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1. Theoretical calculations  

1.1. Equations of motion for gravity waves 

We first derive the main wave equation describing the motion of water particles in deep-
water gravity waves. We consider linear waves on the surface of an incompressible fluid (water). 
The fluid motion can be described by the Eulerian 3D velocity field     v r,t( )  and the velocity 

potential    φ r,t( ) :  v = ∇φ . Denoting the 2D in-plane velocity components and gradient via 

    
V = v x ,v y( )  and 

  
∇2 = ∂x ,∂ y( ) , as well as the normal velocity component   W = v z , the equations 

of motion can be written as [31,54]: 

   ∂t
2φ = −g ∂zφ    for     z = 0 ,        ∇

2φ = ∇ ⋅v = ∇2 ⋅V + ∂zW = 0 , (S1) 

where  g  is the gravitational acceleration.  
Applying the operator  ∇2  to the first equation (S1) and using   W = ∂zφ , we obtain 

     ∂t
2 V = −g∇2W    for     z = 0 . (S2) 

Because of the linear character of gravity waves and proportionality of all the scalar wave fields 
in deep-water surface waves, we can write the first Eq. (S1) as    ∂t

2W = −g ∂zW  for   z = 0 . Using 
the second Eq. (S1), we derive  

     ∂t
2W = g∇2 ⋅V    for     z = 0 . (S3) 

Equations (S2) and (S3) are the desired wave equations for the velocity field at the water 
surface. Monochromatic waves with a fixed frequency ω  can be described by complex wave 
amplitudes introduced via 

     
v r,t( ),V r,t( ),W r,t( ){ } = Re v r( ),V r( ),W r( ){ }e− iωt⎡⎣ ⎤⎦ . In this case, 

Eqs. (S2) and (S3) are reduced to 

    ω
2V = g∇2W ,       ω

2W = −g∇2 ⋅V . (S4) 

For a single plane wave, where all fields are proportional to    exp ik ⋅r2( ) ,    r2 = x, y( ) , these 

equations produce the deep-water dispersion relation   ω
2 = gk  [31,54]. Furthermore, the relation 

   ω
2W = −igk ⋅V  in this case describes the circular motion of water particles in the propagation 

plane formed by the wavevector  k  and the  z -axis [54]. This property is entirely analogous to 
the circular polarization and transverse spin of surface electromagnetic and acoustic waves 
[17,20–22,25,30,55,56]. 



  

While Eqs. (S2)–(S4) describe the velocity fields at the water surface, their  z -dependences 
deep into the water can be found from the second Eq. (S1). For monochromatic waves, it follows 
from there that 

 
   

v r( ),V r( ),W r( ){ } = v r2( ),V r2( ),W r2( ){ }exp kz( ) , (S5) 

where the argument   r2  indicates that the field is taken at the water surface   z = 0 . Therefore, 
plane gravity waves can be regarded as evanescent waves with the complex 3D wavevector 
   !k = k − ikz  [17,30,55,56]. 

1.2. Analogy with sound waves 

The equations of motion (S2)–(S4) look somewhat similar to the equations for sound 
waves in a fluid or gas [31,26,28]: 

    β ∂t p = −∇ ⋅v ,         ρ∂t v = −∇p , (S6) 

or, for monochromatic waves and the corresponding complex fields, 

   iωβ p = ∇ ⋅v ,        iω ρ v = ∇ p . (S7) 

Here β  and ρ  are the compressibility and density of the medium,     v r,t( )  is the 3D velocity field, 

and     p r,t( )  is the scalar pressure field. 
While the similarity is obvious, there are some important differences. First, the presence of 

first time derivatives in the acoustic equations provides for the linear dispersion 

  ω = kcs ≡ k / βρ . Second, the sound-wave equations (S6) and (S7) contain a 3D vector 
velocity field and a scalar pressure field, whereas the gravity-wave equations (S2)–(S4) contain a 
2D velocity field and an additional scalar vertical-velocity field. Therefore, the gravity-wave 
equations can be associated with acoustic equations in a 2D space. Finally, sound waves are 
propagating bulk modes, while gravity waves can be regarded as surface-evanescent waves 
exponentially decaying deep into the water.  

1.3. Spin angular momentum in acoustic and gravity waves 

In acoustic and water waves, the medium particles can follow complex trajectories around 
their unperturbed positions. The local angular momentum density associated with this motion 
can be written as  ρa× v , where  a  is the displacement of the particle, such that   v = ∂t a . For 
monochromatic waves and complex field amplitudes,   v = −iωa , and the time-averaged density 
of the angular momentum becomes   

 
   
ρ a× v = ρ

2ω
Im v* × v( ) , (S8) 

where 
  
... = 1

T
...

0

T

∫ dt  is the time average over the oscillation period   T = 2π /ω .  

For sound waves, the quantity (S8) is the acoustic spin density [23,25–28,56], see Table I. 
For gravity water waves, the angular momentum density (S8) has both the in-plane components 
involving the vertical velocity component  W = vz  and the normal component generated by the 

particle motion in the   x, y( )  plane. Since here we consider the 2D evolution of water waves and 
particles, we consider only the normal spin component, see Table I: 



  

 
  
S = ρ

2ω
Im V* × V( ) . (S9) 

It should be emphasized that although the angular momentum (S8) and (S9) is produced by 
the microscopic orbital motion of the medium particles, it is associated with the spin angular 
momentum of the wave. Indeed, the orbital angular momentum of the wave is produced by the 
phase gradients and vortex-like macroscopic momentum flows (such as, e.g., in Fig. 3), while the 
spin angular momentum is generated by the rotation of the vector wave field at the given point  r  
[16–21,25–28]. The latter is the case for Eqs. (S8) and (S9). Although the microscopic particle 
motion has a finite spatial extent, it is much smaller than the wavelength and can be made 
arbitrarily small by reducing the wave amplitude. The spin density normalized by the energy 
density is independent of this amplitude.  

1.4. Stokes drift and momentum in acoustic and gravity waves 

The linearized oscillatory motion of the medium particles is periodic and corresponds to 
closed elliptical trajectories in the monochromatic case. However, in the second-order in the 
wave amplitude, the medium particles can experience a slow translational motion known as the 
Stokes drift [36–38]. 

This phenomenon is caused by the difference between the Lagrangian and Eulerian 
velocities of the medium particles. So far, we have considered only the Eulerian velocity 
attached to a fixed spatial point  r . In the Lagrangian description, one follows a chosen particle 
with the Lagrangian coordinates    ξ = r + v∫ dt . The corresponding Lagrangian velocity of the 

particle is    v ξ,t( ) . The time-averaged difference between the Lagrangian and Eulerian velocities 
provides the Stokes drift velocity: 

 
     
u = v ξ,t( )− v r,t( ) ! ξ − r( ) ⋅∇⎡⎣ ⎤⎦v r,t( ) = v∫ dt ⋅∇⎡

⎣
⎤
⎦v . (S10) 

For monochromatic waves, this yields  

 
  
u = 1

2ω
Im v* ⋅∇( )v⎡

⎣
⎤
⎦ . (S11) 

For sound waves, Eqs. (S6) and (S7),  ∇ × v = 0 , and the Stokes drift (S11) can be written 
as  

 
  
u = 1

2ω
Im v* ⋅ ∇( )v⎡⎣ ⎤⎦ , (S12) 

where 
   

v* ⋅ ∇( )v⎡⎣ ⎤⎦ i
≡ v j

*

j=x ,y ,z
∑ ∇ iv j  [29]. Remarkably, when multiplied by the mass density ρ , the 

Stokes drift (S12) yields the canonical momentum density of sound waves:  P = ρu , see Table I 
[25,28]. To the best of our knowledge, this fact has never been noticed before. It provides a 
rigorous physical derivation of the canonical momentum density. Substituting the acoustic spin 
density (S8) and canonical momentum density into the Belinfante-Rosenfeld relation (1), and 
using the equations of motion (S6) and (S7), we obtain the kinetic momentum density 

   
Π = βρ

2
Re p*v( )  known from textbooks [31]. We emphasize that so far it was derived from the 

acoustic analogue of the Poynting theorem, i.e., formal mathematical analysis of macroscopic 
equations of motion. In contrast, here we derive all momentum and spin properties from rigorous 
microscopic calculations of the mechanical momentum and angular momentum of the medium 



  

particles, supplied by the fundamental field-theory relation (1). This sheds light onto the 
longstanding problem of the wave momentum in acoustics [43,46,51,52].  

For quasi-2D gravity waves, we consider the in-plane Stokes drift and separate the 
contributions of the in-plane and normal velocity components into Eq. (S11): 

 
   
u = 1

2ω
Im V* ⋅∇2( )V⎡

⎣
⎤
⎦ +

1
2ω

Im W * ∂z V⎡⎣ ⎤⎦ . (S13) 

From the first Eq. (S4) and Eq. (S5), we find that   ∇2 × V = 0 , and 
   
∂z V = kV = ω 2

g
V = ∇2W . As 

a result, Eq. (S13) can be transformed into  

 
   
u = 1

2ω
Im V* ⋅ ∇2( )V +W *∇2W⎡⎣ ⎤⎦ . (S14) 

Multiplied by the mass density, this equation provides exactly the canonical momentum density 
for gravity waves:  P = ρu , see Table I.  

Substituting the spin density (S9) and canonical momentum density into the Belinfante-
Rosenfeld relation (1), and using the equations of motion (S4), we obtain the kinetic momentum 
density for gravity water waves, see Table I:  

 
   
Π = ρk

ω
Im W *V( ) . (S15) 

Notably, this momentum density is equivalent to the conserved momentum density derived by 
Peskin [46]. Peskin presented it in the form      ρZ r2 ,t( )V r2 ,t( ) . Here  Z  is the local  z -elevation of 

the water surface, which is related to the vertical velocity as   W = ∂t Z . Performing the time 
averaging of this quantity for monochromatic fields and using  W = −iωZ , we obtain the Peskin 

momentum in the form 
   
ρ

2ω
Im W * r2( )V r2( )⎡⎣ ⎤⎦ . This expression differs from Eq. (S15) by the 

factor of   2k , because it represents the 2D momentum density, i.e., 
   

Π
−∞

0

∫ r( )dz = 1
2k

Π r2( ) .  

Note that Peskin also derived a conserved energy density of water waves, which can be 

written as 
      
1
2
ρgZ2 r2 ,t( ) + 1

2
ρ V2 r,t( ) +W 2 r,t( )⎡⎣ ⎤⎦−∞

0

∫ dz  [46]. Using the relations  W = −iωZ  

and 
  

...
−∞

0

∫ dz = 2k( )−1
...  for monochromatic fields, performing the time averaging, and 

multiplying the Peskin 2D energy density by   2k  similarly to the momentum density above, we 
obtain the energy density for monochromatic water waves listed in Table I:  

 
   
U = ρ

4
3W

2
+ V

2( ) . (S16) 

This expression differs considerably from the energy density of sound or electromagnetic waves, 
see Table I. 

Thus, the spin and canonical momentum densities introduced in this work are directly 
observable quantities derived from mechanical properties of water particles, which agree with 
the previously known kinetic wave momentum and the Belinfante-Rosenfeld relation. 



  

1.5. Example I: Interference of two propagating gravity waves 

We now consider an explicit example of an inhomogeneous gravity-wave field with 
nonzero momentum and spin densities. It is provided by the superposition of two plane waves of 

the same frequency and amplitude but orthogonal wavevectors 
   
k1 =

k
2

x + y( )  and 

   
k 2 =

k
2

−x + y( ) , where the overbars denote the unit vectors of the corresponding axes, Fig. 1. 

The complex velocity wave field for this superposition can be written as 

 
  
W = A eik y+x( )/ 2 + eik y−x( )/ 2⎡

⎣⎢
⎤
⎦⎥ = 2Aeiky/ 2 cos kx / 2( ) ,  

 
   
V = k −1∇2W = 2Aeiky/ 2 −sin kx / 2( )x + icos kx / 2( )y⎡

⎣⎢
⎤
⎦⎥

, (S17) 

where  A  is a constant amplitude, and we consider the wavefields at the water surface   z = 0 .  
Substituting Eqs. (S17) into Eq. (S9), we obtain the spin density: 

 
    
S = − ρA2

ω
sin !x z , (S18) 

where    !x = 2kx . In turn, Eq. (S14) for the fields (S17) yields the canonical momentum density: 

 
    
P = ρA2

ω
k

2
2+ cos !x( )y . (S19) 

The spin and momentum distributions (S18) and (S19) are shown and observed experimentally 
in Figs. 1 and 2 of the main text. 

1.6. Example II: Interference of two standing gravity waves 

As another example we consider the interference of two orthogonal standing gravity waves 
with equal amplitudes, or, equivalently, a superposition of four propagating waves, see Fig. 3. 
The complex velocity wave field for this superposition can be written as 

   
W = A sin kx( ) + eiϕ sin ky( )⎡⎣ ⎤⎦ ,  

 
   
V = k −1∇2W = A cos kx( )x + eiϕ cos kx( )y⎡⎣ ⎤⎦ , (S20) 

where ϕ  is the phase between the two standing waves.  
Substituting Eqs. (S20) into Eq. (S9), we obtain the spin density: 

 
    
S = ρA2

ω
sinϕ cos !xcos !y z , (S21) 

where   !x = kx  and   !y = ky . In turn, Eq. (S14) for the fields (S20) yields the canonical momentum 
density: 

 
    
P = ρA2

2ω
k sinϕ sin !xcos !y y − cos !xsin !y x( ) . (S22) 

The spin and momentum distributions (S21) and (S22) for  ϕ = π / 2  are shown and 
observed experimentally in Fig. 3 of the main text (see also Fig. S2 below). 



  

2. Experimental measurements and numerical calculations 

Here we describe details of experimental measurements and numerical calculations of 
water-particles trajectories in interference gravity-wave fields. A schematic of the experiment is 
shown in Fig. S1. Surface gravity waves are generated in a wave tank of size 1.0×0.6 m2. The 
water depth is kept at   h = 0.1  m to ensure the deep-water approximation for the surface waves, 
i.e.,    tanh kh( ) ! 1  [31,54], where the wavenumbers are in the range of   k = 36 − 233( )m−1 for the 

wave frequencies  ω / 2π = 3 − 9( )Hz. Sinusoidal waves are produced by two vertically 
oscillating paddles oriented at 90° with respect to each other, as shown in Fig. S1. The computer-
controlled electrodynamic shakers (TIRA TV51140) drive the synchronised motion of two wave 
paddles. The paddle accelerations are measured using two accelerometers (B&K 4507) which 
provide feedback to the motion controllers (Vibration Research, VR9500). The phase delay ϕ  

between the paddles is adjustable in the range of  −π ,π( )  with an accuracy of  ± 0.002  using a 
two-channel arbitrary waveform generator (HP 33120 A). 
 

 
Figure S1. Schematic of the experimental setup. See explanation in the text. 

 
In the propagating-wave configuration, a shallow beach (inclined Perspex plate) and an 

egg-shell absorber at the end of the wave tank are used to avoid wave reflections. In the 
standing-wave configuration, two wave-reflecting boundaries together with the wave paddles 
form a resonant square cavity of size  L , which accommodates an integer number  N  of the 
wavelengths,   L = 2πN / k = 2πNg /ω 2 . 

The fluid motion at the water surface is visualised using buoyant tracer particles 
(Polyamid, 50 µm) illuminated by a LED panel placed underneath the transparent wave tank. A 
video camera (Andor Zyla X5.5; 2,560×2,160 pixel; 100 fps) with a Nikon f1.4/50 mm lens is 



  

used to capture the motion of the tracer particles. The videos are processed and analysed using 
the ImageJ software package. 

It should be noted that the surface flows in a finite-size container can be distorted by return 
flows. For this reason, the tracer particle trajectories are analysed for the first ten wave periods, 

  t ∈ 0,20π /ω( ) , i.e., shortly after the onset of the wave field, in order to avoid the flow distortion 
due to the gradual build-up of the return surface flows. Special care is also taken to avoid flows 
and secondary waves originating from menisci appearing along the contact lines between water, 
the container walls and the wave paddles. This is achieved by machining grooves on the paddles 
and the container boundaries at the level of the unperturbed water surface. 

Figure 1B (bottom panel) of the main text shows the horizontal   x, y( )  projection of the 
trajectories of the tracer particles on the water surface perturbed by the superposition of two 
orthogonal propagating waves of the same amplitudes and wave numbers (see Section 1.5 
above). The field of view of the camera is shown in Fig. S1. The fluid particles drift in the 
direction of the canonical momentum (S19) and experience microscopic circular-like motion 
corresponding to the spin density (S18). 

We compare the experimentally-measured trajectories with the numerically-computed 
trajectories shown in the middle panel of Fig. 1B in the main text. The numerical trajectories are 
computed by integrating the velocity field (S17),     V t,r2( ) = Re V r2( )e− iωt⎡⎣ ⎤⎦ , using the 4th-order 
Runge-Kutta method.  
 

 
Figure S2. Water particle trajectories in the interference of two orthogonal 
standing gravity waves. Numerically calculated and experimentally measured 
trajectories are shown for two orthogonal standing waves phase-shifted by 
 ϕ = π / 2  and  ϕ = 0  with respect to each other (see also Fig. 3 in the main text). 
Here the frequency is  ω / 2π = 5.3 Hz. 
 
For two interfering standing waves, the velocity field is given by Eq. (S20). The 

corresponding experimentally measured and numerically calculated trajectories are shown in 
Fig. 3 in the main text (for the  ϕ = π / 2  case) and also in Fig. S2 (for the  ϕ = 0  and  ϕ = π / 2  



  

cases). For  ϕ = π / 2 , trochoidal orbits drift around the centres of the square unit cells (with the 

half-wavelength   π / k  side), which correspond to nodal points of the surface elevation,     Z r2 ,t( ) . 
The small-scale circular motion and wavelength-scale orbital drift are in agreement with the 
distributions of the spin and canonical momentum, Eqs. (S21) and (S22). For  ϕ = 0 , the particles 
experience linear oscillations in the horizontal plane, with neither drift nor circular motion. This 
corresponds to the vanishing canonical momentum and spin in Eqs. (S21) and (S22):  P = S = 0 . 

3. Differences between water-surface, electromagnetic, and acoustic waves 

In Table I, we summarized the similarities of the spin and momentum densities involved in 
the Belinfante-Rosenfeld relation for electromagnetic, sound, and water waves. However, these 
waves are fundamentally different, both in their physical nature and mathematical properties. 
Here we briefly describe these differences.  

First, electromagnetic waves are indeed relativistic and are described by relativistic field 
theory [6]. The equations of motion are Maxwell’s equation: 

   ε ∂tE = ∇ ×H ,        µ∂tH = −∇ ×E ,        ∇ ⋅E = ∇ ⋅H = 0 , (S23) 

which describe transverse waves propagating with velocity   c = 1 εµ . (Note that here we use 
real time-dependent electric and magnetic fields, not restricted by the monochromaticity.) The 
linear dispersion relation of electromagnetic waves,  ω = ck , reflects the Minkowski spacetime 
structure in the problem. Equations (S23) can be derived within the Lagrangian field-theory 

formalism, e.g., using the Lagrangian density 
   
L = 1

2
εE2 − µH2( )  expressed via the 

corresponding potentials. Standard conservation laws associated with the Poincaré symmetries of 
the Minkowski spacetime follow from Noether’s theorem applied to the above Lagrangian [6]. 
The first of these, the energy conservation, is the well-known Poynting theorem which is also 
readily derived from Maxwell’s equations (S23): 

 
   
∂tU +∇ ⋅ c2Π( ) ≡ ∂t

εE2 + µH2

2
⎛
⎝⎜

⎞
⎠⎟
+∇ ⋅ E×H( ) = 0 . (S24) 

Here the energy density  U  and the energy flux density related to the kinetic momentum,   c
2Π , 

are expressed via real time-dependent fields; their monochromatic versions in Table I are 
obtained by the substitution     E,H{ } = Re E,H{ }e− iωt⎡⎣ ⎤⎦  and subsequent time averaging. Other 
Noether’s conservation laws involve canonical momentum and spin densities, as described in 
[6,19]. An important peculiarity is that the electromagnetic Lagrangian and canonical 
spin/momentum densities are not uniquely defined: there are different choices for the Lagrangian 
density (and for the field representation via potentials) which result in the same equations of 
motion but different canonical spin/momentum densities [6,19,28]. Moreover, there is no 
microscopic theory for electromagnetism, i.e., there is no ether, and it is impossible to single out 
one particular choice using another, microscopic, level of description. The choice given in 
Table I is based on a rather abstract idea of preserving the dual symmetry between the electric 
and magnetic quantities [18,19,28,29].  

Second, sound waves in a homogeneous fluid or gas are described by the equations [31]: 

    β ∂t p = −∇ ⋅v ,         ρ∂t v = −∇p ,        ∇ × v = 0 . (S25) 

Their solutions are longitudinal waves propagating with velocity   cs = 1 βρ . Although this 
system is not relativistic and is considered in a single reference frame where the medium is at 



  

rest, the linear dispersion of sound waves,  ω = csk , and the equations of motion (S25) are 
consistent with an effective Minkowski spacetime based on the speed of sound  cs . Therefore, 
akin to Maxwell’s equations, Eqs. (S25) can be derived within a Lagrangian field-theory 

formalism, e.g., using the Lagrangian density 
    
L = 1

2
ρv2 − βp2( )  expressed via the 

corresponding potentials [28]. Furthermore the effective spacetime symmetry of this problem 
allows one to derive all the Noether conservation laws, similar to the electromagnetic ones. In 
particular, the energy conservation is readily obtained from Eqs. (S25) [31]: 

 
    
∂tU +∇ ⋅ cs

2Π( ) ≡ ∂t

βp2 + ρv2

2
⎛
⎝⎜

⎞
⎠⎟
+∇ ⋅ pv( ) = 0 . (S26) 

Other Noether’s conservation laws involve canonical momentum and spin densities, as described 
in [28]. Akin to the electromagnetic case, acoustic field theory also allows different Lagrangian 
representations resulting in different canonical spin/momentum densities [28]. However, in 
contrast to electromagnetism, sound waves can also be associated with microscopic properties of 
the medium, i.e., with the motion of its molecules or atoms. This allows one to single out a 
specific representation consistent with the mechanical properties of this motion. In terms of 
Ref. [28], this is a vector-potential representation resulting in the canonical densities listed in 
Table I. 

Finally, water-surface waves are nothing like electromagnetic or sound ones. Obviously, 
the system is nonrelativistic. Moreover, in contrast to the homogeneous isotropic acoustic 
medium, the medium is strongly inhomogeneous (with surface   z = 0 ) and anisotropic (selecting 
the direction of the gravity force). Furthermore, the water-wave equations look nothing like 
Maxwell’s or acoustic equations [31]. These are derived essentially using boundary conditions at 
the water surface. Nonetheless, in the deep-water approximation we were able to re-write water-
wave equations in a form somewhat resembling acoustic equations (S25) (see Section 1 above): 

     ∂t
2 V = −g∇2W ,          ∂t

2W = g∇2 ⋅V ,         ∇2 × V = 0 . (S27) 

This form is essentially based on the 2D consideration of waves and involves velocity fields at 
the   z = 0  surface. It might seem that this 2D consideration would allow one to use a field-theory 
formalism based on (2+1) spacetime. Indeed, unperturbed water has 2D translational and 
rotational symmetries in the   x, y( ) -plane, as well as time-translation symmetry. However, the 
relativistic field-theory approach is fundamentally inconsistent with water-surface waves. This 
can be seen from the fact that water waves are inherently dispersive,  ω = gk , which is 
inconsistent with the Minkowski spacetime structure requiring  ω = ck . (In general, the 
construction of relativistic field theories for dispersive waves is an open frontier problem with 
possible implications in quantum gravity [57].)  

Another way to see that no simple Lagrangian field theory exists for Eqs. (S27) is to notice 
that these equations do not possess a simple energy conservation law similar to Eqs. (S24) and 
(S26). This might seem surprising: general physical considerations imply that there is no 
dissipation in an ideal fluid, the system is time-translation-invariant, and the energy must be 
conserved. In fact, there is no contradiction in the above statements. There is indeed energy 
conservation for water waves, but this conservation law essentially involves 3D volume fields 
distributed deep into water,   z < 0  [46]. This conservation law cannot be reduced to a 2D form 
for the   z = 0  fields (S27). Indeed, a generic non-monochromatic water-wave field consists of 
many plane waves with different wavenumbers, which therefore decay deep into the water with 
different exponential decay factors. As a result, the  z -distribution of a generic wavefield 
becomes highly nontrivial. That is why the conserved energy and momentum quantities found in 
[46] essentially involve  z -integrals. Only in the monochromatic-field case, all fields decay with 



  

the same exponent,   ∝ exp kz( ) , and the problem can be reduced to the surface field values. In 
this case, the energy density found in [46] yields the energy density  U  listed in Table I 
(Supplementary Materials). One can see that it has a nontrivial form different from acoustic or 
electromagnetic energy densities. Nonetheless, this form is physically consistent: one can check 
that the ratio of the momentum and energy densities in a single plane wave is consistent with the 
phase velocity of the wave. Namely:    Π / U = P / U = k /ω  for all types of waves: 
electromagnetic, acoustic, and water-surface ones. 

Thus, water waves cannot be described by an effective relativistic Lagrangian field theory, 
like electromagnetic and sound waves. Still, these waves possess energy and momentum 
conservation laws associated with the translational invariance of the system in  t  and   x, y( )  [46]. 
In the generic case, these conservation laws essentially involve  z -integrals and fields in volume, 
but for monochromatic waves the conserved densities are reduced to the surface values  U  and 
Π  listed in Table I. Despite the absence of an effective Lagrangian field theory, one can derive 
the momentum and intrinsic angular momentum (spin) densities from the microscopic 
consideration of water particles. Akin to the sound-wave theory, this yields the canonical 
momentum  P  and spin  S  listed in Table I. Most remarkably, the conserved kinetic momentum 
Π  and canonical quantities  P  and  S  precisely satisfy the Belinfante-Rosenfeld relation (1). 
This suggests that the Belinfante-Rosenfeld construction can have a deeper origin than a standard 
relativistic field theory.  

It is natural to expect that the  z -component of the angular momentum is also conserved in 
the rotationally invariant system under consideration. Then, the relations between the conserved 

  x, y( ) -momentum and  z -directed angular momentum should be described by the standard 
Belinfante-Rosenfeld relations. Namely, the kinetic angular momentum density is given by 

  r2 × Π( ) ,    r2 ≡ x, y( ) , while the canonical angular momentum consists of the orbital and spin 

parts:   r2 × P( ) + S . The integrals of these densities coincide with each other for a localized field. 
In contrast to earlier, rather sophisticated field-theory descriptions of water waves [32–35], our 
work put forward and verifies experimentally intuitively clear, directly observable momentum 
and angular momentum properties of surface gravity waves. 

To summarize this comparison, the Belinfante-Rosenfeld relation is the only fundamental 
and nontrivial similarity in the description of water-wave and electromagnetic or acoustic fields. 
The other equations and properties differ profoundly. 
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