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Device parameters. In Table S1, we present the char-
acteristics of the quantum simulator with 16 out of the
20 qubits having XY-control lines. These 16 qubits are
labelled in Fig. 1.

Correction of XY crosstalk. The characterization of the
Z-crosstalk effect and its correction have been described
in Ref. (29), which are also the same as in this experi-
ment. In addition, the XY-drive crosstalks between qubit-
s must be corrected, as all qubits are driven by identical
microwave drives to quench the system. Different from
the Z-crosstalk effects, the characterization of the XY-
crosstalk effects includes the phase calibration of the mi-
crowave drives. Figure S1 shows the calibration process
taking the measurement of the XY crosstalk effect of Q2

to Q1 as an example.
In Fig. S1a, to characterize the crosstalk amplitude,

Q1 is biased to the interacting frequency ωI/2π, while
Q2’s frequency is tuned to a nearby one, e.g., (ωI/2π −
0.08 GHz), and other qubits are decoupled from Q1 and
Q2 by tuning their resonant frequencies far away. We ap-
ply a strong flat-top-envelope microwave pulse with fre-
quency ωI toQ2’s XY-control line, generating a crosstalk
excitation on Q1. We then monitor the evolution of Q1’s
excitations for different resonant frequencies (ωI −δ1) of
Q1 (δ1 is a small deviation). By fitting the Rabi oscilla-
tion of the measured excited probabilities of Q1, we can
obtain the crosstalk amplitude of Q2 to Q1.

In Fig. S1b, we characterize the crosstalk phase of Q2

to Q1, with the same frequency arrangement as that in
Fig. S1a. However, to cancel the crosstalk effect of Q2

to Q1, a microwave pulse on Q1’s XY-control line, with
amplitude equal to the crosstalk amplitude of Q2 to Q1,
should also be added. In this process, we monitor the
evolution of Q1’s excitations for different phases of the
microwave pulses on Q2’s XY-control line, while fixing
the microwave phase of Q1 to zero. The excitations of
Q1 are almost completely inhibited during the whole evo-
lution process at a specific phase, as can be seen from
Fig. S1b, showing that the phase difference of the mi-
crowave drives on the XY-control lines of Q1 and Q2 is
π.

Calibrations of other pairs of qubits are performed with
a similar method. After quantifying these crosstalk ef-
fects, we correct these issues in experiments by consid-
ering the case which only involves two qubits: Q1 and

Q2. We bias these two qubits to ωI/2π and simultaneous-
ly apply resonant microwave pulses on their XY-control
lines with amplitudes AeiφA and BeiφB for Q1 and Q2,
respectively (other qubits are decoupled from Q1 and Q2

by tuning their resonant frequencies far away). Here φA
and φB represent the microwave phases of Q1 and Q2,
respectively. If no correction is made, the microwave am-
plitude and phase of each qubit can be represented as

[
AeiφA + a12Be

i(φ12+φB)

a21Be
i(φ21+φB) +BeiφB

] = M̃Q1,Q2
xy [

AeiφA

BeiφB
],

where

M̃Q1,Q2
xy = [

1 a12e
iφ12

a21e
iφ21 1

]

is the XY-crosstalk matrix measured with the technique
described above. On the contrary, if we set the mi-
crowave amplitudes and phases of the qubits to A′eiφ

′
A

and B′eiφ
′
B in advance, the microwaves we apply to the

XY-control lines should be corrected as

(M̃Q1,Q2
xy )

−1
[
A′eiφ

′
A

B′eiφ
′
B

] .

We have performed experiments to verify the validity
of this XY-crosstalk correction, where we biasQ1 andQ2

to ωI to open the interaction and simultaneously apply
identical microwaves to these two qubits. The results are
displayed in Fig. S2, demonstrating the validity of this
correction. The same treatment can be easily extended to
the multi-qubit case.

Note that in the experiments we apply two kinds of mi-
crowave drives on the qubits. One establishes the trans-
verse field with the same driving frequency ωI for all
qubits, and the other is the rotation pulse applied at each
qubit’s idle frequency. The XY-crosstalk correction is
only applied when we impose microwave drives on all
the qubits, to generate identical transverse fields. As for
the rotation pulses, the XY-crosstalk effects are negligi-
ble due to the large detuning between the idle points of
qubits.

Calibration of the transverse field. The term of the lo-
cal transverse field hxj σ

x
j for each Qj in Eq. (1) in the

main text is enabled by the resonant microwave drives



ωj/2π T1,j T ∗2,j gj/2π ωr
j /2π ωm

j /2π F0,j F1,j

(GHz) (µs) (µs) (MHz) (GHz) (GHz)
Q1 4.835 33 1.7 27.6 6.768 4.815 0.979 0.928
Q2 5.290 21 1.8 27.4 6.741 5.292 0.970 0.913
Q3 5.330 37 1.8 29.1 6.707 5.350 0.978 0.920
Q4 4.460 36 2.0 26.5 6.649 4.420 0.953 0.907
Q5 4.791 32 2.8 29.2 6.611 4.792 0.980 0.893
Q6 4.870 30 2.1 30.1 6.558 4.850 0.989 0.938
Q7 4.569 25 2.2 24.1 6.551 4.450 0.980 0.933
Q8 5.250 31 2.0 27.7 6.513 5.245 0.978 0.925
Q9 4.680 23 2.4 27.3 6.524 4.765 0.967 0.926
Q10 4.960 23 1.5 26.9 6.550 4.735 0.972 0.946
Q11 4.899 32 1.6 29.1 6.568 4.880 0.985 0.924
Q12 5.176 22 2.0 26.3 6.640 4.310 0.993 0.941
Q13 5.220 34 2.0 26.5 6.659 5.205 0.987 0.942
Q14 4.490 43 0.9 29.0 6.712 4.583 0.976 0.923
Q15 4.415 >30 1.9 24.6 6.788 4.375 0.967 0.944
Q16 4.766 37 1.5 27.5 6.758 4.906 0.970 0.945

TABLE S1. Quantum simulator characteristics. Here, ωj is the idle frequency of Qj , where single-qubit rotation pulses are
applied. T1,j and T ∗2,j are the energy relaxation time and Ramsey dephasing time (Gaussian decay) of Qj , respectively, which are
measured at the interacting frequency ωI (= ωR +∆); gj denotes the coupling strength between Qj and the resonator busR; ωr

j is
the resonant frequency of Qj’s readout resonator; ωm

j is the resonant frequency of Qj at the beginning of the measurement process,
when its readout resonator is pumped with microwave pulses. Finally, F0,j (F1,j) is the probability of detecting Qj in the ∣0⟩ (∣1⟩)
state, when it is prepared in the ∣0⟩ (∣1⟩) state.

with calibrated magnitude and phase. To ensure the uni-
formity of the driving magnitude, we perform Rabi oscil-
lation measurements on each stand-alone qubit Qj at the
interacting frequency ωI . The qubit exposed to the reso-
nant microwave drive will experience an oscillation of its
excited-state probability, where the oscillation frequency
hxj /π can be adjusted by the driving amplitude. For the
phase calibration of the transverse field, when applying
microwave drives with a flat-top envelope to eachQj , we
actually obtain the form hxj (e

−iφjσ+j +e
iφjσ−j ), where φj

is the microwave phase sensed by each Qj and may be d-
ifferent from each other, because of the length disparities
between each Qj’s XY-control wires. The experiments
require the uniformity of φj , which can be achieved by
the following calibration process. Here, we consider t-
wo qubits (Q1 and Qj), equally detuned from the res-
onator bus by ∆/2π ≃ −450 MHz and driven by resonant
microwaves through their own XY-control lines with the
driving phases of these two qubits set to 0 and φj , respec-
tively. The two-qubit Hamiltonian can be written as

H1j/h̵ =λ1j(σ
−
1σ

+
j + σ

−
j σ

+
1 )

+ hx(σx1 + e
−iφjσ+j + e

iφjσ−j ),

where λ1j is the coupling strength between Q1 and Qj ,
and hx represents the driving magnitude on the two qubit-
s. In experiments, we start with the ground state and
monitor the evolution of the two-qubit system under the
above Hamiltonian for different values of φj . We selec-

t Q1 as the reference and adjust the φj of other qubits
to make them pairwise aligned with that of Q1. Note
that when performing the phase check of Q1 and Qj at
the interacting point ωI , the frequencies of other qubits
are arranged in the vicinity (about 50 to 100 MHz away
from ωI ) to minimize the Z-crosstalk effect. The cal-
ibration sequence and experimental results for different
φj are displayed in Fig. S3. We note that the calibration
of the transverse field cannot ensure the ideal uniformity
of the microwave drives. Thus, we numerically consid-
er a small inhomogeneity in the phases of the microwave
drives for the 16 qubits, and find that our numerical re-
sults show a better agreement with the experimental re-
sults if φj is drawn from a normal distribution with an
average value 0 and a standard deviation 0.08.

Phase calibration of the rotation pulse. As can be
seen from Fig. 1c, after the evolution under the quenched
Hamiltonian, we apply the rotation pulse on each qubit
before the joint readout to measure the physical quanti-
ties, including the average spin magnetizations ⟨σx(t)⟩
and ⟨σy(t)⟩. The rotation operation on each qubit is re-
alized by a Gaussian-envelope microwave pulse with a
full width at half maximum of 20 ns, which has been
characterized by randomized benchmarking with a fideli-
ty above 0.99 for both Xπ/2 and Yπ/2 rotation gates.

To mainly compensate for the dynamic phase caused
by frequency tuning through the sequence, the phase of
each rotation pulse needs to be corrected. The calibration



FIG. S1. Quantification of XY-crosstalk effects. a, Exper-
imental sequence and results for measuring the XY-crosstalk
amplitude. After tuning Q1 to the interacting point ωI , we ap-
ply a strong microwave drive (hx

2/2π ≃15 MHz) on Q2’s mi-
crowave drive line with resonant frequencyωI . The strong drive
will generate a crosstalk Rabi oscillation on Q1. We measure
the Rabi oscillations for different values of δ1, among which the
one with the slowest Rabi oscillation characterizes the crosstalk
amplitude, as shown by the red vertical dashed line. b, Exper-
imental sequence and results for the measurement of the XY-
crosstalk phase. In our experiments, we add a microwave drive
on Q1’s XY-control line with an adjustable phase φ. The se-
lection of φ can induce an enhancement or neutralization effect
(red dotted vertical line) on Q1’s Rabi oscillation, which can
help us identify the XY-crosstalk phase.

process is presented in Fig. S3c, takingQ1 as an example.
The calibrated qubit is biased to the interacting frequency
ωI with a rectangular pulse, while the frequencies of oth-
er qubits are arranged in the vicinity, to minimize the Z-
crosstalk effect. Almost simultaneously, Q1 is driven by
a flat-top-envelope microwave pulse with frequency ωI .
Then, we bias Q1 back to its idle frequency and apply
a π/2-rotation pulse before the readout. We record the
probabilities of Q1’s excited state during this dynamics
for different phases φ of the rotation pulse. The result-
s are displayed in Fig. S3d, where the phase offset used
for the correction is highlighted by the red dotted vertical
line.

Numerical simulation on the effects of disordered cou-
plings. As shown in Fig. 1B of the main text and
Fig. S4a, although the experimental device can success-
fully simulate the LMG model, there still exists a disorder
in the qubit-qubit couplings. To study the effects of the
disordered couplings on the signatures of the DPT, we

FIG. S2. Experimental test of the XY-crosstalk correction.
a, The experimental sequence. We tune two qubits on resonance
at ωI , while other qubits are arranged in the vicinity, and apply
resonant microwave drives (hx/2π ≃5 MHz for each qubit) on
these two qubits’ XY-control lines with a controllable phase d-
ifference of φ. b, The measured probabilities P11 of the ∣11⟩-
state, versus t and φ, in cases with and without applying the
XY-crosstalk correction, compared with the numerical results.
When no XY-crosstalk correction is made, the measured oscil-
lation periods of P11 for different φ values show an obvious
inconsistency, indicating an enhancement (black dotted vertical
line) or neutralization (red dotted vertical line) effects induced
by the XY crosstalk. After applying the XY-crosstalk correc-
tion, the experimental results are in good agreement with the
numerical results.

numerically study the Hamiltonian

H/h̵ =
16

∑
i<j

(λ + δλij)(σ
+
i σ

−
j + σ

−
i σ

+
j ) + h

x
16

∑
j=1

σxj , (S3)

where λ is the mean value of the qubit-qubit couplings
with λ/2π ≃ 1.43 MHz, and δλij follows a uniform distri-
bution [−W,W ]. The time-averaged magnetization ⟨σz⟩

and the time-averaged correlation Czz versus the trans-
verse field with different disorder strengths W are de-
picted in Fig. S4b and S4c, respectively. The behaviors
of ⟨σz⟩ and Czz of the ideal LMG model and our device
are compared, which indicate that our device can be ef-
fectively described by Eq. (S3) using a disorder strength
W /2π ≃ 0.7 MHz. Furthermore, we demonstrate that the



FIG. S3. Phase alignment of the transverse field and the rotation pulse. a, Experimental sequence. Two qubits (Q1 and Q2)
are detuned from the resonator bus R by the same amount ∆/2π ≃ −450 MHz, while other qubits are arranged in the vicinity of
this point to minimize Z-crosstalk effects. We then apply resonant microwave drives on these two qubits with the same magnitude
(hx/2π ≃ 2 MHz) but a phase difference of φ and monitor the dynamics from 40 ns to 120 ns by recording the probabilities of
Q1 and Q2, denoted as PQ1

1 and PQ2
1 . b, 2D graph of δP ≡ PQ2

1 − PQ1
1 as a function of t and φ (top) and the time-averaged

δP (bottom). We fit this curve with a sine function to extract the phase offset (red dotted vertical line), which will be added to
the microwave drive of Q2 to ensure the phase alignment between these two qubits. c, Experimental sequence taking Q1 as an
example. The qubit Q1 is detuned from the resonator bus R by about ∆/2π ≃ −450 MHz, while other qubits are arranged in the
vicinity of this point to minimize Z-crosstalk effects. Simultaneously, we apply on Q1 resonant microwave drives with a magnitude
of hx/2π ≃ 5 MHz, after which we quickly bias Q1 to its idle point and apply a rotation pulse with a specific phase φ before the
readout. d, 2D graph of the measured excited probabilities P1 as a function of t and φ. The phase offset pointed by the red dotted
vertical line should be added to Q1’s rotation pulse to align the phases.

disordered qubit-qubit couplings do not drastically influ-
ence the signatures of the DPTs. In details, the finite and
zero values of ⟨σz⟩ in the DFP and DPP, respectively, as
well as the local minimum of Czz can all be observed
in the ideal LMG model, our quantum simulator, and the
Hamiltonian in Eq. (S3) with a relatively small strength
of disorder W /2π ≤ 1 MHz.

Measurement of the spin-squeezing parameter. The
calculation of the spin-squeezing parameter ξ2 consists
of the following steps. The first step is to calculate the
mean-spin direction n⃗0 = (sin θ cosφ, sin θ sinφ, cos θ),
where

θ = arccos(
Sz

∣S⃗ ∣
) ,

and

φ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

arccos ( ⟨S
x
⟩

∣S⃗∣
) if ⟨Sy⟩ > 0

2π − arccos ( ⟨S
x
⟩

∣S⃗∣
) if ⟨Sy⟩ < 0

,

with ∣S⃗ ∣2 = ⟨Sx⟩2 + ⟨Sy⟩2 + ⟨Sz⟩2. The sec-
ond step is to obtain the expression of Sn⃗⊥ and
to minimize its variance. We can obtain two or-
thogonal bases, n⃗1 = (− sinφ, cosφ,0) and n⃗2 =

(cos θ cosφ, cos θ sinφ,− sin θ), perpendicular to n⃗0.
Then, Sn⃗⊥ can be represented as S⃗ ⋅ n⃗⊥, with n⃗⊥ =

n⃗1 cosϑ + n⃗2 sinϑ, and ϑ ∈ [0,2π]. The minimum in
Eq. (2) of the main text is actually equivalent to the op-
timization of ϑ. It turns out that the optimum procedure
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is similar to b but shows the results of the averaged spin correlation Czz .

finally gives an elegant formula

ξ2 =
2

N
[⟨(S

n⃗1)
2
+ (S

n⃗2)
2
⟩

−
√

⟨(S n⃗1)2 − (S n⃗2)2⟩2 + ⟨{S n⃗1 ,S n⃗2}⟩2],

(S4)

with {S n⃗1 ,S n⃗2} = S n⃗1S n⃗2 + S n⃗2S n⃗1 .
We measure ⟨(Sn⃗1)2⟩ and ⟨(Sn⃗2)2⟩ by applying

single-qubit rotations to move the n⃗1 (n⃗2) axis in
the Bloch sphere to the z-axis before readout. For
⟨{S n⃗1 ,S n⃗2}⟩, it boils down to the measurement of two-

spin correlators

⟨{S
n⃗1 ,S n⃗2}⟩ =

1

4
(∑
i≠j

⟨σn⃗1

i σn⃗2

j ⟩ +∑
i≠j

⟨σn⃗2

i σn⃗1

j ⟩).

To characterize the two spin correlators for all combi-
nations (16 × 15 × 2), we adopt the following method-
s: First, we divide the 16 qubits into 2 groups randomly,
e.g.,G1

1 ={Q1–Q8} andG1
2 ={Q9–Q16}. Next, we apply

rotation pulses on the qubits in G1
1 to bring the n⃗1-axis to

the z-axis, and simultaneously apply other rotation puls-
es on qubits in G1

2 to bring the n⃗2-axis to the z-axis, after



MHz MHz MHz

FIG. S5. Numerical calculation of the dynamics of the spin-
squeezing parameter. The dashed curves are the strict results
according to Eq. (S4), while the points are calculated with the
method described above. To estimate the error bar, we repeat
the calculation 5 times for different values of t and hx. For each
time, we randomly select 5 groups of {Gi

1,G
i
2} and average the

results.

which the 16-qubit joint readout is executed, yielding the
probabilities P={P00...0, P00...1, ..., P11...1}. Finally, by

calculating ∑216

j=1 PjS
zz(G1

1,G
1
2)

j,j , with Szz(G
1
1,G

1
2) written

as

S
zz(G1

1,G
1
2) = ∑

i∈G1
1

σzi ∑
j∈G1

2

σzj ,

we obtain the summation of two-spin correlators for 8 ×
8 = 64 combinations (Q1–Q9,Q1–Q10, ...,Q1–Q16,Q2–
Q9, ..., Q8–Q16), i.e.,

P 1
n1n2

(G1
1,G

1
2) = ∑

i∈G1
1,j∈G

1
2

⟨σn⃗1

i σn⃗2

j ⟩.

Moreover, by exchanging the rotation pulses applied to
qubits in these two groups, we can obtain

P 1
n2n1

(G1
1,G

1
2) = ∑

i∈G1
1,j∈G

1
2

⟨σn⃗2

i σn⃗1

j ⟩.

After repeating this process 5 times, where 16 qubits are
divided into two different groups of equal size, we can
approach ⟨{S n⃗1 ,S n⃗2}⟩ by averaging the overall results

16 × 15

64 × 5

5

∑
i=1

[P in1n2
(Gi1,G

i
2) + P

i
n2n1

(Gi1,G
i
2)].

This method has been verified by numerical simulation-
s that possess a very high precision, as illustrated in
Fig. S5.

Finite-size effect of the Loschmidt echo in the LMG
model. The results in the main text are in good agree-
ment with the theoretical predictions based on the LMG

FIG. S6. Numerical results of the Loschmidt echo in the
LMG model. a, The value of the first minimum of the
Loschmidt echo L(1)min scales with the system’s size N . b, The
value of L(1)min as a function of g for N = 16.

model. It has been shown that the Loschmidt echo can-
not be strictly equal to 0 in a finite-size LMG model (28).
In Fig. S6a, we present the first minimum value of the
Loschmidt echo L(1)

min as a function of the LMG model’s
size N with J = 1 and different g, showing a perimeter
law L(1)

min ∼ exp(−αN), with α > 0. Although L(1)
min → 0

as N → ∞ for arbitrary g > 0, we can still observe a
drastic difference of L(1)

min in the two phases (Fig. S6b),
i.e., L(1)

min ≃ 0 in the DPP, while it has finite value in the
DFP.

Loschmidt echo, rate function, and anomalous dy-
namical phase: Numerical results and possible signa-
tures. Before discussing the numerical and experimental
results, we briefly review several important concepts and
the conclusions in previous works.

We first introduce the concept of the DPT char-
acterized via the non-equilibrium order parameter (7-
10,24,25). The Z2 global symmetry plays a key role in
the DPT. In the dynamical paramagnetic phase (DPP), as
hx > hxc , the symmetry is restored, and the value of order
parameter is equal to zero. In the dynamical ferromagnet-
ic phase (DFP), as hx < hxc , the symmetry is broken, and
the order parameter has a finite value. Therefore, based
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solid curves in a–f are numerical results obtained using the real parameters of the superconducting quantum simulator.

on the Z2 global symmetry, the non-equilibrium order pa-
rameter has a finite (zero) value in the DFP (DPP).

A different concept of DPTs is the non-equilibrium
phase transition associated with the real-time dynamic-
s of the Loschmidt echo (7,9,11,24,25). This is char-
acterized by the occurrence of the non-analyticity of
the rate function of the Loschmidt echo, defined as
r(t) ≡ −(1/N) lnL(t), during the time evolution, where
the Loschmidt echo is L(t) ≡ ∣⟨ψ(0)∣eiHt∣ψ(0)⟩∣2 =

∣⟨ψ(0)∣ψ(t)⟩∣2.
Then, we review the results in Refs. (7,9,24,25) on the

relation between these two concepts of dynamical crit-
icality, characterized via the non-equilibrium order pa-
rameter and Loschmidt echo, respectively. In Ref. (7),
the numerical results of the Ising chain with power-law
decaying interactions, characterized by a decay rate α,
show that when α = 1.8, the non-analytical point of the
Loschmidt echo rate function r(t) appears in the DPP,
while it is absent in the DFP, merging these two concepts

of dynamical criticality. In Ref. (9), these two concepts
of dynamical criticality are studied in the LMG model,
revealing that during the dynamics, the non-analyticity
of the rate function occurs after (before) its first mini-
mum point in the DFP (DPP). Different from the results
in Ref. (7), the non-analytical cusps of the Loschmidt e-
cho rate function in the LMG model can also be observed
even though the system is in the DFP, which refers to the
anomalous dynamical phase. Recently, from the perspec-
tive of Lee-Yang-Fisher zeros (24), the existence of the
anomalous dynamical phase is also verified using an in-
finite matrix-product-state technique (25). Moreover, it
has been revealed that the anomalous dynamical phase
can be observed in long-range spin systems and is absen-
t in models with short-range interactions or long-range
fermionic systems (38).

To study the dynamical criticality characterized by
the Loschmidt echo, it is essential to observe the non-
analytical behavior of the rate function r(t). In Fig. S7a–
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FIG. S8. Experimental data for the quantum simulator with different values of the detuning ∆ and the qubit number N . a,
The order parameter ⟨σz⟩ as a function of the field strength hx. The theoretically predicted critical points for ∆/2π ≃ −450 MHz,
−500 MHz and −550 MHz are hx

c /2π ∼ 5.7 MHz, 5.0 MHz, and 4.4 MHz, respectively, as highlighted by the dashed vertical
lines. b, The same data in a but with hx normalized by its critical value hx

c . c, The order parameter ⟨σz⟩ and d, the time-averaged
correlation as a function of the field strength hx for different qubit numbers N = 8, 12 and 16, with a detuning ∆/2π ≃ −450 MHz.
The theoretically predicted critical points for N = 8, 12 and 16 are hx

c /2π ∼ 3.0 MHz, 4.4 MHz, and 5.7 MHz, respectively, as
highlighted by the dashed vertical lines. The inset figures show the same data with hx normalized by the critical values hx

c . The
8-qubit system consists of Q1, Q3, Q6, Q8, Q9, Q11, Q14, and Q16 as shown in Fig. 1 of the main text. The 12-qubits system
consists of Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q11, Q14, and Q16.

f, we present the numerical results of the Loschmidt e-
cho and the rate function with different transverse field
strengths hx. For hx/2π ≃ 1 MHz (Fig. S7a,d) and
hx/2π ≃ 5 MHz (Fig. S7b,e), the system is in the DF-
P. For hx/2π ≃ 8 MHz (Fig. S7c,f), the system is in the
DPP, according to the critical point hxc /2π ≃ 5.7 MHz.
The non-analytical point of r(t) can be observed in both
the DFP (Fig. S7e) and the DPP (Fig. S7f). However,
in the DFP, before the first minimum point of r(t), the
non-analytical behavior of r(t) is absent, while there is
an obvious non-analyticity of r(t) before its first mini-
mum point in the DPP. As discussed in Ref. (9), the non-
analyticities of r(t) in Fig. S7e and S7f are denoted as the
anomalous and regular dynamical phases, respectively.

By comparing the results in Fig. S7a–c and S7d–f,
it is indicated that whether the maximum point of the
rate function is non-analytical depends on how the val-

ue of Loschmidt echo at the minimum point is close to
0. Therefore, we focus on the minimum point of the
Loschmidt echo. In addition, since the difference be-
tween the above-mentioned regular and anomalous dy-
namical phases focus on the behavior of r(t) before its
first minimum, we can diagnose the regular dynamical
phase via the first minimum of the Loschmidt echo L(1)

min.
As shown in Fig. S7b and S7e, although the first max-

imum of r(t) is analytical, the non-analyticity can oc-
cur at a longer time. The corresponding behavior of the
Loschmidt echo L(t) is that L(1)

min is obviously non-zero
at an early time, and L(t) can be observed to be close to
zero for a longer time. Therefore, an indirect evidence
of the anomalous dynamical phase can be obtained by
studying the long-time evolution of L(t). In Fig. S7g,
we present the numerical results of the minimum L(t),
L

glob.
min ≡ mint∈[0,tf ]L(t), with tf being the final time of



FIG. S9. Dynamics of the quasidistribution Q-function. The quasidistributions Qexp(θ, φ) at different time intervals, for
hx/2π =2 MHz (up) and 6 MHz (down), respectively.

the time evolution, as a function of the transverse field
strength. For a given tf , there exists a region of the trans-
verse field strength hx ∈ [hxd ,+∞), where L(glob.)

min ≃ 0
is satisfied. With increasing tf , the lower bound of the
region hxd becomes smaller, indicating the occurrence
of the zeros of the Loschmidt echo (the non-analyticity
of the rate function) for a longer time in the DFP. In
Fig. S7, we present the experimental data of the glob-
al minimum value L(glob.)

min. with tf = 600 ns, compared
with the L(1)

min. From the behavior of L(1)
min, it is seen that

the zeros of the Loschmidt echo occur in the DPP, i.e.,
hx/2π ∈ [5.7,+∞) MHz, while the behavior of L(glob.)

min.
shows the occurrence of the zeros of Loschmidt in the
DFP, i.e., hx/2π ∈ [3,+∞) MHz. In addition, we numer-
ically calculate L(glob.)

min with tf = 2000 ns, giving a broad-
er region where the zeros of L(t) occurs (see Fig. S7g).
It can be deduced that in the full DFP (0 < hx < hxc ),
L

(glob.)
min → 0 for an infinite final time tf →∞.

In our experiments, the time interval of the measure-
ments is 4 ns, which is not small enough to directly ob-
serve the non-analyticity of the rate function. We employ
a time interval of 1 ns for the numerical simulations in
Fig. S7a-f. The observation of non-analytical points of
r(t) could be a further experiment, where the time reso-
lution needs to be improved.

Additional experimental data. In Fig. S8a and S8b, we
plot the experimentally measured non-equilibrium order
parameter as a function of the transverse field magni-
tude for different values of the detuning ∆ with N = 16
qubits. We also plot the experimentally measured non-
equilibrium order parameter (Fig. S8c) and the two-site
correlation (Fig. S8d) as a function of the transverse field
magnitude for different qubit numbersN with a detuning
∆/2π ≃ −450 MHz. In Fig. S9, we displayed the evolu-
tion of the experimental quasidistribution Q-function for
two different transverse field magnitudes.
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