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P H Y S I C S

Probing dynamical phase transitions 
with a superconducting quantum simulator
Kai Xu1*, Zheng-Hang Sun1*, Wuxin Liu2*, Yu-Ran Zhang3, Hekang Li1,2, Hang Dong2, 
Wenhui Ren2, Pengfei Zhang2, Franco Nori3,4, Dongning Zheng1,5†, Heng Fan1,5†, H. Wang2†

Nonequilibrium quantum many-body systems, which are difficult to study via classical computation, have attracted 
wide interest. Quantum simulation can provide insights into these problems. Here, using a programmable quan-
tum simulator with 16 all-to-all connected superconducting qubits, we investigate the dynamical phase transition 
in the Lipkin-Meshkov-Glick model with a quenched transverse field. Clear signatures of dynamical phase transi-
tions, merging different concepts of dynamical criticality, are observed by measuring the nonequilibrium order 
parameter, nonlocal correlations, and the Loschmidt echo. Moreover, near the dynamical critical point, we obtain 
a spin squeezing of −7.0 ± 0.8 dB, showing multipartite entanglement, useful for measurements with precision 
fivefold beyond the standard quantum limit. On the basis of the capability of entangling qubits simultaneously 
and the accurate single-shot readout of multiqubit states, this superconducting quantum simulator can be used 
to study other problems in nonequilibrium quantum many-body systems, such as thermalization, many-body 
localization, and emergent phenomena in periodically driven systems.

INTRODUCTION
Quantum simulation uses a controllable quantum system to mimic 
complex systems or solve intractable problems (1, 2). Emergent pheno­
mena in out-of-equilibrium quantum many-body systems (3), e.g., 
thermalization (4) versus localization (5), and time crystals (6), have 
all been recently studied using quantum simulation. Recently, the dy­
namical phase transition (DPT) and the nonequilibrium phase tran­
sition in transient time scales have been theoretically studied in the 
transverse-field Ising model with all-to-all interactions (7–9). These 
two transitions can be characterized by the nonequilibrium order 
parameter (7–10) and the Loschmidt echo associated with the Lee-Yang-
Fisher zeros in statistical mechanics (11), respectively. Moreover, 
recent experimental progress has allowed the controllable simulation 
of these exotic phenomena with cold atoms (12, 13) and trapped 
ions (14, 15). Yet, experimental explorations for the dynamics of 
entanglement, as a valuable resource in quantum information pro­
cessing, remain limited in the presence of a DPT.

In our experiments, applying a sudden change of the transverse 
field with a controllable strength, we drive the system, initially in its 
ground state, out of equilibrium. Accurate single-shot readout tech­
niques enable us to synchronously record the dynamics of all qubits 
and to observe essential signatures of DPTs and spin squeezing from 
the dynamical criticality in the Lipkin-Meshkov-Glick (LMG) model. 
It is worth mentioning that our experimental system is a 16-qubit 
device featuring all-to-all connectivity, which complements the type 
of superconducting circuits used in other simulations of many-body 
physics (16–20), where neighboring couplings dominate. The pres­

ence of long-range interactions is essential for realizing the LMG 
model.

This work presents a systematic quantum simulation of DPTs 
with two different concepts, providing evidence of the relation be­
tween the nonequilibrium order parameter and the Loschmidt echo. 
We verify entanglement in spin-squeezed states generated from dy­
namical criticality, directly observing squeezing of −7.0 ± 0.8 dB for 
16 qubits.

RESULTS
Our quantum simulator is a superconducting circuit with 20 fully 
controllable transmon qubits capacitively coupled to a resonator bus 
ℛ (Fig. 1A). Sixteen qubits (Q1 to Q16), with XY-control lines, are 
selected to perform experiments (see Materials and Methods). The 
resonant frequency of ℛ is fixed at about 5.51 GHz, while the qubit 
frequencies are individually tunable via their Z-control lines, en­
abling us to engineer the qubit-qubit interactions induced by ℛ. We 
detune all 16 qubits from ℛ by, e.g., /2≃ −450 MHz to switch 
on the resonator-mediated interactions between two arbitrary qu­
bits (21). Simultaneously, identical resonant microwave drives, 
with a magnitude of hx, are imposed on all qubits to generate the 
local transverse fields for the control of a DPT (Fig. 1C). To ensure 
the uniformity of the local fields, the cross-talk effects of microwave 
pulses have been precisely corrected, and the microwave phase has 
been calibrated (see the Supplementary Materials). The effective 
Hamiltonian of the quenched system is

	​​ H​ 1​​ / ℏ  = ​ ∑ 
i<j

​ 
N

 ​​ ​λ​ ij​​(​σ​i​ 
+​ ​σ​j​ −​ + ​σ​i​ 

−​ ​σ​j​ +​ ) + ​h​​ x​ ​ ∑ 
j=1

​ 
N

 ​​ ​σ​j​ x​​	 (1)

where N = 16, ​​​ ij​​  ≡ ​ g​ i​​ ​g​ j​​ /  + ​​ij​ c ​​ is the qubit-qubit coupling strength, 
gj represents the coupling strength between ℛ and Qj, and gigj/ is 
the resonator-induced virtual coupling strength, which acts as a 
dominant part (parameters are shown in the Supplementary Mate­
rials). Because the values of ij are nearly the same for most pairs of 
qubits and do not decay over distance ∣i − j∣ (Fig. 1B), the quenched 
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system can be reasonably approximated by the LMG model, whose 
Hamiltonian is
	​​ H​ LMG​​ = (J / N ) ​(​S​​ z​)​​ 2​ + ​S​​ x​​	

with ​​S​​ x,z​ ≡ ​∑ j​ ​​ ​​j​ x,z​ / 2​ and  = 2hx (see Materials and Methods). The 
LMG model was first introduced in nuclear physics (22) and then 
used to describe two-mode Bose-Einstein condensates (23). Recent 
studies (7–10, 14) have shown that HLMG has a dynamical critical 
point separating the dynamical paramagnetic phase (DPP) and the 
dynamical ferromagnetic phase (DFP) with and without a global ℤ2 
symmetry, respectively.

First, we show that our programmable superconducting qubits 
can simulate and verify the DPT by measuring the magnetization 
and the spin correlation. The system is initialized at the eigenstate 
∣00…0〉 of H1 with hx = 0, where ∣0〉 denotes the ground state of a 
qubit. Then, we quench the system by suddenly adding a transverse 
field and monitor its dynamics from t = 0 to 600 ns. With the pre­
cise full control and the high-fidelity single-shot readout of each 
qubit, we are able to omnidirectionally track the evolutions of the 
average magnetization

	​ 〈 ​σ​​ α​(t ) 〉 ≡ ​ 1 ─ N ​ ​ ∑ 
j=1

​ 
N

 ​​〈 ​σ​j​ α​(t ) 〉​	

along the x, y, z axes for different strengths of the quenched trans­
verse fields, with  ∈ {x, y, z}. By depicting the trajectory of the 

Bloch vector ​〈​ → ​〉 = [〈 ​​​ x​ 〉, 〈 ​​​ y​ 〉, 〈 ​​​ z​ 〉]​, the dynamics of our quantum 
simulator with two distinct transverse fields is visualized in Fig. 2A. 
For a small transverse field, e.g., hx/2 ⋍ 2 MHz, 〈z(t)〉 exhibits a 
slow relaxation (Fig. 2B). However, given a strong transverse field, 
e.g., hx/2 ⋍ 8 MHz, 〈z(t)〉 exhibits a large oscillation at an early 
time and approaches zero in the long-time limit (Fig. 2B). In Fig. 2C, 
we show the behavior of the time-averaged magnetization

	​​    〈 ​σ​​ z​ 〉​ ≡ (1 / ​t​ f​​ ) ​∫0​ 
​t​ f​​
 ​​ dt 〈 ​σ​​ z​(t ) 〉​	

defined as the nonequilibrium order parameter. Figure 2C demon­
strates that ​​ ̄  〈 ​​​ z​ 〉​  ≠  0​ and ​​ ̄  〈 ​​​ z​ 〉​  =  0​ in the DFP and the DPP, re­
spectively. The experimental data of ​​ ̄  〈 ​​​ z​ 〉​​ for qubits with different 
detunings  are presented in the Supplementary Materials. In addi­
tion, the Bloch vector length ​∣〈​ → ​〉∣​ also depends on the strength of 
the transverse field hx. For large hx, ​∣〈​ → ​〉∣​ decays rapidly to a small 
value, indicating strong quantum fluctuations in the DPP (Fig. 2D).

Figure 2E shows the averaged spin correlation function

	​​  ̄  ​C​ zz​​​ ≡ (1 / ​t​ f​​ ) ​∫0​ 
​t​ f​​
 ​​dt ​∑ ij​ ​​ 〈​​i​ 

z​(t) ​​j​ z​(t)〉 / ​N​​ 2​​	

versus hx with a final time tf = 600 ns, where the DPT is character­
ized by the local minimum of two-spin correlations. We can ob­
serve the critical behaviors of ​​ ̄  〈 ​​​ z​ 〉​​ and ​​ ̄  ​C​ zz​​​​ as the signatures of the 

Fig. 1. Quantum simulator and experimental pulse sequences. (A) False-color optical micrograph of the device highlighting various circuit elements such as qubits 
(red), the resonator bus (black), qubit XY-control lines (blue), and Z-control lines (green). (B) Connectivity graph of the 16-qubit system when all qubits are equally detuned 
from the resonator bus by /2 ≃ −450 MHz, with the colored straight lines representing the magnitude of the qubit-qubit couplings. Four pairs of qubits (Q3 and Q14), 
(Q4 and Q13), (Q5 and Q12), and (Q6 and Q11) have relatively small couplings because of their noticeable cross-talk couplings ​​​ij​ c ​​ that neutralize the resonator-induced parts. 
(C) Experimental pulse sequences for simulating the DPT. First, the qubits are initialized in the ∣00…0〉 state at their corresponding idle frequencies. Then, the rectangular 
pulses and resonant microwave pulses are applied almost simultaneously to realize the quantum quench. Last, the 16-qubit joint readout is executed, yielding the prob-
abilities {P00…0, P00…1, …, P11…1}, from which ​〈 ​​j​ z​ 〉​ can be calculated. When necessary, single-qubit rotation pulses ​​R​ j​​(​​ j​​, ​​ j​​ ) = exp [ − iℏ ​​ j​​(cos ​​ j​​ ​​j​ x​ + sin ​​ j​​ ​​j​ y​ ) / 2]​ (in black 
dotted box) are applied in advance to bring the axis defined by (j, j + /2) in the Bloch sphere of Qj to the z direction before the readout.
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DPT, when the transverse field strength is set near the theoretical 
prediction ​​h​c​ 

x​ / 2 = N ∣  ∣ / 8 ⋍ 5.7 MHz​, with ​  ≡ ​    ​​ ij​​​​ (see 
Materials and Methods). In the Supplementary Materials, we also 
present the experimental results of ​​   〈 ​​​ z​ 〉​​ and ​​   ​C​ zz​​​​ for 12 and 8 qubits, 
clarifying finite-size effects. Experimentally, we still observe the DPT 
signatures down to 8 qubits.

Another perspective on dynamical criticality is based on the 
Loschmidt echo, defined as L(t) =∣⟨00…0∣​​e​​ −i​H​ 1​​t/ℏ​​∣00…0⟩∣2, 
where the time t, satisfying L(t) = 0, is a Lee-Yang-Fisher zero. The 
zero will cause the non-analytical behavior of the rate function 
r(t) = − N−1 log [L(t)], regarded as the complex-plane generaliza­
tion of the free-energy density (11, 24). Recent numerical studies 
(7, 9, 24, 25) have revealed that the existence of Lee-Yang-Fisher zeros 
closely relates to the DPT between the DFP and the DPP in long-range 
interacting systems. In Fig. 3A, we show the distinct behaviors of 
the Loschmidt echo in different dynamical phases. In the DPP 
(hx/2 ⋍ 8 MHz), the Loschmidt echo decays rapidly to a near-zero 
value, related to the occurrence of the non-analyticity of the rate 
function r(t). A clearer signature can be seen from the first mini­
mum of the Loschmidt echo ​​L​min​ (1) ​​  as a function of hx (Fig. 3B). In the 
Supplementary Materials, we clarify the reason of choosing ​​L​min​ (1) ​​  as 
a circumstantial probe of the dynamical criticality, and the numeri­
cal results of the rate function r(t) using the real parameters of our 
quantum simulator are also presented as reference. The direct ob­

servation of the non-analytical points of the rate function r(t), as a 
diagnostic signature of the dynamical criticality, deserves further 
experimental investigations.

In addition to demonstrating a DPT, the LMG model is also use­
ful for generating spin-squeezed states with twist-and-turn dynam­
ics (26, 27). Near the equilibrium critical point, spin squeezing can 
be achieved, originating from quantum fluctuations, according to 
the Heisenberg uncertainty principle (28). Similarly, we show that 
spin-squeezed states can also be generated from dynamical critical­
ity. During the dynamics of the quenched Hamiltonian Eq. 1, we 
can visualize the spin-squeezed state by measuring the quasidistri­
bution Q-function (29) Q(, ) ∝ ⟨, ∣(t)∣, ⟩, where ​​∣, 〉  = ​
⨂ j=1​ N  ​​​(​​cos ​ _ 2 ​ ​∣0〉​ j​​ + sin ​ _ 2 ​ ​e​​ i​ ​∣1〉​ j​​​)​​​​ is the spin coherent state. The mea­
surement is realized by applying a single-qubit rotation to bring the 
axis defined by (, ) in the Bloch sphere to the z axis for each qubit 
before the joint readout. The experimental and numerical data of 
Q(, ) are compared in Fig. 4A, which show spin squeezing with a 
large strength of the external field, due to stronger quantum fluctu­
ations in the DPP (see also Fig. 2C).

We also measured the time-evolved spin-squeezing parameter (26) 
(see the Supplementary Materials)

	​​ ​​ 2​ = 4 ​min​ ​​ → n ​​ ⊥​​​​ [ Var(​S​​ ​​ 
→ n ​​ ⊥​​​ )] / N​	 (2)

where ​​​ → n ​​ ⊥​​​ denotes an axis perpendicular to the mean spin direction, 
and ​Var(​S​​ ​​ 

→ n ​​ ⊥​​​ ) = 〈 ​(​S​​ ​​ 
→ n ​​ ⊥​​​)​​ 2​ 〉 − ​〈 ​S​​ ​​ 

→ n ​​ ⊥​​​ 〉​​ 2​​. In Fig. 4B, we show that 2 < 1, as 
a sufficient condition for particle entanglement (30, 31), occurs in 
the time interval t ≲ 46 ns when hx/2 ⋍ 3 MHz, and for t ≲ 38 ns 
when hx/2 ⋍ 6  MHz. The minimum spin-squeezing parameter 
over time, ​​​min​ 2 ​​ , as a function of hx is shown in Fig. 4C, where the 
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Fig. 2. Magnetization and spin correlation. (A) Experimental (left) and numer-
ical (right) data of the time evolution of the average spin magnetization shown 
in the Bloch sphere for different strengths of the transverse fields. (B) Time evo-
lution of the magnetization 〈z(t)〉. (C) Nonequilibrium order parameter ​​ ̄  〈 ​​​ z​ 〉​​, as 
a function of hx/2. (D) Dynamics of the Bloch vector length ​∣〈​ → ​〉∣​. (E) Averaged 
spin correlation ​​ ̄  ​C​ zz​​​​ versus hx/2. The regions with light red and light blue in 
(C) and (E) show the DFP and DPP, respectively, separated by a theoretically 
predicted critical point ​​h​c​ x​ / 2 ≃ 5.7 MHz​. The solid curves in (B) to (E) are the 
numerical results using the Hamiltonian of our experimental system without 
considering decoherence.
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Fig. 3. Loschmidt echo. (A) Time evolution of the Loschmidt echo L(t) for dif-
ferent transverse field strengths. (B) Earliest minimum point of L(t) during its 
dynamics, ​​L​min​ (1) ​​, as a function of hx/2. It is shown that ​​L​min​ (1) ​​ is close to zero in 
the DPP, while it becomes relatively large in the DFP. The behavior of ​​L​min​ (1) ​​ ver-
sus hx is similar to that in the LMG model (see the Supplementary Materials). 
The solid curves in (A) and (B) are the numerical results using Eq. 1 without 
considering decoherence.
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minimum value ​​​min​ 2  ​ ≃ 0.2(− 7.0 dB)​ is attained very close to the 
critical point of the DPT. Compared with the theoretical limit, 
about N −2/3, of the squeezing parameter for an N-body one-axis 
twisting Hamiltonian (30), our 16-qubit system achieves a spin- 
squeezing parameter satisfying ​​​min​ 2  ​ ≃ ​N​​ −​​, with  ≃ 0.58. This 
indicates the high-efficiency generation of the spin-squeezed state 
from dynamical criticality and reveals a potential application of the 
DPT to quantum metrology.

DISCUSSION
We have presented clear signatures and entanglement behaviors of 
the DPT in the LMG model with a superconducting quantum sim­
ulator featuring all-to-all connectivity, including the nonequilibrium 
order parameter, Loschmidt echo, and spin squeezing. On the basis 
of its high degree of controllability, precise measurement, and long 
decoherence time, our platform with all-to-all connectivity is powerful 
for generating multipartite entanglement (29, 32) and investigating 
nontrivial properties of out-of-equilibrium quantum many-body 
systems, such as many-body localization (33, 34), quantum chaos in 
Floquet systems (35), and quantum annealing (36).

MATERIALS AND METHODS
Device information and system Hamiltonian
The device used here consists of 20 frequency-tunable supercon­
ducting qubits capacitively coupled to a central resonator bus. It is 
the same circuit presented in (29), where more details about the 
device, the qubit manipulation, and the readout can be found. In 
table S1, we present the characteristics for the quantum simulator 
involving 16 of the 20 qubits, with XY-control lines, which have been 
relabeled in the experiments.

The unused four qubits in this device, without XY-control lines, 
are detuned far off resonance from the other 16 qubits to avoid 
interacting with them during the experiments. Thus, they will not 
be included in the following descriptions. The system Hamiltonian, 
without applying external transverse fields, can be written as

	​​
​H​ S1​​ / ℏ  = ​ ω​ ℛ​​ ​a​​ †​ a + ​ ∑ 

j=1
​ 

16
 ​​ [ ​ω​ j​​(t ) ∣ ​1​ j​​ 〉〈 ​1​ j​​ ∣ + ​g​ j​​(​σ​j​ +​ a + ​σ​j​ −​ ​a​​ †​ ) ] +

​        
​∑ 
i<j

​ 
16

 ​​ ​λ​ij​ c ​(​σ​i​ 
+​ ​σ​j​ −​ + ​σ​i​ 

−​ ​σ​j​ +​)
 ​​	

where ℛ and j represent the fixed resonant frequency and the 
tunable frequency of Qj, respectively, while gj is the coupling strength 
between the Qj and resonator bus. The magnitude of the cross-talk 
coupling between Qi and Qj beyond the resonator-induced virtual 
coupling is denoted as ​​​ij​ c ​​. When equally detuning all the 16 qubits 
from the resonator bus by about /2 ≃ −450 MHz, and simultane­
ously applying resonant microwaves to each qubit, the system Ham­
iltonian can be transformed to

	​​ H​ S2​​ / ℏ = ​∑ 
i<j

​ 
16

 ​​(​​ij​ c ​ + ​g​ i​​ ​g​ j​​ / )(​​i​ 
+​ ​​j​ −​ + ​​i​ 

−​ ​​j​ +​) + ​ ∑ 
j=1

​ 
16

 ​​ ​h​j​ x​(​​j​ −​ ​e​​ i​​ j​​​ + ​​j​ +​ ​e​​ −i​​ j​​​)​	

with gigj/ being the magnitude of the resonator-mediated coupling 
between Qi and Qj. It acts as a dominant part of the qubit-qubit in­
teraction terms, because the cross-talk coupling ​​​ij​ c ​​ is much smaller. 
In Fig. 1B, we plot the connectivity graph of the total coupling 
strength ij for all the combinations of pairs of qubits. The individ­
ually controllable amplitude and the phase of the microwave drive 
on each Qj are represented by ​​h​j​ x​​ and j, respectively. In our experi­
ments, we set the uniform amplitude and phase for all qubits, leading 
to the Hamiltonian in Eq. 1. To ensure this uniformity, the calibra­
tion process for the microwave drives is described in the Supple­
mentary Materials.

Relation between the quantum simulator and the  
LMG model
Our device can be described by the Hamiltonian in Eq. 1. With uni­
form couplings ​ ≡ ​   ​​ ij​​​​, the first term of Eq. 1 can be written as

	​ λ​∑ 
i<j

​ 
16

 ​​(​σ​i​ 
+​ ​σ​j​ −​ + H . c . ) = (J / N ) [​S​​ 2​ − ​(​S​​ z​)​​ 2​]​	

where J ≡ N. The second term can be directly rewritten as ​​h​​ x​ ​∑ i=1​ 16 ​​ ​
​i​ 

x​  =   ​S​​ x​​, with  = 2hx. According to [S2, S] = 0 ( ∈ {x, y, z}), 
and the fact that the initial state ∣00…0〉 is an eigenstate of S2, we have

	​ exp [− i(​H​ 1​​ / ℏ) t] ∣00…0〉 ∝ exp(− i ​H​ LMG​​ t) ∣00…0〉​	

indicating that the dynamical properties of the device H1 can be ap­
proximately expressed as the ones of the LMG model
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Fig. 4. Quasidistribution Q-function and spin-squeezing parameter. (A) Exper-
imental and numerical data of Q(, ) in spherical coordinates, when the minimum 
values of the spin-squeezing parameters are achieved during the time evolutions 
with the strengths of the transverse fields hx/2 ≃ 3 and 6 MHz, respectively. 
(B) Time evolution of the spin-squeezing parameters with hx/2 ≃ 3 and 6 MHz, 
respectively. (C) Minimum spin-squeezing parameter ​​​min​ 2  ​​ as a function of hx. The 
solid lines in (B) are the numerical results using the Hamiltonian of our experimen-
tal system without considering decoherence. The blue shaded area in (B) is only 
accessible for entangled states. The dotted line in (C) is the piecewise linear fit, 
whose minimum point is close to the theoretically predicted critical point ​​
h​c​ x​ / 2  ≃  5.7 MHz​ (dashed line).
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	​​ H​ LMG​​ = − (J / N) ​(​S​​ z​)​​ 2​ + ​S​​ x​​	

The location of the DPT critical point of the LMG model is c = 
∣J∣/2, leading to ​​h​c​ 

x​  =  N / 4​. Note that we only roughly estimate 
the location of the dynamical critical point of the LMG model. The 
numerical simulations in the main text are based on the Hamiltonian 
of the quantum simulator described by Eq. 1.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/25/eaba4935/DC1
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