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Supplementary Note 
Supplementary Note 1: Wave fields 

The complex electric field of the plane wave after a quarter-wave plate can be expressed as 

   cos sin expA i ikz   E x y ,                                             (S1) 

where A is the wave amplitude, x  and y  are the unit vectors of the corresponding axes, /k n c  

is the wavenumber in the medium, n   is the refractive index of the medium, ω is the 

frequency, c is the speed of light, and θ is the angle between the electric field of the light beam 
and the fast axis of the quarter-wave plate, which is also the x-axis. The beam propagates along 
the −z-direction. When θ is 0, / 8 , / 4  and 3 / 4 , the light beam is linear, elliptical, left-
handed circular and right-handed circular polarizations, respectively.  

To investigate the optical lateral force (OLF: force in the y-direction) and eliminate the influence 
of the optical gradient force, the laser beam is focused by two cylindrical lenses into a line-shaped 
focal spot with radii wx and wy in the x- and y-axes, respectively. In the experiment, we set wx = 15 
µm and wy = 500 µm, which are much larger than the wavelength of the illuminating light (532 
nm), so we can ignore the beam divergence. The electric field of the focused beam can be 
approximately written as 
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According to the Maxwell’s equation i
c
  E H , where ω is the angular frequency, the 

magnetic field distribution is given by 
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where z  is the unit vector of the z-axis. The time-average energy density W in a homogenous 
dielectric medium with permittivity ε and permeability µ is known to be [32, 33, 52] 
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e m gW W W     E H ,                                          (S4) 

where   18g    in Gaussian units.  

Substituting equations (S2) and (S3) into (S4), we obtain 

2 2 2

2 2exp 2
2

e

x y

g A x yW
w w

   
        

,                                           (S5) 



 

 
222 2 2 2

2 2 2 2 2 2

2sin 2cos1 exp 2m

x y x y

A c x y x yW
w w w w

 
 

                               
.               (S6)  

The momentum of light p  can be subdivided into the spin momentum Sp  and the canonical 

(orbital) momentum Op  as [32, 35, 52] 

S O p p p .                                                            (S7) 

In a homogenous non-absorbing medium, they can be described by the following equations with 
the electric and magnetic contributions [32, 51]: 
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where S  is the spin angular momentum (SAM), and    C C  is the invariant notation for the 

vector operation, which can be expressed as [51] 

  x x y y z zC C C C C C          C C .                                       (S10) 

 
Supplementary Note 2: Derivation of the exact equation for the optical lateral force 

The total force experienced by a dipolar particle in an electromagnetic field can be expressed as 
[52] 

e m em  F F F F ,                                                        (S11) 
where eF , mF  and emF  denote the electric dipole force, the magnetic dipole force and the force 

from the interference between the electric and magnetic dipoles, respectively. The force 
originating from an electric dipole is [32, 35] 

   1 Re Im
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where e  is the complex electric polarizability. The first and second terms in equation (S12) 

correspond to the contributions of the electric part of the inhomogeneous energy distribution 
(gradient force) and the orbital momentum density, respectively. By substituting equation (S2) into 
(S4), we obtain 0eW  , thus the OLF from equation (S12) is 



 

 
Fig. S1. Illustration of a particle in the simulated line-shaped optical field. The color map 
represents the simulated electric field of the line-shaped beam. wx and wy are the half of the focal 
widths in the x- and y-directions, respectively. The optical gradient force can be ignored when 

yw   (e.g., wy = 500 µm). In the case when wy ~ λ, the y-coordinate of the particle is set to 0, to 

eliminate the optical gradient force in the simulation of the OLF. 
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In order to eliminate the influence of the optical gradient force, the y-coordinate of the particle is 
set to be 0 (Fig. S1). Then from equations (S8) and (S10), we obtain 
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Substituting equation (S14) into equation (S13), 
e

yF  can then be expressed as 
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The second term of equation (S11) represents the magnetic dipole force, which can be expressed 
as 
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where m  is the complex magnetic polarizability. Similar to eF , the first term of equation (S16) 

also corresponds to the gradient force, and is zero due to the y-related term in the chosen coordinate 
system, while the second term of equation (S16) is not zero. The magnetic dipole related OLF can 
be derived under the conditions, y = 0 and z = 0 to be  
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Here, we see that, in sharp contrast to 0y
e F , 0y

m F  when  Im 0m  . This phenomenon is due 

to the non-zero orbital momentum density caused by 0ZH  . 0y y
e m F F  for a plane wave. 

Next, we investigate the force emF  originating from the interference between electric and magnetic 

dipoles, which can be expressed as [15, 52] 
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Here, the complex electric polarizability e  determining the electric dipole moment de induced by 

the electric field E and the magnetic polarizability m  determining the magnetic dipole moment 

dm induced by the magnetic field H are defined via equations e ed E  and 1
m m d H , 

respectively. The complex electric polarizability e  can be written as 
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with  

0 3 3

2e

p
e

p

a a B
 

  
 


 


,                                                (S20) 

where a  and p  are the radius and permittivity of the particle, and 
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Similarly, the magnetic polarizability can be expressed as 
1

0 3 021
3mm mi k  



 

  
 

,                                                  (S22) 

with 
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where p is the permeability of the particle, and 
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Considering a non-magnetic polystyrene dipolar particle (radius a = 10 nm, relative permittivity 
2.4336p   and permeability 1p  ) in a homogeneous environment ( 2.1316  , 1  ), 

0.0451eB   and 0mB   can be obtained. Subsequently,  
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0m F .                                                                  (S26) 

Thus, both the electric and magnetic dipolar forces are absent in the considered geometry. The 
electric dipolar force equals zero because of the gradient-symmetry and the absence of the electric 
orbital momentum. The magnetic dipole force equals zero due to the zero magnetic polarizability 
even in the presence of the magnetic orbital momentum. Overall, the contributions from the optical 
gradient force and orbital energy flow are zero for non-magnetic dipolar particles. Besides, the 
force from the interference between the electric and magnetic dipole radiation [equation (S18)] is 
also zero because 0e m   . The OLF on an ideal non-magnetic dipole particle is absent under the 

conditions considered. 

Nevertheless, when the particle is not an ideal dipolar particle (i.e., a  ), the electric and 
magnetic polarizabilities of a spherical particle can be obtained from the Mie scattering 
coefficients [35, 63] 
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For a non-magnetic nanoparticle and the surrounding medium, 1p   , which results in  
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Consequently,  
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Equation (S32) applies when  Im 0  . To investigate emF , we substitute equation (S2) into the 

first term of equation (S9): 
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Similarly, substituting equation (S2) into the second term of equation (S9): 
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with ,m y
Sp  denoting the spin momentum component in the y-direction.  

Meanwhile, 
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The last term of equation (S18), which is also the Poynting vector (P)-related term can be derived 
as  
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Combining the derived OLF contributions by substituting equations (S34) and (S35) into equation 
(S18), the exact expression for the OLF on a non-absorbing particle can be obtained: 
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Equation (S37) can also be obtained using equation (44) in Ref. [52], whose first term is 
proportional to the real part of the Poynting vector [  Re P ]. Note that  Re P  can be divided 

into the sum of the spin and orbital momentum densities 

   Re .S O P p p                                                             (S38) 



 

Then equation (44) in Ref. [52] can be easily converted to equation (S18).  

The OLF on an absorbing particle also has contributions from the magnetic dipole force, and the 
explicit expression can be obtained by combining equations (S17) and (S37) as 
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It is worth noting that, 2 2
y

k w  when yw  . Thus, the OLF is in the opposite direction of m
Sp  

for a non-absorbing particle since  Re 0
me     and  Im 0m  . Whereas emF  in the OLF can 

be in a same direction of m
Sp  for a metallic particle when  Re 2 0p   [see equation (S31)]. 

Meanwhile, mF  in the OLF also emerges because  Im 0m  . Thus, the OLF on a metallic 

particle can be larger than that on a non-absorbing particle. 

Equation (S39) is the equation of the OLF in the main text [equation (3)]. It should be noted that 
equation (S39) is implemented in Gaussian units, it can be easily converted to SI units. The 
quantitative dependences of the OLF on the polarization of the incident light and particle position 
are shown in Fig. S2. The OLF has maximum values and opposite signs for the left and right-
handed circularly polarized incident light. The sign of the OLF reverses when the particle is placed 
on different sides with respect to the axis, x = 0. 

Similarly, the spin-dependent force in the x-direction when the particle is placed at x = 0 can be 
obtained as  
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It is noted that this spin-dependent force in the x-direction is much smaller than that in the y-
direction because 𝑤𝑦 ≫ 𝑤𝑥. Meanwhile, the gradient force in the x-direction can be larger than 
the negligible spin-dependent force in the y-direction (Fig. 2A). Therefore, the optical gradient 
force and the radiation pressure force are the two dominant forces in the x-direction, as shown in 
Fig. 4A. In contrast, the optical gradient force in the y-direction is largely diminished by choosing 
wy = 500 μm, facilitating the investigation of the OLF in the y-direction. 

 



 

Supplementary Note 3: Simulation of the Brownian motion of particle 

For a particle in a force field, the kinetics of the particle can be expressed using the Langevin 
equation [5, 61] 

2

2 ( ) ( ) ( ) ( )d dm r t r t F r t
dt dt

     ,                                         (S41) 

where m is the mass of the particle, r is the particle position, F(r) is the external force field, γ is 
the particle friction coefficient, which for a spherical particle of radius a moving in a fluid with a 
viscosity η, can be determined by Stokes’ law as 6 a  . And ( )t is the random force with 

zero mean, which can be written as ( ) 2 ( )t SW t  , where W(t) is a white noise with ( ) 0W t  , 

and 2S is the intensity of the noise. In the low Reynolds number regime, the overdamped Langevin 
equation can be obtained by omitting the inertial term as 

( ) ( ) ( )d r t F r t
dt

   ,                                                    (S42) 

where ( ) 2 ( )t DW t   is a white noise with intensity 2D, where /BD k T   is the diffusion 

coefficient. Here, kB is the Boltzmann constant, and T is the temperature. 

In the two-dimensional force field shown in Fig. 4A, apart from the Brownian motion, the particle 
experiences the optical gradient force with a spring constant kx and the optical radiation pressure 
force Frad in the x-direction, while only the OLF in the y-direction. Using the two-dimensional 
Langevin equation, we obtain 
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We then simulate the particle trajectories in this force field. For simplicity, kx is set to 82 10

N/m, and Frad is set to 100 fN. FOLF is set to 30 x
x

 fN, which means that the OLFs are negative 

and positive on the left (x < 0) and right (x > 0) sides of the beam, respectively, mimicking the 
OLF in the right-handed circularly polarized beam. The initial position of the particle is set to 
(−10 μm, 0). The time ranges in the simulation are set to 10 and 100 s. The OLF is chosen to be 
slightly larger than that measured in the experiment (Fig. 5A), to better mimic the practical 
situation, where the measured force is weaker due to the friction between the particle and 
substrate. The simulation results of two-dimensional particle trajectories are shown in Fig. S3. 



 

As we can see from Fig. S3, the particle moves downward on the left of the beam, while moving 
upward after crossing the beam center at x = 0. The trajectory matches relatively well with the 
experimental results in Fig. 4E.  

The Brownian motion makes a significant impact on the particle trajectory, as shown in Fig. S3. 
In a short range of time, i.e., a few seconds, the particle may move in the opposite direction of the 
OLF, which is also reflected in the experimental trajectories in Fig. 4 (C-F). Meanwhile, the 
oscillation range of the Brownian motion can reach 1-2 μm, which also matches that in the 
experiment. We also investigate the effect of liquid viscosity on the kinetics of particles, as shown 
in Fig. S4. Since the diffusion coefficient is inversely proportional to the viscosity, the Brownian 
motion is more prominent in a low-viscosity liquid than that in a high-viscosity liquid. The 
Brownian motion may overwhelm the OLF because both of them could move the particle in the 
same dimension (Fig. S4C), causing difficulties in observing the bidirectional movements of 
particle in the y-direction on both sides of the beam. Meanwhile, the particle will be quickly pushed 
to the stable position in the x-direction (Fig. 4A), and the observation time for the bidirectional 
movement of the particle will be short. The most important reason why (low-viscosity) water is 
not suitable for the experiment is that the refractive index of water is 1.33, which is different from 
that of quartz (substrate), resulting in an inhomogeneous environment for the particle. 
 



 

 
Fig. S2. Optical lateral force calculated using equation (S39). a, The dependence of the OLF 
on the polarization of the incident light (orientation of the quarter-wave plate). The OLF reaches 
its maximum values at  = 45° and 135°, corresponding to the left and right-handed circular 
polarizations. The particle position is (x = 400 nm, y = 0), as shown in Fig. S1. b, Optical lateral 
force at different locations along the x-axis for  = 45°. The sign of the OLF reverses after crossing 
the center of the beam (x = 0). Simulation parameters are wx = 15 µm, wy = 500 µm, ε = (1.46)2, εp 
= (1.56)2, and a = 25 nm. The OLFs in a and b are calculated by normalizing the intensity at (x = 
0, y = 0) to 1 W/µm2, where it is highest. 



 

  

Fig. S3. Simulated trajectories of 5-μm-diameter particles with the Brownian motion in the 
two-dimensional force field. a,b, T = 300 K. c,d, T = 310 K. e,f, T = 350 K. The beam center is 
at x = 0. The particle experiences the optical gradient force in the x-direction with the spring 

constant kx = 82 10 N/m, the radiation pressure force Frad = 100 fN, the OLF = 30 x
x

 fN. The 

particle may move in the opposite direction of the OLF in a short range of time, which is also 
reflected in the experimental trajectories in Fig. 4 (C-F) in the main text. a and b, c and d, e and f 
are simulated under the same parameters, they have different trajectories because the Brownian 
motion is random. 
 
 
 
 
 
 
 
 
 
 
 



 

  

Fig. S4. Simulated trajectories of 5-μm-diameter particles inside water. a, The trajectory of 
the particle in water in a time range of 100 s. b,c, The trajectories of particles in water in a time 
range of 10 s. The low-viscosity water results in a larger diffusion coefficient D and faster 
movement of the particle, causing difficulties in observing the bidirectional movement of particle 
on both sides of the beam. Most importantly, the refractive index of water (RI = 1.33) does not 
match the quartz substrate (RI = 1.46), resulting in an inhomogeneous environment for the particle. 
The simulation parameters are the same in Fig. S3. 
 
 
 
 



 

Additional Figures 
 
 

 
 

 
Fig. S5. Helicity-dependent magnetic SAM mS and optical forces with different orientation 
angles of the quarter-wave plate. The distribution of mS  before focusing by two cylindrical 
lenses (CLs) is homogeneous for θ = 22.5° and 45°. mS has the same direction for both angles. The 
corresponding OLFs for both angles after focusing by two CLs dominantly point along the +y and 
−y directions at the regions x < 0 and x > 0, respectively. The mS  and the OLF for θ = 22.5° are 
both smaller than those for θ = 45°.  
  



 

 
 
 
 

 
Fig. S6. Dependence of the optical force in the x-direction on the polarizations of the incident 
light. The force increases significantly with the particle size. All particles are placed at x = 700 
nm. Here, ε = (1.46)2, εp = (1.56)2, µ = µp = 1, wx = 15 µm, wy = 500 µm. In contrast to the OLF 
dependence, Fx remains almost constant and negative for all polarizations, acting toward the beam 
center (x = 0). The forces are calculated by normalizing the intensity at (x = 0, y = 0) to 1 W/µm2, 
where it is highest. 

 
 
 
 

  



 

 
Fig. S7. Particle dynamics in the line-shaped beam under the illumination of the right-
handed circularly polarized (RCP) beam. a, Illustration of a particle with a radius of 100 nm 
moving in a line-shaped beam: the particle on the left of the beam moves toward the +x direction 
by the optical radiation pressure force Frad and the optical gradient force Fgrad. It eventually stops 
moving in the x-direction by the balance of the Frad and Fgrad on the right side of the beam. The 
particle moves downward and rightward in the y-direction by the OLF. b, Calculations of optical 
forces in the x-direction. The balance point is located at x = 0 without Frad. It shifts to the right side 
of the beam under the balance of Fgrad and Frad when the beam is obliquely incident. The simulation 
parameters are wx = 15 µm, wy = 500 µm, and a = 100 nm. The optical forces are calculated by 
normalizing the intensity at (x = 0, y = 0) to 1 W/µm2, where it is highest. 

 
 
 
 
 
 
 



 

 
Fig. S8. 2D Time-dependent position of particles in Scenario 1. a, Experimental trajectory 
shows that the particle moves from top to bottom in the y-direction when crossing the beam center 
(x = 0) for the LCP light. The particle moves toward the +x-direction until reaching the balance 
point of the optical radiation pressure force and optical gradient force. b, Experimental trajectory 
shows that the particle moves from bottom to top in the y-direction when crossing the beam center 
for the RCP light. 
  



 

 

 
Fig. S9. Time-dependent positions of particles P1, P2 and P3 (shown in Fig. 4, C and F) in 
the x-direction. The optical gradient force and radiation pressure force push P1 along the +x-
direction, while the gradient forces on P2 and P3 move them slowly in the −x-direction. 
Consequently, the displacement of P1 (due to the optical gradient force plus the radiation pressure 
force) is more prominent than P2 and P3 (due to the optical gradient force minus the radiation 
pressure force).  
 
  



 

 
 
 

 
Fig. S10. Time-dependent positions of particles in a long-time range. a, Image of particles. 
Particles [e.g., Particle 1 (P1) and P2] in the laser beam look brighter than those outside the laser 
beam (i.e., P3 and P4). Because in a long-time range (10 min), there occurs an inevitable 
background drifting, which should be considered; P4 is used as the reference particle. Though the 
background drift can be very small and ignored in previous particle trapping scenarios, it can be a 
prominent effect in this work because the OLF is small and can be affected by any factor. b, Raw 
data of trajectories of P1-P4 in the y-direction. As can been seen, P3 and P4 have a similar 
trajectory, which affects the moving of P1 and P4. c, Trajectories of P1-P4 in the y-direction after 
subtracting that of P4. It is clearly seen that P2 moves toward the −y-direction, P1 moves up and 
down when crossing the center of the beam, P3 moves randomly due to the Brownian motion. It 
is also worth noting that, vibrations, such as the vibration of camera or the optical stage, may also 
contribute to the noise in the curves, but they imposed on all particles and are not random, and, 
therefore, do not influence the observation of the OLF. The beam is left-handed circularly 
polarized beam with a power of 800 mW. 
 
  



 

 
 

 
Fig. S11. Bidirectional motion of particles on two sides of the beam in a long-time range. a, 
Image of particles. P1 and P2 are on the right and left sides of the beam, respectively. P4 is used 
as the reference particle. b, Raw data of trajectories of P1-P3 in the y-direction. c, Trajectories of 
P1-P3 in the y-direction after subtracting that of P3. It is clearly seen that P1 moves toward the −y-
direction, while P2 moves toward the +y-direction. The beam is left-handed circularly polarized 
beam with a power of 800 mW. 
 

 
Fig. S12. The trajectory of a particle in the y-direction when crossing the beam center. a, 
Image of particles. P1 is initially on the left side of the beam and moves to the right side. P2 is 
used as the reference particle. b, Trajectory of a particle (P1) in the y-direction after subtracting 
that of P2. P1 moves up and down before and after crossing the beam center, respectively. The 
beam is left-handed circularly polarized beam with a power of 900 mW. 
 
 



 

  
Fig. S13. Comparison of different contributions to the optical lateral force for different 
permittivities of the particle. a, The magnetic dipole contribution induced by m

Op . b, Optical 

lateral force calculated from equation (3). The magnetic dipole contribution (a) is much smaller 
than the total OLF (b) dominated by the force due to the electric-magnetic dipole coupling. The 
OLF changes from negative to positive when the real part of the particle permittivity  Re 2p   . 

The OLF is also drastically enhanced when  Re p  is negative and  Im 0p  . The simulation 

parameters are wx = 15 µm, wy = 500 µm, particle position (x, y) = (400 nm, 0), a = 25 nm, 21.46 
, µ = µp = 1 and θ = 45°. The OLFs are calculated by normalizing the intensity at (x = 0, y = 0) to 
1 W/μm2, where it is highest.  



 

 
 
 
 
 

 
Fig. S14. Optical lateral force versus the permittivity of the medium ε and the particle εp. In 
sharp contrast to the optical gradient force, which is respectively an attractive or repulsive force 
when the permittivity of the particle is larger or smaller than that of the medium, the OLF remains 
positive in the whole map. The simulation parameters are wx = 15 µm, wy = 500 µm, particle 
position (x, y) = (400 nm, 0), a = 25 nm,    Im Im 0p   , µ = µp = 1 and θ = 45°. The OLFs 

are calculated by normalizing the intensity at (x = 0, y = 0) to 1 W/µm2. The highest light intensity 
is reached at (x = 0, y = 0). 
 
 
  



 

Supplementary Table S1: Ubiquitous SAM force in various systems 

Configurations Dominant force and predictable 
SAM forces References  

Evanescence waves Gradient force in vertical 
SAM lateral force (observable) 

15 (theory: force) 
32, 62 (theory: force) 

44 (experiment: force) 

Highly focused single 
beams 

Gradient force & SOI orbital force 
SAM lateral force 
(unobservable/transient) 

30 (experiment: force) 
34 (experiment: 

configuration) 
36 (experiment: force) 

Structured waves 
(Standing waves, 
structured guided waves, 
vortex beams, etc.) 

Gradient force & SOI orbital force 
SAM lateral force 
(unobservable/transient) 

35 (theory: force) 
31 (experiment: force) 

37 (experiment: 
configuration) 

46 (experiment: 
configuration) 

Unpolarized beam 
Gradient force 
SAM lateral force 
(unobservable/transient) 

47 (experiment: 
configuration) 

Loosely focused  
line-shaped beam 

Gradient force in the x-direction 
SAM lateral force in the y-direction 
(observable) 

This work: force 

Note:  

The evanescence waves attract the particle onto the surface, and the SAM lateral force moves the 
particle laterally. This system is suitable for investigating the SAM lateral force, but is difficult to 
implement. The divergence of the incident beam for exciting evanescence waves may generate an 
extra optical gradient force which may overwhelm the SAM lateral force. Besides, the multiple 
scattering of light at the particle near the interface of the substrate and medium may also potentially 
affect the observation of the SAM lateral force. 

Highly focused single beams generate a strong optical gradient force to attract the particle to the 
beam center, where no SAM lateral force exists due to the symmetry. The spin-orbit interactions 
(SOIs) generate a strong orbital force to interfere with the observation of the SAM lateral force. 

Similarly, structured waves (such as standing waves, guided waves, and vortex beams) generate 
either strong intensity/phase-induced gradient forces or SOI-induced forces which may prevent the 
observation of the SAM lateral force. 

The unpolarized beam also generates a strong gradient force, imposing a difficulty in observing 
the SAM lateral force. 



 

In this work, the loosely focused line-shaped beam results in only the weak gradient force in the 
y-direction to facilitate the observation of the SAM-inhomogeneity-dependent lateral force in that 
direction. Meanwhile, the SOI effect is largely reduced by the loosely focused beam which is the 
main interference factor in highly focused beams, see the discussion in the main text. 

In summary, any beam possessing a SAM will give rise to a SAM-inhomogeneity-dependent 
optical force when the beam has an electric or magnetic gradient that induces a spin momentum 
[equation (1)]. This particular force is parallel to the spin momentum vector. In most typical 
scenarios, the SAM-inhomogeneity-dependent force only considers the electric spin momentum 

S

ep  on an electric dipole, which is usually very weak (and overlooked), and can be easily 

overwhelmed by other dominant optical forces, such as the gradient force, SOI-induced force, etc. 
Therefore, one needs an appropriately devised system to rule out those dominant forces to facilitate 
the observation of the SAM-inhomogeneity-dependent lateral force. 
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