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A local and scalable lattice renormalization method for
ballistic quantum computation
Daniel Herr 1,2, Alexandru Paler 3, Simon J. Devitt 4,5 and Franco Nori 1,6

A recent proposal has shown that it is possible to perform linear-optics quantum computation using a ballistic generation of the
lattice. Yet, due to the probabilistic generation of its cluster state, it is not possible to use the fault-tolerant Raussendorf lattice,
which requires a lower failure rate during the entanglement-generation process. Previous work in this area showed proof-of-
principle linear-optics quantum computation, while this paper presents an approach to it which is more practical, satisfying several
key constraints. We develop a classical measurement scheme that purifies a large faulty lattice to a smaller lattice with
entanglement faults below threshold. A single application of this method can reduce the entanglement error rate to 7% for an
input failure rate of 25%. Thus, we can show that it is possible to achieve fault tolerance for ballistic methods.
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INTRODUCTION
Several physical platforms are aiming at achieving quantum
computing.1 For example, a qubit can be implemented using
superconductors,2 silicon,3,4 trapped ion systems,5,6 or using linear
optics.7,8 Major advances in the fidelity of these qubits have made
the application of error-correction codes, such as the surface
code,9 feasible. The surface code is of particular interest due to its
high threshold9 and 2D nearest-neighbor layout. While the surface
code is suitable for qubit implementations which are relatively
easy to control, linear-optics quantum computation10 is based on
a slightly different principle, where photons are entangled in a
cluster state which is then consumed during the computation.
This quantum one-way computer was proposed by Raussendorf
et al.11,12 A high-level implementation for such a quantum
computer can be divided into three steps:13,14

1. Photon sources: delivers GHZ-triplets.
2. Entangling layer: generates the cluster state.
3. Measurements: measurements in different bases allow for

universal computation.

While cluster states have also been studied for solid-state
qubits,15–17 this scheme is better suited for photonics because it
prioritizes measurements over the sequential application of
quantum gates, and thus utilizes the ability to generate photons
continuously.
The original proposal11,12 was not protected against errors but a

similar approach can introduce fault tolerance.18 This approach
uses the Raussendorf lattice as an underlying resource which
protects the logical state both against noise and photon loss.19

There are several approaches for creating a cluster state for
quantum one-way computation.19 A drawback of linear optics is
that the process of creating entanglement is non-deterministic.
Thus, there remains a non-zero probability that each

entanglement operation fails and the resulting lattice misses
edges. Some approaches like20 try to remedy the probabilistic
nature by adding redundancy to the entangling procedures.
However, these approaches require many switches which rely on
the outcome of previous entangling operations and add more
noise to the system. Another approach is to just use these non-
deterministic gates and generate a faulty lattice. This ballistic
approach8 of linear-optics quantum computation recently gained
attention due to improved theoretical entangling operations21,22

which fail with 25% probability. In ref. 23, the percolation threshold
for the Raussendorf lattice has been calculated to be 37.3%. Thus,
a bond-failure rate of 25% is low enough for the lattice to
percolate and therefore information can be transported from one
end to the other, given a large enough faulty lattice.24

In order to build a large-scale quantum computer, this ballistic
approach to linear-optics quantum computing should generate
the Raussendorf lattice which then allows for fault-tolerant
computation. Classical control software must now be developed
in order to cope with 25% of faulty entanglement operations,
while still retaining these error-correction capabilities. In this
paper, we provide an example of such an algorithm which is
based on ref. 24 and that acts as a preprocessing step. One should
note that the approach in ref. 24 has two major limitations: (i) only
in 1D; (ii) it is not fault-tolerant. Our approach has neither of these
drawbacks when it is combined with the usual Raussendorf lattice
error-correction schemes.25–27 It should be noted that the
preprocessing is not inherently fault-tolerant which results in a
trade-off between the rate of missing bonds and an accumulation
of errors due to imperfect measurements. The accumulation of
these errors, however, only shifts the threshold of the Raussendorf
lattice and can be remedied by higher fidelities of the
experimental setup.
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In the following we will review relevant concepts. We will give
the definition of graph states and explain how they can be
modified. Then we will review the Raussendorf lattice, its creation,
and its error-correction capabilities with a focus on faulty edges.

Graph states
Graph states28 are a generalization of cluster states29 and can be
described using a undirected graph G= (V, E) with vertices V and
edges E. Each vertex corresponds to a physical qubit initialized in
the þj i-state. On each edge, a controlled-phase gate is applied.
This results in the final state of:

ψj iGraph¼
Y

ði;jÞ2E
CZi;j þj i� Vj j: (1)

Using measurements, the graph can be modified to another
graph. The modification rules have been discussed in ref. 28. Our
proposal will only rely on two particular easy measurement
operations:

1. Z-measurement on qubit a: Remove {a} from the graph and
break all connections it was involved in.

2. Y-measurement on qubit a: Invert the neighborhood of a
and remove a from the graph. This method can be used to
generate long-distance edges.

Here, the neighborhood of a node is defined by Nbh(a)= {x∈ V|
(x, a)∈ E} and an inversion over a set of nodes N is defined by the
graph G= N; ða; bÞ 2 N2jða; bÞ 62 Ef gð Þ. An example of these two
rules on a square lattice is shown in Fig. 1.

Creation of the lattice
A special graph state with error-correction capabilities is given by
the Raussendorf lattice.18 It is a 3D lattice whose unit cell is shown
in Fig. 2a.
To create the Raussendorf lattice in a ballistic way, GHZ states

are needed as a resource. Three of these GHZ states can be
entangled to a five-node micro-cluster, using two probabilistic
fusion gates.30 There are two ways to apply these fusion gates,
with different additional resources. The fusion gate given in ref. 21

requires an additional pair of maximally entangled photons,
whereas ref. 22 requires four single photons. The creation of the
micro-clusters follows30 and all possible outcomes of the micro-
cluster generation are shown in Fig. 3.
The central node of each micro-cluster will correspond to a

node in the final lattice, while its surrounding nodes are
consumed in additional fusion operations to connect clusters
with each other. It can be seen in Fig. 3 that a failure during the

generation of these micro-clusters results in non-local entangle-
ment. However, it becomes exponentially unlikely for edges with
larger distances.
After the creation of the micro-clusters, each of these needs to

be entangled to its neighbors on the large lattice. This is where
our proposal deviates from,30 since the underlying lattice we try to
implement is the Raussendorf lattice and not the diamond lattice
from the original proposal.
In Fig. 2b the generation of this lattice is shown. Each micro-

cluster will correspond to a single node after all fusion gates have
been performed. The fusion of these micro-clusters happens with
a probability of 75%. Thus, 25% of the time fusion operations that
generate this lattice fail.

(a)

(b)

Fig. 1 Graph modification rules under measurement. This figure
shows how a regular lattice changes under a Z-basis a or a Y-basis b
measurement. These are the only measurement operations that our
purification procedure will need

Fig. 2 Raussendorf unit cell and its construction. The Raussendorf
unit cell is shown in part a. The spheres represent individual
photons and the connections between them represent entangle-
ment given by the definition of a graph state. The photons which
are colored in red contribute to a single X-parity check. Whereas the
white spheres correspond to the faces of the dual lattice, which
make up Z-parity check operations. Part b shows how the unit cell is
composed of micro-clusters. All neighboring pairs of dark nodes are
consumed during the application of the fusion operations. The
remaining white and red nodes correspond to the same color as in
part a. For simplicity, only successful micro-clusters are shown here.
See Fig. 3 to see all possible micro-cluster shapes
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Error correction
Error detection and correction can be done using parity checks on
particular nodes on the purified Raussendorf lattice. As an
example, the total parity in the X-basis of the qubits colored in
red (Fig. 2a) is conserved unless there has been an error. A self-
similar lattice which is shifted by half a unit-cell uses the photons
shown in white to perform Z-parity checks.
These parity checks together enable the error-correction

capabilities of the Raussendorf lattice. Furthermore, with the
method of ref. 26 the Raussendorf lattice is also protected against
photon losses. The main idea in this approach is to use the
linearity of the parity checks to form super cells and perform parity
checks on these. This resulted in a trade-off between the error rate
due to perturbations and the rate of photon loss. The best photon
loss rates that could still be corrected were around 25%.26

A lattice with faulty edges can be translated to a lattice with
missing nodes, by deliberately losing one of the photons at the
end of a faulty edge. This is done by performing a measurement in
Z-basis on one of these photons. A recent paper27 described this
as an adaptive correction scheme where the measurement basis
needs to be changed depending on the error. This adaptive
scheme can tolerate a loss rate of 14.5% of all edges. Another
approach is to keep measuring as usual and then in the classical
tracking software treat both qubits that are involved in the faulty
connection as lost photons. There, still correctable loss rates lie at
around 6.5%. Unfortunately, neither approach can correct for
bond failure rates of 25%, and thus preprocessing in some form
has to be performed.

RESULTS
The general idea of our graph purification proposal is to develop a
measurement scheme that translates a large Raussendorf lattice
with many faults into a smaller Raussendorf lattice with fewer
faults. Our procedure is based on ref. 24 which investigated how
path-finding procedures can help for quantum computation on a
faulty lattice. It is not a quantum error correcting code, such that
errors will accumulate during this step. Nevertheless, after this

preprocessing, the original lattice has been translated to a lattice
with fewer faults such that a general error-correction procedure
can be used.
The main requirements for such an algorithm are

1. The algorithm should be local, i.e., the algorithm’s correc-
tions should only rely on faults in the vicinity of the lattice.
This is important since the lattice is generated continuously
and only a part of it is physically available at any time.

2. The algorithm should give the corrections fast. This is
important because photons are fast and delays in computa-
tion translate to large sizes of the quantum computer with
long optical fibers.

3. The algorithm should require as little overhead as possible
in terms of photons.

4. Scalability: adding more photons should be possible (e.g.,
the algorithm should be parallelizable).

Here, we will briefly summarize the main idea behind the
algorithm. A more detailed description is given in the Methods
section.
This proposed algorithm is based on the idea that while a 25%

fusion failure rate is very high the lattice still percolates, and
information can be transported from one end to the other. For a
larger lattice, the probability to find paths from one node to
another increases. This means that a subset of nodes from the
faulty lattice can be chosen, such that there exist paths between
the nodes which will generate a purified Raussendorf lattice. All
photons that are not part of these paths or not part of the subset
of chosen nodes are measured in the Z-basis. Therefore, all these
qubits are removed from the lattice. All photons that belong to
the found paths have to be measured in the Y-basis. This will also
remove these qubits from the lattice, but edges between the
subset of nodes still exist. With a proper choice of nodes and
paths, a purified Raussendorf lattice will then be obtained.
To find individual nodes that make up the purified lattice, we

first divide the faulty lattice into finite-size boxes. These boxes will
contain at most one node of the purified lattice, and paths have to
be found to nodes in neighboring boxes. This somewhat artificial
division into boxes is only done for the performance of our
algorithm and the underlying lattice is not changed during this
step. Thus, non-local interactions are not broken up and have no
influence on the algorithm with respect to its finite-sized boxes.
The partition into boxes gives a defining variable for our
algorithm: the edge size of such boxes. Due to percolation, larger
box sizes translate to higher success rates to find nodes and paths
between these nodes. This also implies that more nodes are
needed from the faulty lattice to obtain a single node in the
purified lattice.
In order to see how well our code performs we ran this

algorithm on lattices created with different success probabilities
for the fusion gates, using different box sizes, and compared the
rate of faults on the purified lattice to the initial failure rate. The
behavior of the output bond error rate with increasing size is
plotted in Fig. 4a. One can see that for an initial failure rate of 25%
it is possible to reach an output error rate of about 7% for the
purified lattice. This is below the threshold rate of 14.5%27 of the
Raussendorf lattice. Thus, it should be possible to use this code as
a preprocessor for fault-tolerant ballistic quantum computation.
In Fig. 4b the relation between fusion failure rate and output

error rate is shown. Every data point below the black curve shows
an improvement over the input error rate. Thus, it makes sense to
use this algorithm for fusion failure rates below 32%.
Figure 5 shows a histogram of the length distribution of the

paths. The average path length is larger than the box size because
the shortest possible path is not always possible due to missing
edges on the graph. It is possible to obtain shorter paths due to
non-local interactions and differences in structure positions. The
average path length for a box size of 20 is given by 28.42 ± 0.05.

Fig. 3 The creation of micro-clusters as described in ref. 30 The areas
shaded in gray indicate which two qubits are used for the fusion
gates. Depending on the measurement outcome of these fusion
gates, the structure will take one of the shapes on the right
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We will use these values in the following analysis to estimate the
effects of errors.
We performed a simple timing analysis by running the

algorithm on a single core of an i7-4558U (2.8 GHz) CPU, to give
a rough estimate on the speed of the algorithm. The results are
plotted in Fig. 6. For a box size of 20 and a 5 × 5 × 3 lattice of
boxes, the algorithm needs on average 1.34 ± 0.05 s. However, it
should be noted that not much effort was put into optimization
and better performance can be expected from optimized
implementations. The scaling of this algorithm is polynomially
both in box size and number of boxes.

DISCUSSION
The purification process is not inherently fault-tolerant, so errors
can accumulate along the paths between nodes of the purified
lattice. Fault tolerance is introduced afterwards, on the purified
Raussendorf lattice. In the following, we want to estimate the
effects of induced Pauli errors due to measurement errors. This will
lead to an adjusted error rate for the purified Raussendorf lattice.
The main purpose of this discussion is to show that fault tolerance
can be maintained, although with stricter requirements on the
harware, even if the purification procedure results in additional
noise that accumulates with the length of the paths.
To analyze the sources of error it makes sense to discuss the

measurement procedure. A qubit state is encoded as a spatial
mode, which can be measured using a pair of photon detectors.
There are two ways of how a Hadamard operation can be
implemented to enable a change in the measurement basis (Fig.
7). Because our proposal requires to change the measurement
basis depending on the lattice that has been created, the ability to
add a Hadamard operator in reasonably short time has to be
guaranteed. A simple Hadamard operation can be implemented
by bringing together the two wave guides for a length of π/2. In
order to add a choice of measurement basis, one can use switches,
as shown in the first approach of Fig. 7. The other approach
divides the Hadamard operation into two by bringing together
both wave guides for a length of π/4 both times and adds a gate
that creates a phase-difference between the two wave guides. If
this phase difference is zero, the Hadamard operation is
performed, but if the phase-difference is π one will obtain the
identity operation.

Fig. 4 Bond failure rate of the purified lattice. The bond failure rate
as a function of the box size is plotted in part a. The black horizontal
line indicates the threshold where the Raussendorf lattice can
correct for missing bonds. For a fusion failure rate of 25% the
purified lattice for box sizes above 18 are below the threshold of the
Raussendorf lattice. Part b shows the bond failure rate of the
purified lattice as a function of the fusion failure rate. The black line
shows the border below which this purification algorithm can
decrease the failure rate. Thus, it only makes sense to use this
algorithm below an input fusion failure rate of around 32% if box
sizes up to 36 are used

Fig. 5 Length distribution for all found paths. The mean lies at
23.48 ± 0.04 for box size 16, at 28.42 ± 0.05 for box size 20, and at
33.54 ± 0.06 for box size 24. All probabilities were calculated with at
least 18,000 different paths and using a constant fusion failure rate
of 25%

Fig. 6 Execution time. This figure shows the absolute time that the
algorithm needs to find structures and paths (the generation of the
lattice was not measured). The plot has been performed for a
constant number of 5 × 5 × 3 boxes and at a constant 25% error rate
for the fusion gates. From the slope of this log-log plot one can see
that the algorithm has polynomial scaling with a leading power of
4.83 ± 0.06
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There are several sources of errors that can occur in such setups.
One source of errors comes from imperfections due to switches
which will lead to photon loss. Another source of errors are
imperfect rotations and Hadamard operations. For linear-optics
applications the implementation of Hadamard operations is
precise31,32 and using the second approach of Fig. 7, switches
are not needed during measurements. For a proper threshold
calculation, these are still important sources of errors, but in our
discussion we will neglect both photon loss and imperfect
rotations.
We will only focus on a third source of errors which happens at

the detectors. These errors result in false positives (the detector
detects a non-existent photon) as well as false negatives (a photon
is not registered at the detector). Henceforth, we will refer to the
rate of successful detection events as the fidelity of the photon
detectors.
All first-order errors at the detectors result in a non-sensical

measurement: either both photon detectors are triggered at the
same time or neither of the photon detectors is triggered. This
corresponds to either a false positive or a false negative at one of
the detectors. If such a case happens, it is clear that an error
occurred, but it is impossible to know the nature of the error. A
second-order error will result in the opposite measurement
outcome. The wrong measurement will result in a Pauli-X error
for a Z-basis measurement or a Pauli-Z error for a X-basis
measurement.
One possible correction scheme for first-order detector errors is

to choose a measurement outcome randomly. With 50% this
choice is incorrect. A single measurement acts as a teleportation
operation. If a wrong measurement outcome is observed, a wrong
by-product Pauli operation is specified due to the rules of
measurement-based quantum computing. In the end, additional
Pauli errors appear on the purified lattice and the Raussendorf
lattice has to locate and identify them.
The total probability for at least one Pauli-error on an average

path can be calculated using:

Perr ¼ 1� f 2L: (2)

For a box size 20, the mean length of a path is L ¼ 29 and given a
detector fidelity f= 0.9999, the resulting error rate is Perr= 0.57%
for each bond. The factor 2 in the equation comes from the fact
that each measurement involves two photon detectors.

To obtain the probability for an induced Pauli error per purified
node, we assume that if a detector error occurs we attribute it to
the node in the same box. For a single node there are on average
4 L=2
� �

qubits for all four paths. Using this in the exponent the
resulting probability of Pauli errors on each node is PNodeErr=
1.15%. However, this error rate can be halved when randomly
applying one of two correctional gates for first-order errors. The
effective probability for induced Pauli errors per node is PNodeErr ≈
0.58%.
For a box size 20, the bond-loss probability is 10%. In ref. 27 it

has been shown that, to still remain below threshold, the
remaining measurement errors need to be below 0.6%. Thus,
the above fidelity for the detectors is low enough to have errors
below threshold for the Raussendorf lattice. If this threshold (pth ≈
0.01%) is compared to the threshold error rate of pth ≈ 2.9% on the
Raussendorf lattice without bond failures,33 one can see that our
method constitutes a trade-off between the correction for bond
errors and induced Pauli errors. It should be noted that our
comparison to the measurement error rate of pth ≈ 2.9% is justified
because Pauli errors are induced after the creation of the lattice
and thus do not spread.
Larger box sizes provide better stability under bond failures, at

the cost of a decreased threshold. This trade-off is currently
associated with a large overhead, such that our required fidelity
for photon detectors poses a strong requirement on experiments.
However, we expect improvements with advances in our
preprocessing algorithm which will relax the requirements for
the experimental setup.

Workflow
In the introduction we mentioned a high-level design of a linear-
optics quantum computer. Here, we want to refine on it, with the
inclusion of our purification step. To this end, we show in Fig. 8 a
possible quantum and classical flow of information and the

sw
itc

h
sw

itc
h

/ 0

Fig. 7 Measurement procedures. Two possible procedures for the
measurements31

Fig. 8 Flow of information. This figure shows the quantum and
classical flow of information. Starting from GHZ-states, some qubits
will be measured in a layer of fusion gates and the measurement
information Mi is fed to our proposed algorithm. Meanwhile, the
remaining photons are led along a long wave guide to give enough
time to the classical computation. These qubits are then fed into a
layer of measurements, where all photons except the ones from the
purified lattice are measured out. The measurements M0

i are used to
determine if any errors happened. This information is then sent to
the Raussendorf error-correction processor that takes care of the
syndrome extractions and measurements in proper bases
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actions that are taken due to that information. To the left of the
figure three-qubit GHZ-states are created and used by fusion
gates. It should be noted that additional GHZ states and photons
are needed in that step but for simplicity they are not shown here.
Using the measurement results of the fusion gates, our proposed
algorithm will find a smaller graph, using only a subset of nodes.
These nodes are routed through to the final layer of measure-
ments, which requires a switch each. The last measurements are
the actual measurements needed for the purified Raussendorf
lattice, where syndrome extraction and the actual fault-tolerant
quantum computation happen.

CONCLUSION
The algorithm’s performance seems to depend heavily on the
details of the implementation. We already used several heuristics
that improve the probabilities of success for the first steps of the
path-finding algorithm but more advanced heuristics might
improve the error rate of the purified lattice even further.
Furthermore, a clustering algorithm should help in choosing good
node positions at the cost of an increased runtime. The effects of
this should be included in future analysis. Changes to the distance
heuristic for the A*-search might also affect the performance of
this proposal, but it was not investigated here.
In conclusion, we have presented a way to purify the 3D lattice

obtained from the ballistic procedure proposed in ref. 30 using
ideas from ref. 24 This purification process can suppress
entanglement errors due to probabilistic fusion gates and bring
the error rate from 25% down below the Raussendorf lattice
threshold. This procedure, however, has the cost that errors along
the generated paths can accumulate and requires higher precision
in their measurement operations. Nevertheless, this approach
shows that fault-tolerant quantum computation using ballistic
lattice generation is possible. Looking back at the requirements
we posed, we can see that our proposal fulfills several of them:

1. The algorithm is local. Due to the exponential decay in large
distance edges, all connected nodes are located in the same
box or neighboring boxes.

2. The algorithm scales polynomially in lattice size, but our
implementation should still be improved in terms of
absolute speed.

3. The overhead in terms of qubits could be better: each box
consists of about 203 nodes, which are all consumed to
generate one node in the purified lattice. Errors also
accumulate, with larger sizes.

4. The algorithm is easily scalable, with only little communica-
tion required by different processes (see Methods).

While our code works, many improvements can be made to this
preprocessing step, such as using different measurement schemes
to create entanglement with X-basis measurements. Thus, it is
likely that the output bond failure rate and therefore resource
requirements are further reduced. Furthermore, it should be
investigated how a more realistic error model that includes both
photon loss and imperfect rotations affect the overall performance
of the error correction scheme. Afterwards, fair comparisons
between different ways to generate the lattice20 and the ballistic
approach with preprocessing should be made in terms of
overhead for the Raussendorf lattice.

METHODS
In this section we describe in more detail how our implementation to
purify the Raussendorf lattice works. A C++ implementation to this
description is open-source and hosted on Github (https://github.com/herr-
d/photonic_lattice). In the Supplementary we give a short technical
overview of the code.

The implementation divides the original Raussendorf lattice into boxes.
Each box has the same number of qubits along its edges. This partition
results in a square lattice, but the unit cell of the Raussendorf lattice can be
easily embedded in a 3 × 3 × 3 square lattice by removing half of the
boxes. In each remaining box, exactly one of the structures from Fig. 9a is
placed. Which orientation is needed depends on which location the box is
in the purified lattice. In Fig. 9b one can see an example of the proper
orientations deduced from the purified lattice. The structure position is
then chosen by looping over all nodes inside the structure and seeing if
the connections exist for this structure. If several positions are found, the
position with the most neighbors is chosen. This helps to increase the
success rate of the path-finding algorithm by avoiding immediate dead
ends.
Each structure has four nodes that are farthest from the center. We call

these the handles of the structure. They are the start or end points for the
path-finding algorithm. For our implementation, the handles in the right,
up, and back directions will be the starting points for individual path-
finding runs. Whereas the handles in the left, down and front directions of
neighboring structures will be the end points. A single path-finding
instance, thus, only needs to have knowledge about two neighboring
boxes: the one with the starting handle and the one with the goal node.
Therefore, the algorithm is local.
The paths are used to connect different structures with each other and

the nodes that are part of a path are intended to be measured in the Y-
basis. In order to create a single edge between two structures, a further
requirement for the paths arises. At no time must two of them cross or
even be neighbors (there must be at least one node between paths that
does not belong to a path). This means that after all other qubits are
measured in the Z-basis, the qubits of a path only have two neighbors,
both part of the same path or part of a structure.
Besides the previous requirements, our proposed algorithm does not

require a specific implementation for finding such paths. For example
Dijkstra’s algorithm34 can be employed, or an A*-implementation35 can be

Fig. 9 Creation of a purified unit cell. In part a all possible
orientations for the structure are shown. The node in the center will
be used as the node for the purified lattice. Part b shows a unit cell
in the purified lattice. For illustrative purposes we show in the inset
how one of the edges were obtained by finding a path from one
structure to its neighbor. All qubits not shown need to be measured
in Z-basis to remove them from the graph. It should be noted that
this is a constructed example and a lattice with realistic failure
probabilities requires larger sizes
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used. One does not need to find shortest paths, but it helps with respect to
the accumulation of errors.
Our implementation uses the A*-algorithm35 with the Manhattan-metric

as its heuristic function. This heuristic should give a decent estimate on the
remaining distance but this estimate is not strictly smaller than the actual
distance because of non-local entanglement due to the fusion gates.
Therefore, this A*-implementation is not guaranteed to find the shortest
path.
The result is shown in Fig. 9b, where the purified lattice is visualized. The

inset shows one of the paths between two neighboring structures. All
qubits that are not part of either a structure or a path are measured in the
Z-basis and thus completely removed from the graph. All remaining qubits,
except the ones marked in yellow, need to be measured in the Y-basis, and
thus contribute to edges in the purified lattice.
While our current implementation is not yet parallelized, it should be

possible to parallelize it with only a few changes. Each processor could
have its own set of boxes. Only information for boxes on the surface need
to be exchanged with other processors. For the most parallel implementa-
tion, each box has its own processor. This is shown in Fig. 10, where the
process responsible for the black boxes needs information only about two
of the boxes colored in gray.
Every process needs to find a structure position in each of its boxes.

Each process needs to send the position of its qubit structures which lie on
the boundary surface to the process on the left, and down (opposite
direction). The box in the back is treated by the same process so no
communication is required. After every box receives the information from
its two neighbors, it can continue to find two paths in two of the other the
directions: right, up, and back. The overhead of communication scales with
the surface and not the volume and each process only needs to know a
small part of the whole lattice, such that memory problems can be
avoided.
Thus, a parallelized version has the same scaling in terms of box size as

the sequential implementation, because each processor has a constant
number of boxes. When more processors are added for a bigger faulty
lattice, the total execution time will remain constant if the number of
boxes per processor stays constant.

Data availability
All relevant data are accessible on Github (https://github.com/herr-d/
photonic_lattice).
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