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P H Y S I C S

Field theory spin and momentum in water waves
Konstantin Y. Bliokh1*, Horst Punzmann2, Hua Xia2, Franco Nori1,3, Michael Shats2*

Spin is a fundamental yet nontrivial intrinsic angular momentum property of quantum particles or fields, which 
appears within relativistic field theory. The spin density in wave fields is described by the theoretical Belinfante-
Rosenfeld construction based on the difference between the canonical and kinetic momentum densities. These 
quantities are usually considered as abstract and non-observable per se. Here, we demonstrate, both theoretically 
and experimentally, that the Belinfante-Rosenfeld construction naturally arises in gravity (water surface) waves. 
There, the canonical momentum is associated with the generalized Stokes drift phenomenon, while the spin is 
generated by subwavelength circular motion of water particles. Thus, we directly observe these fundamental 
field theory properties as microscopic mechanical properties of a classical wave system. Our findings shed light 
onto the nature of spin and momentum in wave fields, demonstrate the universality of relativistic field theory 
concepts, and offer a new platform for their studies.

INTRODUCTION
Spin angular momentum was first introduced to physics empirically 
in 1925 by Uhlenbeck and Goudsmit (1, 2). This allowed them to 
explain peculiarities of the emission spectra of solids and electron 
interactions with magnetic fields by a quantum “self-rotation” of 
electrons. Later, this new property was derived rigorously within the 
Dirac equation that provides the quantum relativistic theory of elec-
trons (3) and using relativistic field theory approaches (4–7). Nowadays, 
spin is essential for numerous quantum and condensed matter sys-
tems (2), ranging from basic properties of elementary particles and 
chemical elements, via widely used memory and tomography devices, 
to the advanced fields of spintronics (8, 9) and quantum com-
puting (10–12).

As early as in 1909, Poynting (13) described the intrinsic angular 
momentum of circularly polarized light (i.e., an electromagnetic 
wave with rotating electric and magnetic field vectors). This proper-
ty was later observed via optical torque on matter (14), and it was 
associated with the spin of photons (i.e., relativistic massless quanta 
of light) (3,  15–17). Thus, the spin angular momentum naturally 
appears in classical electromagnetic fields (16–19) where it plays an 
important role in optical manipulation, light-matter interactions, 
information transfer, etc. (16, 17, 20–22). In 1973, Jones (23) argued 
that intrinsic angular momentum, or spin, could be ascribed to clas-
sical nonrelativistic waves, such as acoustic and internal gravity waves 
in fluids. There, spin is associated with the mechanical angular 
momentum of the medium particles oscillating or moving along 
microscopic elliptical orbits in wave fields. This interpretation was 
essentially neglected [(23) was cited only eight times for almost half-
century], and, recently, it was shown again that inhomogeneous 
acoustic (sound wave) fields have a nonzero spin angular momen-
tum density (24–28). This time, the presence of acoustic spin was 
supported by the analogy between acoustic and electromagnetic waves 
and was confirmed experimentally (25).

Theoretically, various kinds of quantum and classical waves can 
be described within the corresponding field theories (3, 6). There, 

one of the main objects characterizing dynamical properties of the 
field is the energy-momentum tensor, which includes the field energy 
and momentum densities and provides for the local energy-
momentum conservation laws. In 1940, Belinfante and Rosenfeld 
(4–6) found a fundamental structure in this tensor, which explains 
the appearance of spin angular momentum and relates it to the 
momentum properties of the field. They showed that there are ca-
nonical (nonsymmetric, derived from the Noether theorem) and 
kinetic (symmetrized) versions of the energy-momentum tensor, 
which contain the corresponding canonical and kinetic momentum 
densities, P and , related as

	​  = P + ​ 1 ─ 2 ​ 𝛁 × S​	 (1)

where S is the spin angular momentum density. This fundamental 
relation describes the appearance of spin in both quantum parti-
cles and classical (electromagnetic and acoustic) wave fields 
(6, 7, 17, 19, 21, 23, 25, 28–30). According to Noether’s theorem, the 
integral values of both kinetic and canonical momentum densities 
are conserved in translation-invariant systems. In turn, rotational 
invariance is associated with the conservation of the integral angular 
momentum. Its density is given by r ×  in the kinetic picture and 
r × P + S in the canonical one (6, 19, 28), where r is the position vector.

Despite such progress and thorough exploration of spin in vari-
ous fields, this fundamental physical entity remains nontrivial and 
is described by rather abstract quantum mechanical and relativistic 
field theory concepts (1–7). Indeed, the “self-rotation” of the electron 
described by the Dirac spinors is far from an intuitively clear pic-
ture. Furthermore, the canonical momentum and spin densities in 
the field theory relation Eq. 1 are usually regarded as unobservable per 
se (4–6), and only their integral values matter. In classical fields, 
rotating angular momentum properties underlying spin are more ob-
vious, but rotating electric and magnetic fields in circularly polar-
ized light (13–22) or rotating medium particles in inhomogeneous 
sound waves (23–28) are never observed directly.

The purpose of this work is multifold. First, we will describe and 
observe the presence of spin in another kind of wave field, namely, 
in gravity water surface waves (31). We will show that the water wave 
spin is described precisely by the same field theory relation Eq. 1 in-
volving the canonical and kinetic momenta. This is unexpected, 
because water surface waves cannot be described by a relativistic 
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Lagrangian field theory like electromagnetic or sound waves. This 
can be seen from the fact that electromagnetic and acoustic field 
theories are based on the properties of the Minkowski space-time 
and essentially involve linear dispersion  = ck ( is the frequency, 
k is the wave number, and c is the speed of light or sound), while 
water waves are inherently dispersive, e.g., ​  = ​ √ 

_
 gk ​​ in the deep-water 

approximation (g is the gravitational acceleration). Although there 
is a number of rather sophisticated Lagrangian and Hamiltonian 
approaches to fluid dynamics and water waves (32–35), they do not 
provide a simple unified picture of momentum and angular momen-
tum of surface gravity waves, and, in contrast to their electromagnetic 
and acoustic counterparts, these fundamental quantities are almost 
never mentioned in textbooks on fluid dynamics (see the Supple-
mentary Materials) and do not typically appear in experimental obser-
vations. Here, we argue that the concepts of spin and kinetic/
canonical momenta, originating from relativistic field theory, illu-
minate and accurately describe the observable dynamical properties 
of surface gravity waves.

Second, we will provide the direct observation of the motion of 
water particles underlying the spin and canonical momentum den-
sities in Eq. 1. In doing so, the local rotational motion of particles 
corresponds to the spin density S, whereas the translational motion 
due to the generalized Stokes drift (36–38) corresponds to the 
canonical momentum density P. To the best of our knowledge, this 
is the first direct observation of the microscopic origin of the spin 
angular momentum and canonical momentum in wave fields. Further-
more, the generalized Stokes drift described and observed in our work 
accurately characterizes the mass transport in acoustic and water wave 
fields and provides the directly observable momentum of these 
waves. This is crucial for numerous applications involving trans-
port of microscopic and macroscopic objects in water waves.

Last, by comparing our approach to water waves with other wave 
theories, we demonstrate the universality of the spin, momentum, 
and Belinfante-Rosenfeld concepts across quantum systems, electro-
magnetism, acoustics, and hydrodynamics (although relativistic field 
theory is not directly applicable to water waves). This opens up new 
opportunities for both quantum relativistic and classical physics.

RESULTS
Basic spin and momentum properties of vector wave fields
To begin with, Table 1 lists the main dynamical quantities involved 
in Eq. 1, as well as the energy density, for monochromatic electro-
magnetic waves in free space (17–19, 21, 28–30) and sound waves in 
a fluid or gas (25–28). For all kinds of monochromatic waves with 
frequency , we consider complex space-dependent field amplitudes 
F(r), so that real time-dependent fields are F(r, t) = Re [F(r)e−it]. 
In this manner, electromagnetic waves are described by the com-
plex vector electric and magnetic fields, E(r) and H(r), while 
acoustic waves are described by the complex vector velocity field 
v(r) and scalar pressure field p(r). In both electromagnetic and acous-
tic cases, the canonical momentum density P is determined by the 
quadratic form Im[F* ⋅ (∇)F] entirely similar to the probability 
current in quantum mechanics, i.e., the local “expectation value” of the 
canonical quantum mechanical momentum operator −i∇ (29, 30). 
In turn, the spin angular momentum density S is determined by the 
quadratic form Im(F* × F), which points into the direction normal 
to the polarization ellipse traced by the field F(r, t) in a given point 
r and is proportional to its ellipticity (16, 17, 39).

Notably, both electromagnetic and acoustic canonical momen-
tum and spin densities in monochromatic fields are measurable 
via radiation forces and torques on small absorbing particles 
(17, 25, 27, 30). Note also that spatial integrals of the spin densities 
for localized circularly polarized paraxial electromagnetic waves 
and sound wave fields are in agreement with the quantum mechan-
ical spin values of ℏ per photon (16, 17) and 0 per phonon (26, 28). 
Substituting the canonical momentum and spin densities into Eq. 1 
and using the equations of motion for the wave fields (i.e., Maxwell 
and acoustic wave equations), one obtains the kinetic momentum 
density . It is given by the well-known Poynting vector for electro-
magnetic waves and its acoustic analog for sound waves (31).

Importantly, the acoustic spin and canonical momentum densi-
ties can be immediately associated with the mechanical properties 
of microscopic particles of the medium. In general, such particles 
experience a combination of rotational and translational motion in 
the sound wave field. First, in the linear approximation, the microscop-
ic periodic motion of the medium particles is generically elliptical 
and corresponds to the polarization of the vector velocity field v. 
The oscillating velocity field v e−it corresponds to the displacement 
field a e−it = i−1v e−it, which yields the time-averaged mechan-
ical angular momentum density (/2) Re(a* × v) (where  is the 
mass density of the medium) (23, 25, 28), precisely equivalent to the 
spin density S in Table 1. Second, the medium particles in a sound 
wave field can experience the slow Stokes drift (36–38), a phenom-
enon known in hydrodynamics for surface water waves and related 
to the second-order difference between the Eulerian and Lagrang-
ian velocities of the particles. [A somewhat related phenomenon of 
the transformation of an oscillatory motion to a linear drift is known 
as acoustic streaming (40), with numerous examples in acousto-
fluidics and surface acoustic waves (41, 42).] So far, the Stokes drift 
was described only for plane water surface waves with vertical inho-
mogeneity, while, here, we generalize this phenomenon to arbitrary 
inhomogeneous monochromatic fields. The momentum density 
associated with the generalized Stokes drift can be written as (/2) 
Re[(a* ⋅ ∇)v] (see the Supplementary Materials), which, for sound 
waves with ∇ × v = 0, yields the canonical momentum density in 
Table 1. This expression is similar to the “pseudomomentum” of 
waves in fluids or gases introduced in 1978 by Andrews and McIntyre 
(43). Note, however, that the oscillatory and drift motions of parti-
cles in bulk sound waves are difficult to observe directly due to the 
very small displacements a in typical sound wave fields.

Spin and momentum of gravity water waves
We now consider a wave system that is not typically associated with 
relativistic field theories and spin: water surface (gravity) waves. Deep-
water gravity waves are characterized by the dispersion 2 = gk, and 
all wave fields decay exponentially from the unperturbed water 
surface z = 0 deep into the water z < 0 as ∝ exp(kz) (31). Thus, 
in contrast to the three-dimensional (3D) electromagnetism and 
acoustics, this system is quasi-2D. Since unperturbed water is trans-
lationally symmetric in the (x, y) plane and rotationally symmetric 
about the z axis, it is natural to expect a conserved 2D momentum 
and z-directed angular momentum of water waves. Therefore, we 
separate the 3D velocity v of the water particles in the gravity wave 
field into the in-plane 2D vector V = (vx, vy) and the normal compo-
nent W = vz. We will focus on the 2D motion of surface water parti-
cles in the (x, y) plane (z = 0) but will also take into account all 
physical properties related to the vertical z motion. The 2D gradient 
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(momentum) operator is ∇2 = (∂x, ∂y), while the vector product (spin) 
operator “×” acting in the plane can only produce a z-directed ver-
tical spin.

Since the motion of water particles in the oscillating 2D velocity 
field Ve−it is entirely similar to the motion of medium particles in 
the oscillating sound wave field ve−it, the z-directed angular 
momentum density can be written akin to the acoustic spin density:

	​ S  = ​   ─ 2 ​ Im(​V​​ *​ × V)​	 (2)

This provides the spin density for gravity waves associated with po-
larization of the vector field V; see Table 1. This spin appears in in-
homogeneous (e.g., interference) water wave fields, because of the 
circular (or, generically, elliptical) motion of water particles in the 
(x, y) plane. Note that the spin Eq. 2 considered in our work is 
not the spin angular momentum considered by Longuet-Higgins in 
(44). The latter one is related to the elliptical motion of water parti-
cles in the propagation (z, x) plane (for x-propagating plane waves) 
and is directed along the horizontal y axis; our vertical spin Eq. 2 
vanishes in a plane wave.
Next, the water particles experience the Stokes drift (36–38). So far, 
this phenomenon has been known for the circular motion of water 
particles in the plane orthogonal to the water surface, i.e., involving 
the vertical velocity component W. For inhomogeneous wave fields 
with a nonzero spin S, the particles can also exhibit elliptical 
orbits in the projection onto the water surface plane. This produces 
the Stokes drift described by the in-plane velocity V. Calculating the 
total Stokes drift in an arbitrary monochromatic gravity wave 
field, we obtain that its velocity u is given by (see the Supplementary 
Materials)

	​ u = ​  1 ─ 2 ​ Im [​V​​ *​ ⋅ (​𝛁​ 2​​ )V + ​W​​ *​ ​𝛁​ 2​​ W], P =  u​	 (3)

Here, by multiplying the Stokes drift velocity by the mass density, 
we obtained the canonical momentum density P for gravity waves, 
analogous to the pseudomomentum by Andrews and McIntyre (43); 
see Table 1. The Stokes drift, i.e., the canonical momentum, pro-
duces mass transport in water waves (37), such as, e.g., the drift-
wood along the ocean coasts (45). For plane waves, v ∝ exp(i k ⋅ r), 
the generalized Stokes drift Eq. 3 is proportional to the wave vector: 

u ∝ k. This provides the natural similarity between the canonical 
momentum Eq. 3 and de Broglie momentum in quantum mechanics.

Now, substituting the above canonical momentum and spin den-
sities into the Belinfante-Rosenfeld relation Eq. 1 and using the equations 
of motion for surface water wave fields, we obtain the kinetic mo-
mentum density  = (k/) Im(W*V) (see the Supplementary Ma-
terials and Table 1). Its form is equivalent to the conserved water 
wave momentum derived by Peskin (46). It should be noticed that 
the energy and momentum conservation laws for water waves are 
rather nontrivial, because they essentially involve z integrals of generic 
time-dependent fields (46). The energy and momentum densities 
are reduced to simple forms listed in Table 1 only for the case of 
monochromatic fields, when all fields decay as ∝ exp(kz), and the z 
integrals of quadratic forms are evaluated as ​​∫−∞​ 

0
 ​​ …dz = ​(2k)​​ −1​…​.

Moreover, unlike electromagnetic and acoustic waves, water 
surface waves cannot be described within a relativistic Lagrangian 
field theory. This can be seen from the fact that these waves are es-
sentially dispersive, ​  = ​ √ 

_
 gk ​​, which breaks the Minkowski space-

time structure  = ck underlying electromagnetic and acoustic field 
theories. It is not, by chance, that the electromagnetic field Lagrangian 
and conservation laws are described in any textbook in electro-
magnetism; the simplest energy conservation for sound waves can 
also be found in textbooks (31), although the acoustic field Lagrangian 
and other conservation laws are only present in more specialized 
literature; whereas water surface wave Lagrangian and conservation 
laws are absent in textbooks in hydrodynamics. [In addition, one of 
the most important works on water wave momentum (43) only shows 
the energy conservation law for bulk acoustic waves.] We summa-
rize the main differences between electromagnetic, sound, and water 
surface waves in the Supplementary Materials. As remarked by 
Richard P. Feynman, water waves “are the worst possible example, 
because they are in no respects like sound and light; they have all the 
complications that waves can have”.

Probably the easiest ways to derive dynamical properties of water 
surface waves are (i) to use macroscopic wave equations of motion 
[as done by Peskin (46) in deriving the conserved kinetic momen-
tum ] or (ii) to involve microscopic mechanical properties of water 
particles moving in wave fields (as done here in deriving canonical 
momentum P and spin S). Notably, both ways result in the kinetic and 
canonical densities exactly satisfying the Belinfante-Rosenfeld relation 

Table 1. The energy, momentum, and spin properties of electromagnetic, acoustic, and deep-water gravity monochromatic wave fields. Here, ​c = 1 / ​√ 
_

  ​​ 
is the speed of light, ​​c​ s​​  =  1 / ​√ 

_
  ​​ is the speed of sound,  and  are the permittivity and permeability of the electromagnetic medium, whereas  and  are the 

mass density and compressibility of the acoustic medium or fluid. 

Electromagnetism Acoustics Water waves

Wave fields Electric E and magnetic H Velocity v and pressure p In-plane velocity V and vertical 
velocity W

Energy density U ​​1 _ 4​( ​∣E∣​​ 2​ +  ​∣H∣​​ 2​)​ ​​1 _ 4​( ​∣p∣​​ 2​ +  ​∣v∣​​ 2​)​ ​​  _ 4​(3 ​∣W∣​​ 2​ + ​∣V∣​​ 2​)​

Kinetic momentum density  ​​ 1 _ 2 ​c​​ 2​
​ Re(​E​​ *​ × H)​ ​​ 1 _ 2 ​c​s​ 2​

​ Re(​p​​ *​ v)​ ​​k _  ​ Im(​W​​ *​ V)​

Canonical momentum density P ​​ 1 _ 4 ​ Im [  ​E​​ *​ ⋅ (𝛁 ) E +  ​H​​ *​ ⋅ (𝛁 ) H]​ ​​  _ 2 ​ Im [ ​v​​ *​ ⋅ (𝛁 ) v]​ ​​   _ 2​ Im [ ​V​​ *​ ⋅ (​𝛁​ 2​​) V + ​W​​ *​ ​𝛁​ 2​​ W]​

Spin AM density S ​​ 1 _ 4 ​ Im( ​E​​ *​ × E +  ​H​​ *​ × H)​ ​​  _ 2​ Im(​v​​ *​ × v)​ ​​  _ 2​ Im(​V​​ *​ × V)​
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Eq. 1 lying at the heart of relativistic field theory. This suggests that the 
Belinfante-Rosenfeld construction can have a deeper origin than a 
standard relativistic field theory. In general, one can expect that there 
is a nonrelativistic Lagrangian field theory for water surface waves 
with conserved energy, horizontal 2D momentum, and vertical an-
gular momentum. However, such theory must involve a full descrip-
tion of the problem in the 3D bulk fluid (not only at the z = 0 
surface), because the energy-momentum conservation for gener-
ic nonmonochromatic waves involves nontrivial z integrals of the 
fields (see the Supplementary Materials) (46). Constructing such 
Lagrangian formalism is an important problem for a separate study.

Importantly, the spin and momentum densities (Eqs. 2 and 3) are 
not abstract theoretical quantities but rather observable dynamical prop-
erties of surface gravity waves. We proceed with the direct experimental 
observation of these fundamental properties in structured water waves.

Examples and experimental measurements
We are now in a position to show explicit examples of surface gravity 
waves with nonzero spin and momentum. The first example is a 
simple interference of two plane waves with equal frequencies and 
orthogonal wave vectors k1 ⊥ k2. The spin and momentum in two-
wave interference has been previously considered for optical and 
sound waves (25, 28, 47). Choosing the y axis to be directed along 
k1 + k2, the spin and canonical momentum densities, Eqs. 2 and 3, 
yield (see the Supplementary Materials)

	​ S ∝ −  ​_ z​ sin​ ̃  x ​,  P ∝ ​_ y​(2 + cos​ ̃  x ​)​	 (4)

where ​​ ̃  x ​ = ​√ 
_

 2 ​ kx​ and the overbar indicates the unit vectors of the 
corresponding axes. The distributions of these densities, together with 
the numerically calculated microscopic water particle trajectories, 
are shown in Fig. 1B. One can see that the canonical momentum 
density corresponds to the Stokes drift of the particles (which ev-
erywhere occurs in the y direction), whereas the spin density 
corresponds to the microscopic elliptical motion of particles (which 
has alternating x-dependent directions).

We have performed an experiment demonstrating the above motion 
of water particles and thereby the presence of canonical momentum 
and spin in the two-wave interference (Fig.  1). The experimental 
setup is shown in Fig. 1A (see the Supplementary Materials for de-
tails). Interfering gravity waves were generated in a wave tank with 
a size of 1.0 × 0.6 m2 and a depth of h = 0.1 m by two orthogonal 
paddles driven by two synchronized computer-controlled shakers. 
We worked with the wave frequencies /2 ∈ (3,9) Hz, which cor-
responds to the wavelengths 2/k ∈ (0.03,0.17) m satisfying the deep-
water condition tanh(kh) ≃ 1. Fluid motion at the water surface was 
visualized using buoyant tracer particles (polyamid, 50 m), illumi-
nated by a light-emitting diode (LED) panel placed underneath the 
transparent wave tank. A video camera on top was used to capture 
the motion of the tracer particles.

In Fig. 1B, one can see that the experimentally measured trajec-
tories are very similar to the numerically calculated ones. To show 
that these experimental observations are in quantitative agreement 
with the theoretical spin and momentum densities, we measure the 
spatial and frequency dependences of the drift velocities and rota-
tional radii of the particles. First, the canonical momentum density 
should behave as Py ∝ k/ ∝ , because the gradient operator scales 
as ∝k. Obviously, the particle drift velocity u should obey the same 
frequency dependence. Second, the spin density is inversely proportional 

to the frequency: Sz ∝ −1. As we have discussed, the spin can be as-
sociated with the mechanical angular momentum of water particles. At 
the points of maximum absolute value of the spin, ​​   x ​ = ± /2​, the water 
particles follow near circular orbits of radius a (see Fig. 1B), and their 
angular momentum is ∝a2. Therefore, this radius should depend on 
the frequency as a ∝ −1. Figure 2 shows the experimentally measured 
dependences u() and a() for water particles. These dependences 
are in excellent agreement with the above theoretical predictions and 
the x dependence ​∝ (2 + cos​ ̃  x ​)​ of the canonical momentum Eq. 4. 
The only discrepancy is that the drift velocity is offset by a constant 
value such that u(0) ≠ 0. This is due to the presence of small return flows 
in the finite-size wave tank (see the Supplementary Materials).

As another example, we consider an interference of two orthogonal 
standing water waves with equal amplitudes and frequencies, which 
is equivalent to four propagating waves. In this case, the spin density 
Eq. 2 forms a periodic chessboard-like structure, whereas the canoni-
cal momentum density Eq. 3 forms vortex-like flows around the maxima 
and minima of the spin density (see the Supplementary Materials 
and Fig. 3) (48):

	​ S ∝ ​_ z​ sinφ cos​ ̃  x ​ cos​ ̃  y ​, P ∝ sin φ(​_ y ​sin​ ̃  x ​cos​ ̃  y ​ − ​_ x ​cos​ ̃  x ​sin​ ̃  y ​)​	 (5)

Here, ​​   x ​ = kx​, ​​   y ​ = ky​, and φ is the phase between the two orthogonal 
standing waves. Figure 3 shows the numerically calculated and ex-
perimentally measured trajectories of microscopic particles in the 
interference of two orthogonal standing waves with φ = /2 (the spin-
less case φ = 0 is shown in the Supplementary Materials). One can see 
that particles follow large wavelength-scale vortex-like orbits due to the 
Stokes drift associated with the canonical momentum P. Simultaneously, 
the particles experience microscopic elliptical motion around their 
current positions, which produces the local angular momentum asso-
ciated with the spin S. We emphasize that the two orbital motions here 
have different scales and qualitatively different nature. The radius of 
the microscopic spin-related circular motion is proportional to the am-
plitude of the wave and can be made as small as needed, while the 
radius of the macroscopic vortex-like motion is fixed by the wavelength.

Note that the experimentally measured fluid particle trajectories 
shown in Fig. 1B, particularly their unidirectional Stokes drift, were 
only observed transiently during the first stage of the flow develop-
ment. As the flow evolves, the trochoidal Stokes orbits bend, as il-
lustrated in Fig. 4: Opposite spins slowly drift in opposite transverse 
directions. This behavior can be interpreted as a water wave analog 
of the spin Hall effect, a universal manifestation of spin-orbit inter-
actions known in condensed matter physics (49), optics (20), and 
even having implications in hydrodynamics (50). This is still a tran-
sient behavior in the propagating waves configuration, and the con-
servation of mass in the top fluid layer leads to the development of 
return currents that decrease the mean drift velocity in the regions  
​​   x ​ ∈ ± (,2)​. In addition, in a finite-size basin, reflected waves also 
distort the original propagating wave field, thereby contributing to 
the further distortion of the surface flow. Thus, truly stationary flow 
patterns only form in the crossed standing wave configuration, as in 
Fig. 3, where bending of the trajectories leads to the formation of 
closed loops and return flows do not arise.

DISCUSSION
To conclude, we have revealed the fundamental spin and momen-
tum properties in water surface (gravity) waves. These quantities are 
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precisely described by the relativistic field theory construction by 
Belinfante-Rosenfeld (4–6), which underpins the spin and momen-
tum of quantum and classical particles and fields. We have shown 
that the canonical momentum density in acoustic and water waves 
can be directly associated with the mass transfer due to the general-
ized Stokes drift, while the spin density originates from the mechanical 

angular momentum of the medium particles following microscopic 
elliptical trajectories. We have provided the direct observation of 
these drift and rotational dynamics of water particles in inhomoge-
neous gravity wave fields. This can be regarded as the first direct 
observation of the microscopic origin of the canonical spin and mo-
mentum in structured wave fields.

The appearance of a relativistic field theory construction in the 
properties of water surface waves is rather unexpected. Such waves 
can be associated with relativistic field theory neither physically nor 
mathematically. Their dispersion is inconsistent with the Minkowski-
like space-time symmetries, whereas a simple (2 + 1)D form of the 
equations of motion does not have even the basic energy conserva-
tion law (see the Supplementary Materials). Nonetheless, the presence 
of the (2 + 1)D space-time symmetries and microscopic mechanical 
description of the motion of the medium molecules in water wave 
fields allows one to obtain meaningful (x, y) momentum and z-
directed angular momentum of water waves. These quantities involve 
z-directed spin and are exactly described by the Belinfante-Rosenfeld 
relation. This hints that the Belinfante-Rosenfeld relation has a more 
fundamental origin than relativistic field theory.

Our results can have a multifold interdisciplinary impact. They 
shed light onto the nature of spin and momentum in various wave 
fields and illuminate the universality of field theory relations, which, 
so far, have been considered as abstract theoretical entities underly-
ing observable physical phenomena on a higher level. Our findings 
also unveil the nontrivial nature of water wave and acoustic momentum, 
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which caused longstanding discussions (43, 46, 51, 52). The presence 
of nonzero spin density explains the existence of two (canonical and 
kinetic) momenta and the direct observability of at least one of these. 
Our experiments provide direct measurements of the local mass 
transport in structured water surface waves. Notably, using the dy-
namical spin and momentum concepts, one can produce structured 

water wave fields for desired manipulation of particles, including 
transport and rotation, akin to optical manipulations (16, 17, 27, 53).

MATERIALS AND METHODS
A schematic of the experiment is shown in Fig.  1A (see also the 
Supplementary Materials). Surface gravity waves are generated in a 
wave tank of size 1.0 m by 0.6 m. The water depth is kept at h = 
0.1 m to ensure the deep-water approximation for the surface waves, 
i.e., tanh(kh) ≃ 1, where the wave numbers are in the range of k = 
(36  to  233) m−1 for the wave frequencies of /2 = (3  to  9) Hz. 
Sinusoidal waves are produced by two vertically oscillating paddles 
oriented at 90° with respect to each other, as shown in Fig. 1A. The 
computer-controlled electrodynamic shakers (TIRA TV51140) drive 
the synchronized motion of two wave paddles. The paddle accelera-
tions are measured using two accelerometers (Brüel & Kjær 4507), 
which provide feedback to the motion controllers (Vibration Re-
search, VR9500). The phase delay φ between the paddles is adjust-
able in the range of (−, ) with an accuracy of ±0.002 using a 
two-channel arbitrary waveform generator (HP 33120 A).

In the propagating wave configuration, a shallow beach (inclined 
perspex plate) and an egg shell absorber at the end of the wave tank 
are used to minimize wave reflections. In the standing wave config-
uration, two wave-reflecting boundaries together with the wave paddles 
form a resonant square cavity of size L, which accommodates an 
integer number N of wavelengths, L = 2N/k = 2Ng/2.

The fluid motion at the water surface is visualized using buoyant 
tracer particles (polyamid, 50 m), illuminated by an LED panel placed 
underneath the transparent wave tank. A video camera (2560 × 2160 
pixel, 100 fps; Andor Zyla X5.5) with a Nikon f1.4/50 mm lens is 
used to capture the motion of the tracer particles. The videos are 
processed and analyzed using the ImageJ software package.

The surface flows in a finite-size container can be distorted by 
return flows. For this reason, the tracer particle trajectories are ana-
lyzed for the first 10 wave periods, t ∈ (0,20/), i.e., shortly after 
the onset of the wave field, to avoid the flow distortion due to the 
gradual buildup of the return surface flows. Special care is also taken 
to avoid flows and secondary waves originating from menisci appearing 
along the contact lines between water, the container walls, and the 
wave paddles. This is achieved by machining grooves on the paddles and 
the container boundaries at the level of the unperturbed water surface.

We compare the experimentally measured trajectories with 
the numerically computed trajectories shown in the middle Fig. 1B.  
The numerical trajectories are computed by integrating the time-
dependent velocity field, V(r, t) = Re[V(r)e−it], using the fourth-
order Runge-Kutta method.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm1295
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