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Quantum spin Hall effect of light
Konstantin Y. Bliokh,1,2* Daria Smirnova,2 Franco Nori1,3*

Maxwell’s equations, formulated 150 years ago, ultimately describe properties of light,
from classical electromagnetism to quantum and relativistic aspects. The latter ones
result in remarkable geometric and topological phenomena related to the spin-1 massless
nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show
that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with
strong spin-momentum locking. These modes are evanescent waves that form, for
example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate
the unusual transverse spin in evanescent waves and explain recent experiments that have
demonstrated the transverse spin-direction locking in the excitation of surface optical
modes. This deepens our understanding of Maxwell’s theory, reveals analogies with
topological insulators for electrons, and offers applications for robust spin-directional
optical interfaces.

S
olid-state physics exhibits a family of Hall
effects with remarkable physical properties.
The usual Hall effect (HE) and quantum
Hall effect (QHE) appear in the presence
of an external magnetic field, which breaks

the time-reversal (T ) symmetry of the system.
The HE induces charge current orthogonal to
both the magnetic field and an applied elec-
tric field, whereas the QHE (1) involves distinct
topological electron states, with unidirection-
al edge modes (charge-momentum locking),
characterized by the topological Chern num-
ber (2).
The intrinsic spin Hall effect (SHE) can occur

in T-symmetric electron systems with spin-orbit
interactions. It produces a spin-dependent trans-
port of electrons orthogonal to the external driv-
ing force (3, 4). There is also the quantum spin
Hall effect (QSHE) (5, 6), which is characterized
by unidirectional edge spin transport—edge states
with opposite spins propagating in opposite
directions. Such topological states with spin-

momentum locking gave rise to a new class of
materials: topological insulators (7, 8).
Alongside the extensive condensed-matter

studies of electron Hall effects, their photonic
counterparts have been found in various optical
systems. In particular, both the HE (9) and the
QHEwith unidirectional edge propagation (10, 11)
have been reported in magneto-optical systems
with brokenT-symmetry. Furthermore, because
photons are relativistic spin-1 particles, they
naturally exhibit intrinsic spin-orbit interaction
effects, including Berry phase (12) and the SHE
(13–15) stemming from fundamental spin prop-
erties of Maxwell equations (16).
The onlymissing part in the above optical Hall

effects is the QSHE for photons. Recently, it was
suggested that photonic topological insulators
can be created in complex metamaterials struc-
tures (17–19). Here, we show that pure free-space
light already possesses intrinsic QSHE, and sim-
ple natural materials (such as metals supporting
surface plasmon-polariton modes) exhibit some
features that resemble topological insulators. We
show that the recently discovered transverse spin
in evanescent waves (20, 21) and spin-controlled
unidirectional excitation of surface or waveguide
modes (22–27) can be interpreted as manifes-
tations of the QSHE of light.
Propagating (bulk) free-space modes of Max-

well equations are polarized planewaves. Introduc-

ing the complex amplitude E(r) of the harmonic
electric fieldE(r,t) = Re[E(r)e–iwt], the plane-wave
solution with wave vector k ¼ kz is

Eº e expðikzÞ; e ¼ axþ by ð1Þ

Here, k = w/c, e is the complex unit polarization
vector (jaj2 þ jbj2 ¼ 1), whereas x, y, and z de-
note the unit vectors of the corresponding axes.
The Jones vector x = (a,b)T is a three-dimensional
(3D) spinor, which describes the SU(2) polariza-
tion state of light. The spin states of propagating
light are circular polarizations x ¼ ð1; TiÞT= ffiffiffi

2
p

, with
helicities s ≡ 2Im(a*b) = T1. According to the
massless nature of photons, the plane-wave spin
is directed along the wave vector: S = sk/k [we
consider the spin density per photon in ℏ ¼ 1 units
(supplementary text)].
Generalizing Eq. 1 to an arbitrary direction

of propagation, the polarization vector becomes
momentum-dependent: e(k). Namely, it is tan-
gent to the k-space sphere because of the trans-
versality conditionE ⋅ k ¼ 0. This sphericalk-space
geometry underlies the spin-orbit interaction of
light (12–16). In particular, introducing the he-
licity basis of circular polarizations es(k) (16),
one can calculate the Berry connection Ass′ =
–ies · (∇k)es′ and curvatureFss′ = ∇k ×Ass′ for pho-
tons. In agreement with the helicity-degenerate
light-cone spectrum of photons, the Berry curva-
ture is diagonal, Fss′ = dss′Fs, and it forms two
monopoles at the Dirac-point origin of the mo-
mentum space (12–16):

Fs ¼ s
k
k3

; s ¼ +−1 ð2Þ

This curvature is responsible for the spin-
redirection Berry phase and the SHE in optics
(12–16).
We define the topological Chern numbers for

the two helicity states Cs ¼ 1
2p ∮F

sd2k, where
the integral is taken over the k-space sphere. The
Chern numbers are meaningful in systems with
Abelian Berry phases, such as 2D systems with
the conserved spin component along the third
dimension (7, 8, 28). This is also the case for pho-
tons having Abelian Berry phase, 2D polariza-
tion on the k-space sphere, and conserved radial
k-component of the spin (helicity) (29). The mono-
pole curvature (Eq. 2) yields Cs ¼ 2s. The total
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Chern number C ¼ ∑
s¼T1

Cs and the spin Chern

number Cspin ¼ ∑
s¼T1

sCs characterize the pho-

tonic QHE and QSHE properties (7, 8, 28):

C ¼ 0;Cspin ¼ 4 ð3Þ

The physical meaning of the Chern numbers is
the number of edgemodeswith fixeddirection of
propagation. The vanishing total Chern number
(Eq. 3) reflects the T-symmetry of Maxwell equa-
tions and the absence of the QHE for free-space
photons. At the same time, the nonzero spin Chern
number (Eq. 3) implies that free-space light has two
pairs of QSHE modes—edge counter propagating
modes with opposite spins. Furthermore, the val-
ue Cspin ¼ 4 implies that the topological ℤ2 in-
variant, associatedwith theT-symmetry, vanishes:
n ¼ Cspin

2 mod2 ¼ 0. Thismeans that surfacemodes
of Maxwell equations are not helical fermions (30)
as, for example, surface states of the Dirac equa-
tion (31, 32).
Nonetheless, nontrivial QSHE states of light

exist, and they are well known. The photonic edge
states of a bounded segment of free space are
evanescent waves. For instance, assuming the
x ¼ 0 boundary, with free space at x > 0, the

generic evanescent-wave solution of Maxwell
equations can be written as (21)

Eevan º eevanexpðikzz − kxÞ;

eevan ¼ axþ b
k

kz
y − ia

k
kz

z ð4Þ

Here, the spinor x ¼ ða; bÞT still characterizes
the wave polarization states. The wave (Eq. 4)
propagates along the z axis with wave number
kz > k and decays exponentially away from the
boundary with decrement k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z − k2
p

.
One can consider the evanescent wave (Eq. 4)

as a plane wave with the complex wave vector
k ¼ kzzþ ikx. The transversality condition
E · k = 0 generates the imaginary longitudinal
z-component in the polarization vector eevan,
in contrast to the purely transverse polariza-
tion e in propagating waves (Eq. 1). This com-
ponent produces a (x, z)–plane rotation of the
electric or magnetic fields and generates un-
usual transverse spin in evanescent waves (Fig. 1)
(20, 21). This transverse spin is independent of
the polarization x and can be written as

S⊥ ¼ Rek � Imk

ðRekÞ2 ð5Þ

Equation 5 demonstrates spin-momentum lock-
ing, similar to that in the QSHE and 3D topolog-
ical insulators for electrons (5–8). In particular,
the z-propagating evanescent waves with kz > 0
and kz < 0 will have opposite transverse spins
Sy > 0 and Sy < 0 (Figs. 2 to 4). Thus, any inter-
face between free space and a medium support-
ing surface or guidedmodes with evanescent tails
(Eq. 4) exhibits counter propagating opposite-spin
edge modes—the QSHE of light. This is the first
key point of our work.
In agreement with Cspin ¼ 4, there are two

pairs of QSHE modes in free space because the
evanescent waves (Eq. 4) are double-degenerate
with respect to the helicities s ¼ T1. However,
the existence of surface modes in Maxwell equa-
tions requires a planar interface between the
vacuum and a medium characterized by a per-
mittivity e and permeability m. Such interface
breaks the dual symmetry between the electric
and magnetic properties: e≠m (29). This breaks
the polarization degeneracy, and only a single
polarization survives in the surface modes. For
example, only transverse-magnetic surface waves
exist at the interface with a medium with m ¼ 1
and e < −1. Calculating the spectrum, polariza-
tion, and spin of these surface modes of Maxwell
equations, we obtain (supplementary text):

wsurf ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ e
e

r
ksurf ; xsurf ¼ 1

0

� �
;

〈Ssurf 〉 ¼ 1ffiffiffiffiffiffi
−e

p ksurf � n: ð6Þ

Here, ksurf and n are the unit vectors of the
propagation direction and the outer normal of
the medium, respectively, and we calculated the
mean (integral) spin per one surface-mode par-
ticle. The momentum-dependent spin 〈Ssurf 〉
originates from the transverse spin (Eq. 5) of
evanescent waves.
Equations. 5 and 6 determine the momentum

locking of the spin S but not of the polarization
spinor x (Fig. 2A). Polarization specifically cor-
responds to spin for nonrelativistic electrons, but
for relativistic particles these are different no-
tions. The surface modes of Maxwell equations
have momentum-dependent spin Ssurf but fixed
spinor xsurf (Eq. 6). The latter corresponds to the
trivial ℤ2 invariant n = 0 and shows that surface

SCIENCE sciencemag.org 26 JUNE 2015 • VOL 348 ISSUE 6242 1449

Fig. 2. Spin and spinor properties
of Maxwell and Dirac surface
modes. (A) Surface modes of
Maxwell equations propagating
along the interface between the
vacuum and a nontransparent
medium with m ¼ 1, e < −1. These
surface waves have fixed polariza-
tion xsurf ¼ ð1;0ÞT but opposite
transverse spins S locked to oppo-
site wave momenta (Eqs. 5 and 6).
(B) Topological surface modes of
the Dirac equation at the interface
between positive-mass and
negative-mass regions (31, 32).
These modes exhibit locking between their momenta and spinors: Orthogonal polarizations propagate in opposite directions. However, the expectation
value of their spin vanishes: Ssurf = 0 (supplementary text).

Fig. 1. Transverse spin in evanescent electro-
magnetic waves. The evanescent wave (Eq. 4)
propagates along the z axis and decays expo-
nentially in the x > 0 semi-space. (Inset) The

instantaneous distributions of the electric and magnetic wave fields for the case of linear transverse-
magnetic polarization, x ¼ ð1;0ÞT . The cycloidal ðx; zÞ–plane rotation of the electric field generates the
transverse spinS⊥ (Eq. 5) (20, 21).The sign of the transverse spin depends on the direction of propagation
of the evanescent wave.
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Maxwell modes are bosons rather than helical
fermions (30). Nonetheless, these modes provide
the unidirectional edge spin transport (QSHE)
because of the spin Ssurf. Precisely the opposite
situation takes place in one of the main models
for 3D electron topological insulators: the Dirac
equation with surface modes at the interface be-
tween positive-mass and negative-mass regions
(Fig. 2B) (31, 32). In this case, spinor-momentum
locking occurs, which corresponds to the topo-
logical ℤ2 invariant n = 1. However, surprisingly,
the expectation value of the spin of the surface
Dirac modes vanishes because of the mutual
cancellation of the polarization-dependent and

polarization-independent (similar to Eq. 5) con-
tributions (supplementary text). Thus, one can
say that surfaceMaxwell modes exhibit unidirec-
tional spin transport (QSHE) but with trivial ℤ2

spinor properties, whereas the surface Diracmodes
are topologically protected helical fermions that,
however, do not transport spin. This is the sec-
ond key point of our work.
Optical spin-momentum locking was recently

observed in several experiments (22–27). An im-
portant example is provided by surface plasmon-
polaritons (SPPs) at the vacuum-metal interface
(33). Real metals are dispersive media with per-
mittivity eðwÞ ¼ 1 − w2

p=w
2, where wp is the plas-

ma frequency. Metals are optical insulators at
w < wp, and at e < −1 (w < wp=

ffiffiffi
2

p
), the vacuum-

metal interface supports surfaceMaxwellmodes—
the SPPs (Fig. 3A). Themetal becomes transparent
at w ≥ wp, with bulk plasmons at w ¼ wp and
electromagnetic modes at w > wp. As shown in
Fig. 3A, the vacuum-metal interface resembles, by
using condensed-matter analogies, the interface
between a semimetal and an insulator. The SPP
modes demonstrate spin-momentum locking
(Eqs. 5 and 6) and nonremovable (because of the
light-cone spectrum in vacuum) spectral degener-
acy at k ¼ 0, which are typical for electron QSHE
states. Furthermore, plotting the SPP spectrum
for a 2D surface of a 3D metal (Fig. 3B), one can
see the conical spectrum and vortex spin texture
analogous to those in 3D electron topological in-
sulators (7, 8), but without the helical-fermion
spinor properties (Fig. 2).
A schematic of the experiments (22–27) is

shown in Fig. 4, revealing spin-controlled uni-
directional transport in electromagnetic surface
or guided waves. A transversely propagating free-
space light beam with the usual spin Sinc ¼ sy
(helicity s ¼ T1) was coupled to the evanescent
tails of the SPP or waveguide modes via some
scatterer (such as a nanoparticle or an atom).
In doing so, the opposite incident-spin states
Sinc ¼ Ty excited the surface or guided modes
running in the opposite directions: ksurf ¼ Tz.
This spin-direction correlation reached almost

100% efficiency in various systems, independent-
ly of their details. This proves the universal spin-
momentum locking in optical surface waves—the
QSHE of light.
Thus, we have shown that light has intrinsic

QSHE features, which arise from the spin-orbit
interactions of photons. The corresponding spin-
momentum locking originates solely from the
basic properties of evanescent waves in Maxwell
equations and can be observed at any interface
with the vacuum,which supports surface or guided
waves. In particular, surface plasmon-polaritons at
a metal-vacuum interface exhibit features similar
to those of surface states of topological insulators
(vortex spin texture at the conical dispersion).
Because of their trivial spinor structure, surface
electromagnetic states are not helical fermions
and are not protected from backscattering. None-
theless, they do provide robust unidirectional spin
transport. Ourwork shows that recent experiments,
demonstrating highly efficient spin-controlled uni-
directional excitation of surface or guided modes,
can be interpreted as observations of the QSHE
of light. The transverse spin locked to the direction
of propagation seems to be a universal feature of
surface vector waves of different nature. It ap-
pears in Maxwell and Dirac equations, as well as
in Rayleigh surface waves in elastic media and
surface-water waves. This offers robust angular-
momentum-to-direction coupling in various sur-
face waves as well as analogies and generalizations
involving quantum and classical wave theories.
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Atomic gold–enabled
three-dimensional lithography
for silicon mesostructures
Zhiqiang Luo,1* Yuanwen Jiang,1* Benjamin D. Myers,2,3 Dieter Isheim,2,4 Jinsong Wu,2,3

John F. Zimmerman,1 Zongan Wang,1 Qianqian Li,2,3 Yucai Wang,5 Xinqi Chen,2,3

Vinayak P. Dravid,2,3 David N. Seidman,2,4 Bozhi Tian1,5,6†

Three-dimensional (3D) mesostructured semiconductors show promising properties and
applications; however, to date, few methods exist to synthesize or fabricate such materials.
Metal can diffuse along semiconductor surfaces, and even trace amounts can change the
surface behavior. We exploited the phenomena for 3D mesoscale lithography, by showing one
example where iterated deposition-diffusion-incorporation of gold over silicon nanowires
forms etchant-resistant patterns. This process is facet-selective, producing mesostructured
silicon spicules with skeletonlike morphology, 3D tectonic motifs, and reduced symmetries.
Atom-probe tomography, coupled with other quantitative measurements, indicates the
existence and the role of individual gold atoms in forming 3D lithographic resists. Compared to
other more uniform silicon structures, the anisotropic spicule requires greater force for
detachment from collagen hydrogels, suggesting enhanced interfacial interactions at the
mesoscale.

S
emiconductors with three-dimensional (3D)
mesoscale features (1–5) are an emerging
class of materials, with promising applica-
tions from stretchable bioelectronics (3) to
alternative plasmonics and metamaterials

(6). However, progress in this area has been
impeded by challenges in chemical synthesis
(5) and limitations in 3D fabrication methods

(1, 2, 4, 7). As a result, this area would benefit
fromnew synthetic concepts or new components
in lithography. One place to look for such inspi-
ration is in biomaterials-based processes, which
routinely assemble mesostructured materials.
In the growth of natural hard biomaterials,

trace amounts of interfacial organic species are
important components (8), yielding unusual 3D
biomaterial shapes and properties. The applica-
tion of trace organic molecules as components
(e.g., an etching resist) in semiconductor-based
lithography is hard to achieve, given that semi-
conductor processing typically involves either
high-temperature gas-phase or harsh solution-
phase preparations. However, inorganic species
are much more stable and can be introduced as
trace components into various semiconductors,
as either impurities in the bulk volume (9–11) or
as diffused species near the surface (12–16), with
the latter holding great potential in 3D semi-

conductor lithography, given that surface diffu-
sion is versatile and more controllable.
Here we focus on 3D mesoscale lithography

of silicon (Si) nanowires with diffused gold (Au)
(13, 14, 17), where Au originates from the nano-
particle catalyst used for nanowire nucleation
and elongation [Fig. 1, supplementary materials
(18), and fig. S1]. Because Au diffusion over Si
surfaces is pressure-dependent (16), we first
adopted periodic pressure modulation during
Au-catalyzed Si nanowire synthesis to develop
Au diffusion–induced patterns along nanowire
sidewalls (figs. S1 to S3), where silane (SiH4) and
diborane (B2H6) were used as a Si precursor and
a p-type dopant, respectively. Next, we revealed
the Au-based patterns with anisotropic wet
chemical etching in KOH solutions [materials
and methods (18) and fig. S4]. The as-grown Si
structures have rather uniform diameters except
for periodic swells at the evacuation locations
(figs. S2 and S3). After etching, we identified
two Si mesostructures from the same growth
batch: a type I spicule with platelike nodes and
a type II spicule with triangle-shaped nodes
(Fig. 1, A and B). Portions of the nanowire sur-
faces remained after etching, suggesting that the
diffused Au acted as an etching resist. Both spic-
ule structures show gradient, curved, and aniso-
tropic surface textures. These formations are
reminiscent of other complex nanowire morphol-
ogies (19–24) but are also similar to some natural-
ly occurring hard materials, such as skeletons (8).
Transmission electronmicroscopy (TEM) images

of p-type Si spicules (Fig. 1, C to F, and fig. S5)
show that type I and type II structures grow along
the <111> and <112> directions, respectively. Al-
though type I is a single crystal, the type II spicule
has a {111} twin plane (11), which separates sub-
units a and b (Fig. 1F, TB marks the twin bound-
ary), as determined by the two sets of diffraction
spots (Fig. 1F, magenta/white and blue/white
dashed circles) in the selected area electron
diffraction (SAED) pattern.
We used scanning TEM (STEM) for tomograms

of mesostructured Si spicules (18) (Fig. 2, A and B,
and fig. S6). In addition to the expected structural
gradient and anisotropy, we revealed convex and
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