDD (CDA) denotes
coincident events when Alice is in the state |D〉 = 1

√
2
(|0〉 + |1〉) and Bob is in the state |D〉 [ |A〉 = 1

√
2
(|0〉 − |1〉)]. The

environmental state can be expressed as

|χ〉A =

∫
dω f (ω)|ω〉, (S74)

which involves the amplitude f (ω) for Alice’s photon in a mode with frequency ω [12].

B. Evolution

In the evolution module (II), all plates (QPs, QWPs and HWPs) are mounted on rotation frames that allow us to
construct a dephasing process in an arbitrary orthogonal basis,

|n+(α)〉 = cosα|0〉 + sinα|1〉, (S75a)
|n−(α)〉 = − sinα|0〉 + cosα|1〉, (S75b)

where α depends on the angle of the optical axis of the QPs. A QWP (rotation angle set to α) in Alice’s arm is used for
phase compensation between the |n+(α)〉 and |n−(α)〉 polarized photons. The experimental evolution admits a simple
theoretical analysis which is described by a unitary transformation

|n±(α)〉 ⊗ |ω〉
U(α)
−−−→ exp(−in±ωt)|n±(α)〉 ⊗ |ω〉; (S76)

the corresponding dynamical map Λt takes the form,

|n+(α)〉〈n+(α)|
Λt
−→ |n+(α)〉〈n+(α)|, (S77a)

|n−(α)〉〈n−(α)|
Λt
−→ |n−(α)〉〈n−(α)|, (S77b)

|n+(α)〉〈n−(α)|
Λt
−→ κ(t)|n+(α)〉〈n−(α)|, (S77c)

|n−(α)〉〈n+(α)|
Λt
−→ κ∗(t)|n−(α)〉〈n+(α)|, (S77d)

where the decoherence factor reads

κ(t) =

∫
dω| f (ω)|2 exp(−i∆nωt), (S78)

and ∆n = n+−n− denotes the nonzero difference in the refraction indices of the |n+(α)〉 and |n−(α)〉 polarized photons.
All theoretical simulations are performed considering experimental imperfections, including the experimentally

prepared quantum states. For simulating the two aforementioned processes, ΛM
t and ΛNM

t , for Markovian and
non-Markovian dynamics, we made the assumption that in the experiments of the Markovian process, the frequency
distribution can be well described with a Gaussian profile with a standard deviation of 6.50×1012 Hz (its corresponding
FWHM is 3.4 nm). While the non-Markovian process can be well modeled by a sum of two Gaussians centered at
two different frequencies, corresponding to wavelengths 700.6 nm and 703.3 nm with amplitudes 0.65 and 0.35.

The essential difficulty in the experiments is the phase compensation for conducting the correct evolution. In
the first part of the experiments, the Markovian evolution is constructed as pure dephasing in the eigenbasis
{|n+(20◦)〉, |n−(20◦)〉} of σ · n0, where n0 = cos 40◦eX + sin 40◦eZ. Hence, we rotate all QPs to 20◦. In the ideal case,
we assume that no additional phase is introduced between |n+(20◦)〉 and |n−(20◦)〉. However, in our experiments, an
additional phase φ(t) will be introduced and the evolution of the extended coherence and the local coherence will
behave differently depending on the additional phase φ(t). For solving this problem, we insert a QWP with rotation
angle 20◦ to compensate the phase, removing φ(t). As we take experimental data using QPs with different lengths
for each evolution time t, the phase compensation is performed each time when we change the lengths of the QPs.
In the experiments with the non-Markovian process, since the dynamical behavior of neither the local coherence
nor the extended coherence is taken into consideration, the additional phase will not play an important role in the
experimental errors. Thus, the QI REC is more robust to phase errors in our protocols.
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C. State tomography and coherence detection

In the detection module (III), the extinction ratio of the reflected arm of a PBS is lower than the transmissive arm.
For improving the extinction ratio, we use a HWP with rotation angle set to 45◦ and another PBS placed in the
reflected arm, resulting in an increase in the extinction ratio. Thus the precision of the tomography process can be
improved.

We use multi-mode fibers for directing photons from the free space to the detectors. The use of multi-mode fibers
can increase and stabilize the collection efficiency of the photons. The power of the 351.1 nm continuous laser is set
to about 50 mW, and the coincidence window is set at 4 ns, resulting in around 1000 coincident events in one second.

The overall quantum state can be reconstructed via the combination of four wave plates (two HWPs and two
QWPs) and two PBSs, performing a standard two-qubit state tomography. The state of a single system can also be
analyzed via two wave plates and one PBS on Alice’s side, while Bob’s photons are used as the trigger. Then the
coherence-related measures can be calculated directly from the experimentally reconstructed quantum states ρ̃.

∗ gyxiang@ustc.edu.cn
[1] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev.

Lett. 113, 140401 (2014).
[2] E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso,

and M. Lewenstein, Phys. Rev. Lett. 116, 070402 (2016).
[3] A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404 (2016).
[4] V. Vedral, Rev. Mod. Phys. 74, 197 (2002).
[5] V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 (1998).
[6] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901

(2001).

[7] L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001).
[8] K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral,

Rev. Mod. Phys. 84, 1655 (2012).
[9] Z. He, H.-S. Zeng, Y. Li, Q. Wang, and C. Yao, Phys. Rev.

A 96, 022106 (2017).
[10] H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103,

210401 (2009).
[11] A. Rivas, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett.

105, 050403 (2010).
[12] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M.

Laine, H.-P. Breuer, and J. Piilo, Nat. Phys. 7, 931 (2011).

mailto:gyxiang@ustc.edu.cn
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/ 10.1103/PhysRevLett.116.070402
http://dx.doi.org/10.1103/PhysRevLett.116.120404
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/ 10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.105.050403

	Supplementary Materials for  Detecting Non-Markovianity via Quantified Coherence: Theory and Experiments
	Theoretical tools
	Free states in the resource theory of quantum coherence
	Quantification of quantum coherence in single and bipartite systems
	Free operations in the resource theory of quantum coherence
	Relation between the QI relative entropy of coherence and the steering induced coherence
	Difference between the QI relative entropy of coherence and quantum correlations
	Concurrence

	Dynamical behaviors of the information carriers based on coherence in open systems: theoretical proof
	Numerical simulations for different processes
	Amplitude-damping channels
	Multiple decoherence channels

	Non-Markovianity measure based on the QI REC
	Experimental aspects
	State preparation
	Evolution
	State tomography and coherence detection

	References


