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Dissipation‑induced bistability 
in the two‑photon Dicke model
Louis Garbe1,2*, Peregrine Wade1, Fabrizio Minganti2, Nathan Shammah2,3, 
Simone felicetti4,5 & franco nori2,6

The Dicke model is a paradigmatic quantum-optical model describing the interaction of a collection 
of two-level systems with a single bosonic mode. Effective implementations of this model made 
it possible to observe the emergence of superradiance, i.e., cooperative phenomena arising from 
the collective nature of light-matter interactions. Via reservoir engineering and analogue quantum 
simulation techniques, current experimental platforms allow us not only to implement the Dicke 
model but also to design more exotic interactions, such as the two-photon Dicke model. In the 
Hamiltonian case, this model presents an interesting phase diagram characterized by two quantum 
criticalities: a superradiant phase transition and a spectral collapse, that is, the coalescence of discrete 
energy levels into a continuous band. Here, we investigate the effects of both qubit and photon 
dissipation on the phase transition and on the instability induced by the spectral collapse. Using a 
mean-field decoupling approximation, we analytically obtain the steady-state expectation values of 
the observables signaling a symmetry breaking, identifying a first-order phase transition from the 
normal to the superradiant phase. Our stability analysis unveils a very rich phase diagram, which 
features stable, bistable, and unstable phases depending on the dissipation rate.

The Dicke  model1 describes the interaction of a collection of two-level systems with a single bosonic mode. In 
the thermodynamic limit, this model exhibits a superradiant phase transition at zero  temperature1–5. Namely, 
the ground-state number of photons changes non analytically from zero to finite values as the light-matter 
coupling strength is increased across a critical value. The relevance of the Dicke model to capture the physics of 
light-matter coupling near the critical point is the object of an ongoing debate. In particular, an obstacle to the 
observation of a superradiant phase transition arises due to the presence of the so-called diamagnetic term. In 
this regard, resolutions of gauge ambiguities have been recently proposed, such as employing modified unitary 
transformations or going beyond the two-level system  description6–9.

It is possible, however, to circumvent this controversy entirely by using driven systems and bath engineering 
to simulate effective Hamiltonians. Thanks to this approach, it was possible to observe the superradiant phase 
transition in several platforms, in particular atomic systems in  cavity10–12, and trapped  ions13,14. Other proposals 
have been put forward, using NV centers  array15, or superconducting  circuits16. In general, the implementation 
of analogue quantum  simulations17,18 provides an ideal playground to test driven-dissipative physics in a con-
trolled setting. Their experimental feasibility has motivated increasing research efforts devoted to the study of 
driven-dissipative quantum optical models, as it is known that noise and dissipation can drastically change the 
properties of the steady-state phase diagrams and the emergence of phase  transitions19,20. Analytical  studies21–27 
are extremely challenging, as the intrinsic non-equilibrium nature of driven-dissipative systems does not allow 
a determination of the stationary state of the system via a free energy  analysis28; for Dicke-like models, it is 
especially true when local spin dissipation is  considered25,26,29.

Effective implementations offer others significant advantages. First, in a cavity-QED setting, driving the 
system allows turning virtual excitations inside the cavity into real photons which can exit the  system30, thus 
giving immediate access to the intra-cavity dynamics. Second, by manipulating the exchanges between a sys-
tem and its environment, reservoir-engineering techniques allow us to realise previously inaccessible quantum 
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phases of  matter31–37. For instance, it is possible to stabilize phases without an equilibrium  counterpart38, 39, 
and reservoir engineering methods for complex many-body phases have been thoroughly explored in different 
 contexts32,40. Several experiments and theoretical proposals have applied these ideas to study generalized Dicke 
 models11,15,41–45 and the ultrastrong coupling regime (USC)46,47, i.e., the regime of parameters where the coupling 
constant becomes a sizable fraction of both the qubit and bosonic frequencies.

Among the variety of phenomena that are made accessible by analogue quantum  simulations17,18, a particu-
larly interesting one is the possibility to engineer a coupling involving the simultaneous exchange of several 
photons. In superconducting  circuits48, this is possible with nonlinear virtual processes in the USC  regime49–53, 
and experimentally a photon-pair driving mechanism has been  realized37, leading to the generation of so-called 
photonic Schrödinger  cats54–56. The possibility to control and protect such states is promising for the implemen-
tation of quantum computation  protocols57–59.

In the two-photon Dicke  model42,44,60, it is the light-matter interaction that creates or annihilates one pair of 
bosonic excitations per qubit flip. This exotic exchange leads to several unusual properties in the USC  regime46,47. 
In particular, it was shown very early  on61,62 that there exists a critical value of the coupling strength for which the 
discrete spectrum collapses into a continuous  band42. For higher values of the coupling, the two-photon Dicke 
Hamiltonian is no longer bounded from below, indicating the breaking down of the model itself. It was recently 
shown that, in spite of the spectral collapse, a superradiant-like phase transition can take place also in the two-
photon Dicke  model60. This transition has been characterized also for other two-photon interaction  models63,64 
but, so far, only the Hamiltonian case has been considered.

In this paper, we investigate the fate of the spectral collapse in a driven-dissipative case. Specifically, we con-
sider the N-body two-photon Dicke model connected to an engineered Markovian bath. The Lindblad formal-
ism is used to introduce different incoherent processes, such as photon loss κ , individual qubit decay Ŵ↓ , and 
local qubit dephasing Ŵφ . To analyze the system dynamical properties, we resort to a mean-field decoupling of 
the equation of motion, allowing us to determine (semi-)analytically the steady-state of the system. We show 
the emergence of a first-order phase transition from a normal to a superradiant phase, for a critical value of 
the light-matter coupling g. A numerical study of the stability of the different phases unveils a very rich phase 
diagram: depending on the strength of the atomic dissipation, the system may be stable, bistable, or unstable. In 
particular, the spectral collapse can disappear altogether. Interestingly, we find that both atomic decay and atomic 
dephasing can be beneficial to the stabilization of the superradiant phase. We found no evidence of supression 
and restoration of the transition, contrary to the phenomenology of the standard Dicke  model25.

This paper is organized as follows: first, we introduce the one- and two-photon Dicke model, and briefly 
describe some of their properties using heuristic arguments. Secondly, we discuss dissipation in the two-photon 
model. Thirdly, we present the phase diagram of the system obtained via a decoupling mean-field approxima-
tion, and show the existence of two different regimes of dissipation. Finally, we summarize our conclusions and 
present some perspectives for future work.

One-and two-photon Dicke models. The standard Dicke model was originally used to describe the 
behaviour of a collection of atoms with the electromagnetic field inside a high-quality-factor cavity. It can be 
derived by making several assumptions about the system. For instance, the atomic size must be small compared 
to the field wavelength, making the atoms insensitive to the field  modulation1,65. The atoms must couple to a 
single mode of the field. Finally, the atomic energy level structure must be highly anharmonic, so that only one 
transition is resonant with the field, allowing us to approximate the atoms by two-level systems (or qubits). This 
so-called two-level approximation, when handled improperly, can lead to a gauge ambiguity in the USC regime. 
Solutions to this problem have been proposed only  recently8,9.

When these assumptions hold, the system is described by the one-photon Dicke Hamiltonian (here � = 1),

where â ( ̂a† ) is the annihilation (creation) operator of the bosonic mode, N is the number of qubits, and σ j
x,y,z 

are the Pauli matrices describing the j-th qubit. This Hamiltonian exhibits a Z2 symmetry, corresponding to the 
simultaneous exchange

For low values of the coupling, the ground state of this Hamiltonian is given by the product state of the field 
vacuum and the atoms individual ground states. When the coupling constant enters the USC regime, however, 
the system experiences a second-order phase transition in the thermodynamic limit which breaks the Z2 sym-
metry. The system enters the so-called superradiant phase, in which the bosonic field is described by a coherent 
state, while the qubits are collectively  rotated3. The possibilities offered by quantum simulations have brought 
this model far beyond the atom-cavity setting. For instance, the cavity electromagnetic field may be replaced by 
microwave resonators in superconducting circuits, or by vibrational motion in atomic platforms. These effective 
implementations made it possible to circumvent the problems raised by gauge ambiguities and to observe the 
superradiant phase  transition10–12,14.

These platforms also pave the way to the experimental exploration of novel forms of light-matter interactions. 
In particular, quantum simulation schemes make it possible to implement two-photon interaction models both 
in the SC and in the USC  regime42,66–68. For instance, in trapped-ions experiments, laser-induced interactions 
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can be used to couple the internal state of the ions to their motional degrees of freedom. Let us assume that the 
properties of the trap allow us to single out a single vibrational mode with frequency ν . If the detuning between 
the laser and the internal transition is close to −2ν (red-detuned laser), then the laser can excite a process in 
which two phonons are destroyed and one qubit excitation is created. If the detuning is close to 2ν (blue-detuned 
laser), then the energy brought by the laser can be used to simultaneously create one qubit excitation and two 
phonons. Therefore, by using both a red-detuned and a blue-detuned lasers, one can engineer a qubit-boson 
coupling similar to the Dicke model, but where the standard one-boson interaction term is replaced by a two-
boson term, which is generically called in the literature two-photon or two-phonon coupling term. For simplicity, 
we will only use the term “two-photon” and the cavity-QED terminology in the following. Furthermore, the 
modulation of photonic states by the laser pump permits to effectively renormalize both the bosonic frequency 
and the coupling constant, thus allowing to bring the two-photon coupling to the USC regime.

Similarly, it has recently been  shown44,45 that two-photon interactions can also be implemented in supercon-
ducting circuits, engineering an intrinsic nondipolar coupling between a superconducting artificial atom and 
superconducting quantum interference device (SQUID). In this case, the standard linear coupling is suppressed, 
while the two-photon coupling terms emerge as the natural light-matter interaction in an undriven system and 
not as the result of a quantum simulation scheme.

These various possibilities of implementing the two-photon coupling term motivates the study of the two-
photon Dicke model, whose Hamiltonian reads (setting � = 1),

This Hamiltonian exhibits a four-folded symmetry, stemming from the simultaneous exchange of

In the USC limit, this model exhibits an instability known as spectral  collapse42, where the discrete spectrum 
collapses into a continuous band for a critical value of g. Some intuition about this effect can be gained through 
the following reasoning. When the coupling constant g in Eq. (3) becomes large, the interaction term dominates 
the physics. Since this term commutes with the σ̂ i

x , we can study the qubits domains σ̂ i
x = − 1

2 and σ̂ i
x = + 1

2 
independently. Let us consider σ̂ i

x = − 1
2 for all i. Then we have an effective boson dynamics described by this 

Hamiltonian

which is a quadratic potential for the field quadratures x̂ = â† + â and p̂ = i(â† − â) . When g is large enough, 
this potential becomes almost flat, shrinking the gap between the different energy levels. Ultimately, these levels 
coalesce into a continuous band, causing the so-called spectral  collapse42. When g is increased even further, the 
potential becomes an upside-down harmonic well, and is unbounded from below for x̂ → ∞ . Therefore, the 
dynamics of the system will become unstable, signaling the breaking down of the model. By contrast, in the 
one-photon Dicke model (1), the interaction term adds only a linear correction, meaning that the Hamiltonian 
can never be unbounded from below.

Very recently it has been  shown60 that the two-photon Dicke model can also display a second-order quantum 
phase transition very similar to the superradiant transition of the one-photon Dicke model. Instead of a coherent 
state, however, the bosonic field here will be described by a squeezed state for high values of the coupling. The 
ground-state phase diagram has been analyzed with different numerical and analytical techniques also for other 
two-photon coupling  models63,64. However, two-photon light-matter interaction models have so far never been 
considered from an open quantum system perspective.

Effect of dissipation. The physics of the one-photon Dicke model changes drastically once dissipation is 
taken into account. It was shown in Refs.25,69 that in the presence of qubit decay and dephasing, the transition of 
the Dicke model could be modified, suppressed, or restored. Similarly, the presence of dissipative processes in 
the two-photon Dicke model raises intriguing questions.

Assuming a Markovian environment and performing the Born approximation, the dissipation may be 
described by a Lindblad master  equation28.

In our analysis, we will assume that the Hamiltonian part of the evolution remains that of Eq. (3), and we will 
include three dissipation channels, that is, individual qubit decay and dephasing, and photon loss. We obtain the 
following Lindblad equation (we recall � = 1),

where ρ̂(t) is the density matrix of the system at time t, σ̂ j
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]

.

(4)

{
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Even if, in general, the symmetries of the Lindblad equation cannot be directly obtained from those of the 
 Hamiltonian70, Eq. (6) remains identical under the transformation given in Eq. (4). In this regard, also the Lind-
blad master equation presents a four-folded symmetry similar to that of the Hamiltonian case. Let us note that 
this equation is a purely phenomenological one and, while it is the most appropriate in a quantum simulation 
framework, it would fail to describe the true evolution for genuine implementations of the model in the USC 
regime . Indeed, in the presence of bare local dephasing and qubit decay processes, the system would not tend 
towards the dressed ground state. In fact, these processes would effectively pump energy into the system, forcing 
it away from the true polaritonic ground state and toward a different steady-state; while considering dressed-
operator incoherent processes would lead to the polaritonic ground  state29. Moreover, a microscopic theory 
needs to be developed for arbitrary strengths of the dissipative couplings, which has shown that USC effects can 
be robust in loss-dominated  systems71. However, our analysis is meant to describe effective implementations 
of the model, where the considered decoherence and dissipation processes can themselves be implemented via 
bath-engineering  techniques67. For instance, this Lindbladian dynamics could be observed in a strongly driven 
atomic cloud, where Raman processes effectively engineer the wanted processes as demonstrated in several 
 experiments10–12. Note also that, since quantum simulation allows to renormalize both the effective frequencies 
ωc and ω0 and the coupling constant g42, the dissipation constant may be large compared to ωc , ω0 and g, while 
remaining small compared to the actual frequencies of the system.

We expect that this model will have very different behavior from its Hamiltonian counterpart. On the one 
hand, the critical behaviour and the properties of the superradiant phase can drastically change, as for the one-
photon  model5,25. On the other hand, the spectral collapse may be modified or avoided due to the presence of 
dissipation. Indeed, the photon loss term in Eq. (6) acts like a stabilizing quadratic term which can balance the 
effect of the Hamiltonian unstable potential.

Results
Symmetry breaking. When spin dissipation is  absent3,21,23,27,69 or acts collectively on all qubits at once, one 
can significantly simplify the problem by treating the qubits as a single, collective spin, which allows to obtain the 
quantum state of the qubits. This is not possible here, since the dissipation acts on each qubit  individually25,26,29. 
However, we can still obtain meaningful results by focusing on some specific, relevant observables. We have 
focused our analysis on the following quantities: Ĵu=x,y,z = 1

N

∑N
j=1 σ̂

j
u , X̂ = â2 + â†2 , Ŷ = â2 − â†2 , â†â . The 

Hamiltonian  treatment60 predicts a symmetry breaking during which the bosonic field becomes squeezed, which 
is captured by the second-order moment of the bosonic field. Therefore, we expect that the observables X̂ , Ŷ  and 
â†â will be valid order parameters also in the presence of dissipation. We have studied the evolution of these quan-
tities using a mean-field decoupling approximation (see the Methods section). We found that the dynamics of 
these quantities has three possible solutions. The first one corresponds to �â†â� = �X̂� = �Ŷ� = �Ĵx� = �Ĵy� = 0 
and �Ĵz� = −1 . The other two phases have �â†â� , �X̂� = ±Xs , �Ŷ� = ±Ys �= 0 (complete expressions in the Meth-
ods section, Eq. (10)). In accordance with previous results in the one- and two-photon Dicke  model3,5,25,60, we 
can identify the first solution as the “normal phase”, as it corresponds to the product state of the individual 
ground states of the field and the atoms. The other two solutions correspond to the “superradiant phase”; that 
is, they contain a macroscopic number of atomic and photonic excitations. Since the “superradiant” solutions 
have �X̂� �= 0 , the four-folded symmetry of the model is at least partially broken. The stability of each phase has 
been analyzed numerically (see Methods). Let us now illustrate the properties of the superradiant phase and the 
complex driven-dissipative phase diagram of the model considered.

Nature of the phase transition. In Fig.  1 we show the value of the steady-state photon number in 
the superradiant phase as a function of the coupling strength g, ω0 = ωc , and κ = ωc . For now, we have set 
Ŵ↓ = Ŵφ = Ŵ , and Ŵ = 3ωc . For small values of g, the superradiant phase yields nonphysical complex values for 
�â†â� , showing that the system can only reach the normal phase �â†â� = 0 until the critical value of the coupling 
strength is achieved. When g is increased, the superradiant phase becomes physical, and the stability analysis 
reveals it is stable as well.

Therefore, a nonzero number of bosonic excitations can appear in the system. Analyzing the average photon 
number in the system steady-state, we can already identify two qualitative differences compared to the ground 
state in the Hamiltonian case. First, in the driven-dissipative case, the number of photons in the superradiant 
phase does not go to zero when one approaches the limit of stability from above. Second, the point at which 
the normal phase becomes unstable and the superradiant phase becomes stable do not coincide. Therefore, the 
driven-dissipative two-photon Dicke model exhibits bistability at the mean-field level.

The emergence of bistability in mean-field models is well-known in open quantum systems. A typical example 
is that of the Kerr resonator, where the semiclassical solution obtained via the Gross-Pitaevskii mean-field has 
three different solutions: two which are stable and one unstable. As soon as one considers the quantum steady-
state, however, only one solution is  found72. This apparent contradiction can be solved by considering the full 
Liouvillian spectrum, where the onset of bistability is in close relation to the emergence of  criticality19,73,74. Indeed, 
several models presenting bistable behaviour at the mean-field level proved to display a genuine first-order phase 
transition in the thermodynamic limit of a full quantum  model56,75–82.

These results show that the Hamiltonian and dissipative versions of this model are strikingly different. In the 
equilibrium case, a second-order phase transition is predicted to occur, and only in the far-detuned  regime60 
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ω0 ≪ ωc . In the nonequilibrium case, a first-order phase transition takes place in the resonant regime ω0 = 2ωc , 
a condition that strongly simplifies possible experimental implementations.

Phase diagram. Having established the existence of a phase transition, we can produce the phase diagram of 
the model by studying the stability of both phases for a broad range of parameters. The analysis of these diagrams 
revealed the existence of two regimes of dissipation. In Fig. 2, we display the phase diagram in the g-ω0 plane, 

Figure 1.  Photon number in the superradiant phase versus normalised light-matter coupling, for several qubit 
numbers N. We have set κ = ωc and Ŵ↓ = Ŵφ = 3ωc . For small g, the superradiant phase becomes unphysical. 
The horizontal black line is a guide to the eye indicating the value �â†â� = 0 , which is the value the field adopts 
in the normal phase. The vertical dashed line indicates the point where the normal phase becomes unstable (this 
point is independent of N). In all cases, the superradiant phase becomes stable before the normal phase becomes 
unstable, indicating bistability.

Figure 2.  Phase diagram of the model. a) N = 10 qubits, Ŵ/ωc = 1.5 , b) N = 50 qubits, Ŵ/ωc = 1.5 , c) 
N = 100 qubits, Ŵ/ωc = 1.5 , d) N = 10 qubits, Ŵ/ωc = 3 , e) N = 50 qubits, Ŵ/ωc = 3 , and f) N = 100 qubits, 
Ŵ/ωc = 3 . For all plots, κ = ωc . N: normal phase, S: superradiant phase, B: bistable phase, I: instability. For 
Ŵ/ωc = 1.5 , the region of stability for the superradiant phase shrinks when the number of qubits increases. For 
Ŵ/ωc = 3 , a bistable behavior is observed, and the phase diagram is almost invariant when the number of qubits 
is increased beyond a few dozens.
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for two values of Ŵ : Ŵ = 1.5ωc and Ŵ = 3ωc , and for various number of qubits N. For Ŵ = 1.5ωc and the smaller 
value N = 10 qubits, we observe that the mean-field equations predict the existence of a zone where the super-
radiant phase is stable. However, the size of this zone shrinks when N increases. Since the mean-field description 
becomes correct only for N → ∞ , no phase transition can happen in the mean-field limit for this value of dissipa-
tion. The system will either reach the normal steady-state or be unstable. For Ŵ = 3ωc , however, we observe that 
bistability becomes possible, similarly to what happens in the driven-dissipative one-photon Dicke  model83. In 
the thermodynamic limit, the region of stability becomes independent of the number of qubits, meaning that a 
phase transition can take place in the N → ∞  limit.

Values of Ŵ/ωc lower that 1.5 or higher than 3 yield qualitatively similar results, which allows us to conclude 
that there are two regimes of dissipation: a large dissipation regime in which a phase transition is possible, and 
a low dissipation regime in which only the normal phase is stable in the thermodynamic limit.

Interestingly, the transition between these two regimes of parameters when Ŵ is increased is quite sharp, 
especially in the thermodynamic limit. To visualize this, we study the stability of the superradiant phase versus 
both g and Ŵ , for 100 qubits, and for various values of ω0 , the other parameters being the same (this amounts to 
taking horizontal slices in Fig. 2 and study their evolution when Ŵ changes).

The results are displayed in Fig. 3: for Ŵ/ωc ≈ 1.6 , the instability disappears and the superradiant phase 
becomes stable for most values of ω0 and g. Hence, the phase diagram as a whole changes drastically when Ŵ/ωc 
goes across this threshold.

Hence, we have established that the presence of dissipation is instrumental in stabilizing the superradiant 
phase. If we compare this with the results obtained in the one-photon version of the driven-dissipative  model25, 
an instructive analogy can be made. Adding enough qubit dissipation appears to preserve the superradiant phase 
transition, which normally would be destroyed in the presence of noise. In the one-photon case, however, decay 
and dephasing can play antagonistic roles: adding an infinitesimal amount of qubit dephasing without decay 
destroys the transition, while adding both dephasing and decay stabilizes it. To see if such effect is also present in 
the two-photon model, we study the stability of the superradiant phase with respect to both Ŵφ and Ŵ↓ . The results 
are displayed in Fig. 4. We see no evidence of suppression and restoration of the phase transition. Rather, these 
plots indicate that both dephasing and decay contribute positively to the stabilization of the superradiant phase.

Discussion
In this paper, we present the first analysis of the steady-state phase diagram of a two-photon interaction model 
in the driven-dissipative case. In particular, we have explored numerically the mean-field behavior of the N-body 
two-photon Dicke model. We have identified a rich behavior, including a superradiant phase transition of first 
order, a bistable phase, and an instability that is removed by dissipation. Although one may be tempted to 
interpret this instability as the dissipative counterpart of the spectral collapse, there are important differences 
between the two phenomena.

In the Hamiltonian case, the spectral collapse is expected to occur when g increases. In our case, for Ŵ = 3ωc , 
we have increased g towards higher values, up to 103 (not shown). We have found only a stable superradiant 
phase. To summarize, the spectral collapse is entirely controlled by the coupling, while the instability is controlled 
by a non-trivial interplay between dissipation and coupling. Another, perhaps even more important, difference 
is the scaling of the parameters with N. In the Hamiltonian case, the collapse occurs for g ∼ ωc√

N
42,60 (note that 

the definition of the coupling constant is not the same in our work and these references). The stable dynamics 
can only take place in the interval 0 ≤ g ≤ ωc√

N
 , which becomes vanishingly small in the thermodynamic limit. 

As a consequence, a transition can take place only if the qubit frequency ω0 is also allowed to scale like 1/
√
N 60. 

Figure 3.  Stability of the superradiant phase versus coupling and dissipation. a) ω0/ωc = 0.5 , b) ω0/ωc = 2 , c) 
ω0/ωc = 5 . For all plots, κ = ωc and N = 100 qubits. S,B: superradiant or bistable phase; N,I: normal phase or 
instability. Here we do not distinguish between the normal and the unstable phase or between superradiant and 
bistable phase because we want to focus on the stability of the superradiant phase only. Except for small values of 
ω0/ωc or g, the value of Ŵ/ωc for which the transition occurs is almost the same for all parameters, around 1.6. 
This means the phase diagram as a whole changes drastically when Ŵ goes across this value.
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By contrast here, the instability, when present, only emerges for g ∼ ωc , which allows a phase transition to take 
place for all values of ω0 . Indeed, the phase diagram we have obtained here are quite different from the one of 
the Hamiltonian model published  in60. The fact that the spectral collapse and the instability scale differently with 
the number of atoms suggests that they could be qualitatively different processes.

Hence, the two main properties of the two-photon Dicke Hamiltonian, second-order phase transition and 
spectral collapse, are qualitatively modified in the presence of dissipation. This illustrates how the critical behavior 
of a given phase transition can change radically when one goes from the equilibrium case to the non-equilibrium 
one.

Furthermore, we have pointed out conceptual differences between the behavior of the one- and two-photon 
Dicke models. For the latter, both local dephasing and decay appear to help stabilize the transition, in contrast 
to what was found in the dissipative one-photon Dicke model. In the thermodynamic limit of the two-photon 
Dicke model, the entire phase diagram changes very abruptly when dissipation is moved across a very narrow 
range of parameters.

We note that while a mean-field approach can predict several solutions for the steady-state equation in the 
bistable region, and a unique solution in the mono-stable regions, in a finite-size quantum system there can only 
be a unique steady-state in each region. Indeed, the introduction of both quantum and classical fluctuations 
prevents the fields from remaining stationary around their mean-field values. Several  works73,84 have illustrated 
these behaviours in the similar case of the two-photon Kerr resonator. In turn, the presence of multiple solu-
tions at the mean-field level is translated into an observable bistable behavior of the critical parameters of the 
full quantum model in a quantum trajectory  approach85.

Indeed, for future perspectives, a full quantum treatment of the driven-dissipative two-photon Dicke model 
would be an interesting and yet challenging task. Extracting information on the thermodynamic limit from 
direct numerical simulations of the full dynamics is far from straightforward, due to the exponentially increas-
ing Liouvillian space. Exploiting the permutational invariance of the  Liouvillian29 can exponentially reduce the 
computational overhead with regard to the qubit degrees of freedom, but the photonic subspace, approximated 
by a cut-off photon excitation number nph , needs to be larger than in the case of the single-photon Dicke model 
to avoid spurious results induced by the finite approximation of the otherwise unbounded Hilbert space. With 
this regard, two possible solutions could be considered, also simultaneously: first, the inclusion a two-photon 
dissipation process, which would effectively reduce the highest excitation number explored, for appropriately 
large values of the two-photon decay rate; second, the use of quantum trajectories, which reduces the compu-
tational overhead from being that of the Liouvillian space to just that of an effective Hilbert space, at the cost of 
averaging over many runs. We point out though that the intermittent dynamics characterizing a bi-stable phase 
can be grasped even by single quantum trajectory simulations. Alternatively to these approaches, a qubit-only 
description of the system could be obtained at the cost of abandoning the Lindbladian formalism for a full 
Redfield  theory86.

From an experimental perspective, we have shown that in the driven-dissipative case the superradiant phase 
transition of the two-photon Dicke model can be observed also for resonant interactions, and does not require 
large detuning as in the static case.

Hence, this quantum phase transition could be observed in a more accessible regime of parameters than 
previously thought. The driven-dissipative two-photon Dicke model could be implemented with trapped  ions42 
or in a cold atoms setup, similar to what has been done already for the driven Rabi  model87,88. Superconduct-
ing  circuits48 provide another platform to simulate this dynamics, in which the two-photon interaction can be 
engineered between a flux qubit and a SQUID  resonator44,45.

Figure 4.  Stability of the superradiant phase versus qubit dephasing and decay. a) ω0/ωc = 0.5 , b) ω0/ωc = 2 , 
c) ω0/ωc = 5 . For all plots, κ/ωc = 1 , g/ωc = 1 , and N = 100 qubits. S,B: stable or bistable phase, N,I: normal 
phase or instability. Here, both dephasing and decay contribute positively to the stabilization of the superradiant 
phase.
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Methods
From the Lindblad master equation (6), we can obtain the field equation governing the dynamics of any operator 
∂t�Â� . For the operators X̂ , Ŷ  , â†â , Ĵx , Ĵy , Ĵz that we have studied, this gives:

where we have defined Ŵ′ = 2Ŵφ + Ŵ↓
2  . The solution of Eq. (8) is, in general, a formidable task. If one is inter-

ested in the properties of the steady-state, however, the time derivatives can be set to zero. This approximation 
is not sufficient to solve Eq. (8), since some operators are a function of higher-order correlation functions, 
thus resulting in an infinite hierarchy of coupled equations. In the normal phase (i.e., when no symmetry is 
broken), one can reduce the complexity of the problem by considering κ ≫ Ŵ↓ ≃ Ŵφ , i.e., that the bosonic field 
reaches a steady-state long before the qubits do. Indeed, in this region the Liouvillian gap must be  opened19, 
and in the absence of critical-slowing down the typical timescale is dictated by the dissipation rates. Using adi-
abatic elimination, one can easily find the behavior of the system close to the normal phase characterised by 
�X̂� = �Ŷ� = �â†â� = �Ĵx� = �Ĵy� = 0 , while �Ĵz� = −1 . The results of adiabatic elimination, however, fail to 
capture the superradiant phase: in this regime, the diverging timescale coming from the closure of the Liouvil-
lian gap makes the photonic timescale comparable to the qubit one.

In order to truncate the hierarchy of equations stemming from a Liouvillian problem, in many-body quantum 
physics one often resorts to a Gutzwiller mean-field approximation. In this case, one assumes that the system 
density matrix can be factorised as a tensor product between the qubit and photonic part, decoupling all the 
high-order correlation in Eq. (8). For instance, we will assume that �Ĵx â†â� = �Ĵx��â†â� . Note that in general, the 
mean-field approximation can lead to incorrect predictions in the presence of strong quantum correlations. It 
is expected to be true for high-dimensional models (i.e., when the number of nearest neighbors is elevated) and 
in the thermodynamic limit N → ∞ . In Dicke-like models, all spins are coupled to the mode, which induces 
an effective all-to-all coupling. In the thermodynamic limit, the model is effectively infinite-dimensional, and 
the qubits act as a collective, classical spin. Furthermore, in the superradiant phase, the fluctuations of both the 
spins and the field are negligible compared to their mean-field  values89. As a consequence, it was shown that the 
mean-field approximation gives indeed correct results for Dicke-like models with large N26,65. Under the mean-
field approximation, Eq. (8) becomes

One solution to this equation is �X̂� = �Ŷ� = �â†â� = �Ĵx� = �Ĵy� = 0 , while �Ĵz� = −1 . That is, the normal phase 
with no photons is always a solution to Eq. (9). However, there are other two solutions to this equation, where 
the bosonic field is populated. Namely:

where we have introduced β = ωcŴ
′

2ω0NŴ↓
 and gt =

√

(

2ωc + κ2

2ωc

)(

2ω0 + Ŵ′2
2ω0

)

/8.

Having identified the three possible solutions, we study their stability by considering a linear perturbation 
of the steady-state value:

For the normal phase, we have

(8)



































∂t�X̂� = −κ�X̂� − 2iωc�Ŷ�,
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while for the superradiant phase

Only if all the eigenvalues of MN ( MS ) are negative, the normal (superradiant) phase is stable. We have obtained 
these eigenvalues numerically to study the phase diagram of the system.

Note that in the thermodynamic limit N → ∞ , the solution (10) can be simplified as:

The stability matrix MS can be correspondingly simplified. However, even in this case, the dependence in N does 
not disappear; furthermore, exact solutions are still out of reach. We have been able to check, however, that these 
exact results, for large N, showed consistency with the thermodynamic limit expressions (in particular, in both 
cases, the superradiant phase does disappear for small dissipation).

Received: 9 December 2019; Accepted: 13 July 2020

References
 1. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110. https ://doi.org/10.1103/PhysR ev.93.99 (1954).
 2. Hepp, K. & Lieb, E. H. Equilibrium statistical mechanics of matter interacting with the quantized radiation field. Phys. Rev. A 8, 

2517–2525. https ://doi.org/10.1103/PhysR evA.8.2517 (1973).
 3. Emary, C. & Brandes, T. Chaos and the quantum phase transition in the Dicke model. Phys. Rev. E 67, 066203. https ://doi.

org/10.1103/PhysR evE.67.06620 3 (2003).
 4. Lambert, N., Emary, C. & Brandes, T. Entanglement and the phase transition in single-mode superradiance. Phys. Rev. Lett. 92, 

073602. https ://doi.org/10.1103/PhysR evLet t.92.07360 2 (2004).
 5. Kirton, P., Roses, M. M., Keeling, J. & Dalla Torre, E. G. Introduction to the Dicke model: from equilibrium to nonequilibrium, 

and vice versa. Adv. Quantum Technol. 2, 1800043. https ://doi.org/10.1002/qute.20180 0043 (2019).
 6. Nataf, P. & Ciuti, C. No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit 

QED. Nat. Commun. 1, 72. https ://doi.org/10.1038/ncomm s1069  (2010).
 7. De Liberato, S. Light-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect. Phys. Rev. Lett. 

112, 016401. https ://doi.org/10.1103/PhysR evLet t.112.01640 1 (2014).
 8. De Bernardis, D., Pilar, P., Jaako, T., De Liberato, S. & Rabl, P. Breakdown of gauge invariance in ultrastrong-coupling cavity QED. 

Phys. Rev. A 98, 053819. https ://doi.org/10.1103/PhysR evA.98.05381 9 (2018).
 9. Di Stefano, O. et al. Resolution of gauge ambiguities in ultrastrong-coupling cavity quantum electrodynamics. Nat. Phys.https ://

doi.org/10.1038/s4156 7-019-0534-4 (2019).
 10. Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. 

Nature 464, 1301–1306. https ://doi.org/10.1038/natur e0900 9 (2010).
 11. Klinder, J., Keßler, H., Wolke, M., Mathey, L. & Hemmerich, A. Dynamical phase transition in the open Dicke model. PNAS 112, 

3290–3295. https ://doi.org/10.1073/pnas.14171 32112  (2015).
 12. Zhiqiang, Z. et al. Nonequilibrium phase transition in a spin-1 Dicke model. OPTICA 4, 424–429. https ://doi.org/10.1364/OPTIC 

A.4.00042 4 (2017).
 13. Aedo, I. & Lamata, L. Analog quantum simulation of generalized Dicke models in trapped ions. Phys. Rev. A 97, 042317. https ://

doi.org/10.1103/PhysR evA.97.04231 7 (2018).
 14. Safavi-Naini, A. et al. Verification of a many-ion simulator of the Dicke Model through slow quenches across a phase transition. 

Phys. Rev. Lett. 121, 040503. https ://doi.org/10.1103/PhysR evLet t.121.04050 3 (2018).
 15. Zou, L. et al. Implementation of the Dicke lattice model in hybrid quantum system arrays. Phys. Rev. Lett. 113, 023603. https ://

doi.org/10.1103/PhysR evLet t.113.02360 3 (2014).
 16. Lamata, L. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits. Sci. Rep. 7, 43768. https 

://doi.org/10.1038/srep4 3768 (2017).
 17. Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111. https ://doi.org/10.1126/scien ce.11778 38 (2009).
 18. Georgescu, I., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185. https ://doi.org/10.1103/RevMo dPhys 

.86.153 (2014).

(12)∂t
−→
A = ∂t(δ

−→
A ) = MNδ

−→
A =

















−κ − 2iωc 0 0 0 0

−2iωc − κ 0 − 4ig
√
N 0 0

0 0 − κ 0 0 0
0 0 0 − Ŵ′ − 2ω0 0
2g√
N

0 0 2ω0 − Ŵ′ 0

0 0 0 0 0 − Ŵ↓

















δ
−→
A ,

(13)

∂t
−→
A = ∂t(δ

−→
A ) = MSδ

−→
A =



















−κ − 2iωc 0 0 0 0

−2iωc − κ − 8ig
√
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�â†â�ss = 1

2β ,
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