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Noether’s theorem is one of the fundamental laws in physics, relating the symmetry of a physical system to its constant of motion
and conservation law. On the other hand, there exist a variety of non-Hermitian parity-time (PT )-symmetric systems, which
exhibit novel quantum properties and have attracted increasing interest. In this work, we extend Noether’s theorem to a class
of significant PT -symmetry systems for which the eigenvalues of the PT -symmetry Hamiltonian ĤPT change from purely real
numbers to purely imaginary numbers, and introduce a generalized expectation value of an operator based on biorthogonal quan-
tum mechanics. We find that the generalized expectation value of a time-independent operator is a constant of motion when the
operator presents a standard symmetry in the PT -symmetry unbroken regime, or a chiral symmetry in the PT -symmetry broken
regime. In addition, we experimentally investigate the extended Noether’s theorem in PT -symmetry single-qubit and two-qubit
systems using an optical setup. Our experiment demonstrates the existence of the constant of motion and reveals how this constant
of motion can be used to judge whether the PT -symmetry of a system is broken. Furthermore, a novel phenomenon of masking
quantum information is first observed in a PT -symmetry two-qubit system. This study not only contributes to full understanding
of the relation between symmetry and conservation law in PT -symmetry physics, but also has potential applications in quantum
information theory and quantum communication protocols.
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1 Introduction

The subject of finding the symmetries of dynamics is of
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fundamental interest and has broad applications in physics,
e.g., high-energy scattering experiments, control issues in
mesoscopic physics and quantum cosmology [1-6]. On the
other hand, by means of symmetries, one can generally make
non-trivial inferences from complex systems, such as many-
body systems, dissipative systems and non-Hermitian sys-
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tems. As an important theorem which is related to sym-
metries, Noether’s theorem [7] has important applications in
quantum physics and quantum information science [8-13].
Noether’s theorem states that every symmetry of dynamics
implies a conservation law, and it was originally applied in
Lagrangian approach in classical mechanics to uncover con-
served quantities from symmetries of the Lagrangian. In
many cases, the existence of these conserved quantities is
very important for understanding the physical states and the
properties of the systems [8, 10, 12, 13]. The theorem applies
also in quantum mechanics, and the most prominent example
of Noether’s theorem is Ehrenfest’s theorem in closed sys-
tems [9, 14]

d
dt
⟨F̂⟩ = 1

i~
⟨[F̂, Ĥ]⟩ +

⟨
dF̂
dt

⟩
. (1)

For an operator F̂ without explicit time dependence, it
then follows that its expectation value ⟨F̂⟩ is a constant
of motion if it commutes with the Hermitian Hamilto-
nian Ĥ. However, Ehrenfest’s theorem is not applica-
ble for open systems [11, 14-17]. Furthermore, even
in closed systems, Ehrenfest’s conservation law cannot
capture all features of symmetry when mixed states are
considered [10].

A natural extension of Noether’s theorem in non-
Hermitian systems is to replace the Hermitian Hamiltonian
Ĥ with a non-Hermitian Hamiltonian Ĥ†, which turns eq. (1)
into d⟨F̂⟩/dt = 1

i~ ⟨[F̂Ĥ − Ĥ†F̂]⟩ + ⟨dF̂/dt⟩ [18-21]. Up to
now, based on the important intertwining relation F̂Ĥ =

Ĥ†F̂ [19-21], several methods have been proposed to ob-
tain conserved quantities, including spectral decomposition
methods [22, 23], recursive construction of intertwining op-
erators [24], sum-rules method [21], Stokes parametriza-
tion approach [25], and so on. Recently, the authors in
ref. [26] investigated a manifestation of Noether’s theorem
in non-Hermitian systems, where an inner product was de-
fined as (φ, ψ) ≡ φT

uψv without its complex conjugation. In
their framework, a generalized symmetry, which they termed
pseudochirality, emerges naturally as the counterpart of the
symmetry defined by the commutation relation in quantum
mechanics. Some existing studies [9-26] enrich the under-
standing of obtaining conserved quantity beyond the Hermi-
tian framework, whereas a full understanding of the relation
between symmetry and conservation law, and practical meth-
ods for extracting expectation values in non-Hermitian sys-
tems, remain elusive. Therefore, in order to properly deal
with conservation problems using Noether’s theorem and ex-
plore its potential applications in non-Hermitian systems,
there is an urgent need to extend Noether’s theorem to non-
Hermitian systems.

Over the past decades, there is considerable interest in

the study of the dynamic properties of parity-time (PT )-
symmetry non-Hermitian systems [27-34]. The unique prop-
erties of PT -symmetry systems and their applications have
been investigated in various physical systems [35-44]. More-
over, many remarkable and unexpected quantum phenomena
have been observed in PT -symmetry systems, such as crit-
ical phenomena [45, 46], chiral population transfer [47, 48],
information retrieval [49,50], coherence flow [51], and topo-
logical invariants [52, 53]. A complete characterization of
conservation laws in PT -symmetry systems has been in-
tensely explored [23, 24]. For example, based on the inter-
twining relation [19-21], ref. [24] has presented a complete
set of conserved observables for a class of PT -symmetry
Hamiltonians in a single-photon linear optical circuit. More-
over, in the pseudo-Hermitian representation of quantum me-
chanics [22], ref. [54] has further implemented a model cir-
cuit of a generic anti-PT -symmetry system. A counterin-
tuitive energy-difference conserving dynamics has been ob-
served [54], which is in stark contrast to the standard Her-
mitian dynamics keeping the system’s total energy constant.
However, based on biorthogonal quantum mechanics, the
manifestation of Noether’s theorem and a complete obser-
vation of conserved quantities in PT -symmetry systems and
their consequences are still lacking both theoretically and ex-
perimentally.

In this work, we extend Noether’s theorem to a class of
significant PT -symmetry non-Hermitian systems and intro-
duce a generalized expectation value of a time-independent
operator based on biorthogonal quantum mechanics [55-58].
For the PT -symmetry systems considered here, the eigen-
values of the PT -symmetry Hamiltonian ĤPT change from
purely real numbers to purely imaginary numbers. SuchPT -
symmetry systems have been widely used to investigate the
dynamics of non-Hermitian systems in the presence of bal-
anced gain and loss [24, 26, 39, 45, 49-51]. Our work shows
that the extended Noether’s theorem can be used to deal
with conservation law problems about pure states and mixed
states. Remarkably, we find that for an operator F̂ without
explicit time dependence, its generalized expectation value
is a constant of motion if F̂ presents a standard symmetry
in the PT -symmetry unbroken regime, or a chiral symmetry
in the PT -symmetry broken regime. In addition, we experi-
mentally investigate the extended Noether’s theorem in PT -
symmetry single-qubit and two-qubit systems using an opti-
cal setup. Several novel results are found. First, our exper-
iment demonstrates the existence of the constant of motion.
Second, our experiment reveals that the constant of motion
can be used to judge whether the PT symmetry of a sys-
tem is broken. Last, our experiment reveals the phenomenon
of masking quantum information [59,60] in a PT -symmetry
two-qubit system.
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2 Extension of Noether’s theorem in PT -
symmetry systems

To extend Noether’s theorem to PT -symmetry systems, the
biorthogonal quantum mechanics [55-58] is applied. In
biorthogonal quantum mechanics, the inner product is de-
fined as:

(φ, ψ) ≡ ⟨φ̂|ψ⟩ =
∑
k,l

d∗kcl⟨ϕ̂k |ϕl⟩ =
∑

k

d∗kck, (2)

where |ψ⟩ = Σlcl|ϕl⟩ (|φ⟩ = Σkdk |ϕk⟩) is an arbitrary pure state
with its associated state ⟨ψ̂| ≡ Σlc∗l ⟨ϕ̂l| (⟨φ̂| ≡ Σkd∗k⟨ϕ̂k |), and
{⟨ϕ̂l(k)|} and {|ϕl(k)⟩} are left and right eigenstates of a non-
Hermitian Hamiltonian (Appendixes A1 and A2).

Here, we use ρ̂ (ρ̂b) to denote a density operator in standard
(biorthogonal) quantum mechanics. Without loss of general-
ity, let us consider the PT -symmetry system to be in a mixed
state ρ̂b(t) =

∑N
n=1 pn|ψn(t)⟩⟨ψ̂n(t)|, pn is the probability of the

system being in a pure state |ψn(t)⟩, with ⟨ψ̂n(t)|ψn(t)⟩ = 1.
With the inner product introduced in eq. (2), a generalized
expectation value (F̂) of an operator F̂ can be defined (see
Appendix A3)

(F̂) = tr[ρ̂b(t)F̂] =
∑

l

⟨ϕ̂l|ρ̂b(t)F̂|ϕl⟩

=
∑

n

pn⟨ψ̂n(t)|F̂|ψn(t)⟩, (3)

where ⟨ψ̂n(t)|F̂|ψn(t)⟩ is the generalized expectation value (F̂)
of the operator F̂ for an arbitrary pure state |ψn(t)⟩. Eq. (3)
provides a natural generalization of expectation value of an
operator F̂ for an arbitrary quantum state, either a mixed state
or a pure state.

As one of the main contributions of this work, we find that
the temporal evolution of the expectation value (F̂) of the
operator F̂ follows two different forms (see Appendix A3 for
the detailed derivation):

d
dt

(F̂) =
∑

n

pn

[
1
i~

([F̂, ĤPT ])n +

(
dF̂
dt

)
n

]
, (4)

d
dt

(F̂) =
∑

n

pn

[
1
i~

({F̂, ĤPT })n +

(
dF̂
dt

)
n

]
, (5)

where (·)n = ⟨ψ̂n(t)| · |ψn(t)⟩. Eq. (4) corresponds to the
case when the system works in the PT -symmetry unbroken
regime, while eq. (5) corresponds to the case when the system
works in thePT -symmetry broken regime. From eq. (4), one
can see that the expectation value (F̂) is a constant of motion
if the Hamiltonian ĤPT and the time-independent operator F̂
satisfy the commutation relation [F̂, ĤPT ] = 0, i.e., the op-
erator F̂ presents a standard symmetry in the PT -symmetry
unbroken regime [1]. On the other hand, eq. (5) implies that

the expectation value (F̂) is also a constant of motion if ĤPT
and F̂ satisfy the anti-commutation relation {F̂, ĤPT } = 0,
i.e., F̂ presents a chiral symmetry in the PT -symmetry bro-
ken regime [2].

To understand the above results intuitively, let us consider
a PT -symmetry single-qubit system where the eigenvalues
of the Hamiltonian change from real (in the PT -symmetry
unbroken regime), to purely imaginary (in the PT -symmetry
broken regime). The Hamiltonian for this system is given by
(hereafter, we assume ~ = 1)

ĤPT = sσ̂x + iγσ̂z =

 iγ s

s −iγ

 , (6)

where iγσ̂z is the non-Hermitian part of the Hamiltonian gov-
erning gain and loss [27, 61]. The parameter s > 0 is an
energy scale, a = γ/s > 0 is a coefficient representing the de-
gree of non-Hermiticity, σ̂x and σ̂z are the standard Pauli op-
erators. The eigenvalues of ĤPT are given by E1 = s

√
1 − a2

and E2 = −s
√

1 − a2, which are real numbers for 0 < a < 1
(the PT -symmetry unbroken regime), while purely imagi-
nary numbers for a > 1 (the PT -symmetry broken regime).
The right eigenvectors of ĤPT are |ϕ1⟩ = f1×(A1|0⟩+ |1⟩) and
|ϕ2⟩ = f2×(A2|0⟩+|1⟩), while the left eigenvectors of ĤPT are
⟨ϕ̂1| = f ∗3 × (−A∗2⟨0|+ ⟨1|) and ⟨ϕ̂2| = f ∗4 × (−A∗1⟨0|+ ⟨1|) (Ap-
pendix A2). Here, A1 = ia+

√
1 − a2, A2 = ia−

√
1 − a2, and

f1, f2, f3, f4 satisfy f1 · f ∗3 ×(1−A∗2A1) = f2 · f ∗4 ×(1−A∗1A2) = 1
to satisfy the biorthogonality and closure relations.

The Hamiltonian (6) can be considered as a deformed
Pauli operator, ĤPT = E1|ϕ1⟩⟨ϕ̂1| − E1|ϕ2⟩⟨ϕ̂2|, in view of the
biorthogonal partners {|ϕ1⟩, |ϕ2⟩} and {⟨ϕ̂1|, ⟨ϕ̂2|} (Appendixes
A1 and A2). If a time-independent operator F̂ can be ex-
pressed in the form:

F̂ = c1|ϕ1⟩⟨ϕ̂1| + c2|ϕ2⟩⟨ϕ̂2|, (7)

where c1 and c2 are arbitrary nonzero coefficients, one can
easily verify [F̂, ĤPT ] = 0. Thus, according to eq. (4), the
expectation value (F̂) is a constant of motion in the PT -
symmetry unbroken regime. On the other hand, if a time-
independent operator F̂ can be expressed in the form:

F̂ = c̃1(|ϕ1⟩⟨ϕ̂2| − |ϕ2⟩⟨ϕ̂1|), (8)

where c̃1 is an arbitrary nonzero coefficient, one can obtain
{F̂, ĤPT } = 0. In this case, according to eq. (5), the expec-
tation value (F̂) is a constant of motion in the PT -symmetry
broken regime. From an experimental point of view, in order
to keep the expectation value (F̂) as a real number, the cho-
sen operator F̂ should be Hermitian in biorthogonal quantum
mechanics (see Appendix A4). Therefore, in the subsequent
discussion, the coefficients c1 and c2 in eq. (7) are chosen as
real numbers, and the coefficient c̃1 in eq. (8) is chosen as a
purely imaginary number.
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3 Experimental setup

3.1 Single-qubit case

The apparatus for the initial state preparation in a single-
photon system is illustrated in Figure 1(a), where a sin-
gle photon acts as the qubit. A photon pair is gener-
ated through a type-I phase-matched spontaneous parametric
down-conversion process. The idler photon is detected by a
single photon detector as a trigger. The qubit is encoded by
the polarization of the heralded single photon, with |0⟩ = |H⟩
and |1⟩ = |V⟩. The initial state is prepared by a polariza-
tion beam splitter (PBS) and a half-wave plate (HWP). Then
the photon is injected into a time-evolution toolbox, which
outputs the desired time-evolved state. In our experiment,
the time-evolved state is accessed by enforcing the time-
evolution operator ÛPT (t)=exp(−iĤPT t) at any given time on
the initial state. Here, the Hamiltonian ĤPT is the one given
by eq. (6). As depicted in Figure 1(c), the time-evolution
toolbox implements the time-evolution operator ÛPT (t) by
decomposing it into basic operations (see Appendix A5)

ÛPT (t) =R̂QWP(π/4)R̂HWP(θ3)R̂QWP(θ2)L̂(ξ1, ξ2)

× R̂HWP(0)R̂HWP(θ1)R̂QWP(0), (9)

where the loss-dependent operator

L̂ (ξ1, ξ2) =

 0 sin 2ξ1

sin 2ξ2 0

 (10)

is realized by a combination of two beam displacers (BDs)
and two HWPs with setting angles ξ1 and ξ2 (ξ2 is fixed
with π/4 in our experiment). Moreover, R̂HWP and R̂QWP

are the rotation operators of the HWP and quarter-wave plate
(QWP), respectively.

The time-evolved states in the PT -symmetry single-qubit
system are given by [49, 62, 63]

ρ̂E(t) =
ÛPT (t)ρ̂(0)Û†PT (t)

Tr
[
ÛPT (t)ρ̂(0)Û†PT (t)

] , (11)

where ρ̂(0) is the initial density matrix and ρ̂E(t) is the exper-
imental density matrix at any given time t in standard quan-
tum mechanics. The density matrix ρE(t) can be constructed
via quantum state tomography [64, 65]. For the single-qubit
system, we project the photon onto 4 bases {|H⟩, |V⟩, |R⟩ =
(|H⟩ − i|V⟩)/

√
2, |D⟩ = (|H⟩+ |V⟩)/

√
2}. In addition, we note

that the density matrix in biorthogonal quantum mechanics
can be reversely extracted from the density matrix in stan-
dard quantum mechanics ρ̂E(t) (Appendix A6). On the other
hand, the density matrix ρ̂b(t) in biorthogonal quantum me-
chanics can be obtained according to the following relation-
ships (Appendix A7):

ρ̂b(t) = ÛPT (t)ρ̂b(0)Û
′

PT (t), (12)

ρ̂b(t) = ÛPT (t)ρ̂b(0)ÛPT (t), (13)

where ÛPT (t)=exp(−iĤPT t) and Û
′

PT (t)=exp(iĤPT t) are
time-evolution operators, and ρ̂b(0) is the initial density ma-
trix in biorthogonal quantum mechanics. Eqs. (12) and (13)

(a)

(b)

SPBS@404 nm

PBS@404 nm

1

2
2

3

(c)

Figure 1 (Color online) Experimental setup. (a) Overview of the apparatus for the initial state preparation in a single-photon system. For details, please refer
to the text. (b) Overview of the apparatus for the initial state preparation in a two-photon system. For details, please refer to the text. (c) Implementation of
the time-evolution toolbox. Q0 (H0) represents a QWP (HWP) with fixed orientation 0◦, while Q45 represents an QWP with fixed orientation π/4. See text for
details. PBS, polarization beam splitter; HWP, half-wave plate; QWP, quarter-wave plate; BD, beam displacer; IF, interference filter; BBO, β-barium-borate
crystal.
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correspond to the cases when the system evolves in the
PT -symmetry unbroken regime and PT -symmetry broken
regime, respectively.

3.2 Two-qubit case

The apparatus for the initial state preparation in a two-photon
system is illustrated in Figure 1(b). The entangled states
in the experiment are generated through a type-II phase-
matched spontaneous parametric down-conversion. Then
two combinations of HWPs and QWPs (i.e., the upper and
lower parts in the dashed box) operating on each photon,
eliminate the influence caused by the fibres, therefore prepar-
ing the initial state. Then each photon is injected into a
PT -symmetry time evolution toolbox. The dynamical evo-
lution of quantum states in this case is similarly given by
eq. (11), where the time-evolution nonunitary operator is now
given by ÛPT (t) = ÛPT ,1(t) ⊗ ÛPT ,2(t). Here, ÛPT , j(t) =
exp(−iĤPT , jt) ( j = 1, 2) is the time-evolution nonunitary
operator of qubit j in the two-qubit system. Experimen-
tally, we reconstruct the density matrix ρ̂E(t) at any given
time t via quantum state tomography after each of the two
photons passes through the time-evolution toolbox. Essen-
tially, we project the two-qubit state onto 16 basis states
through a combination of QWP, HWP and PBS, and then
perform a maximum-likelihood estimation of the density ma-
trix [64, 65].

3.3 Device parameters

For the single-qubit case, the photon pair is generated
through a type-I phase-matched spontaneous parametric
down-conversion process by pumping a nonlinear β-barium-
borate (BBO) crystal with a 404 nm pump laser, where the
BBO crystal is 3 mm thick. The power of the pump laser
is 130 mW. The bandwidth of the interference filter (IF) is
10 nm. This yields a maximum count of 60000 per sec-
ond. The quantum state is measured by performing stan-
dard state tomography, i.e., projecting the state onto 4 bases
{|H⟩, |V⟩, |R⟩ = (|H⟩ − i|V⟩)/

√
2, |D⟩ = (|H⟩ + |V⟩)/

√
2},

and the corresponding angles of QWP-HWP are (0◦, 0◦),
(0◦, 45◦), (45◦, 22.5◦), (0◦, 22.5◦), and (45◦, 0◦), respec-
tively.

For the two-qubit case, the entangled states in the exper-
iment are generated through a type-II phase-matched spon-
taneous parametric down-conversion, by pumping two BBO
crystals with a 404 nm pump laser, where each BBO crys-
tal is 0.4 mm thick and the optical axes are perpendicu-
lar to each other. The measurement of the photon source
yields a maximum of 10000 photon counts over 1.5 s after

the 10 nm IF. Here, the quantum state is measured by per-
forming standard state tomography, i.e., projecting the state
onto 16 bases {|HH⟩, |HV⟩, |VV⟩, |VH⟩, |RH⟩, |RV⟩, |DV⟩,
|DH⟩, |DR⟩, |DD⟩, |RD⟩, |HD⟩, |VD⟩, |VL⟩, |HL⟩, |RL⟩},
where |D⟩ = (|H⟩ + |V⟩) /

√
2, |R⟩ = (|H⟩ − i|V⟩) /

√
2, and

|L⟩ = (|H⟩ + i|V⟩) /
√

2.

4 Experimental and theoretical results

4.1 Expectation values of operators in a PT -symmetry
single-qubit system

As two results derived from Noether’s theorem, eqs. (7) and
(8) tell us that the expectation value (F) is a constant of mo-
tion if

F̂ = σ̃z = |ϕ1⟩⟨ϕ̂1| − |ϕ2⟩⟨ϕ̂2|, (c1 = −c2 = 1) (14)

and

F̂ = σ̃y = −i|ϕ1⟩⟨ϕ̂2| + i|ϕ2⟩⟨ϕ̂1|), (c̃1 = −i) (15)

for the PT -symmetry unbroken and broken cases, respec-
tively. We experimentally confirm this prediction in a PT -
symmetry single-qubit system. As shown in Figure 2(a), in
the PT -symmetry unbroken regime, (σ̃z) is a constant of
motion, whereas (σ̃y) changes over time. Interestingly, in

(a) (b)

(c) (d)

a=0.6a=0.6

a=1.2

a=1.2

Figure 2 (Color online) The temporal evolutions of expectation values (F̂)
and ⟨F̂⟩ in the PT -symmetry single-photon system. For (a) and (b) the sys-
tem works in thePT -symmetry unbroken regime (a = 0.6), while for (c) and
(d) the system works in the PT symmetry broken regime (a = 1.2). For (a)
and (c), the observable operators F̂ are chosen as deformed Pauli operators
σ̃z = |ϕ1⟩⟨ϕ̂1 |−|ϕ2⟩⟨ϕ̂1 | and σ̃y = −i|ϕ1⟩⟨ϕ̂2 |+ i|ϕ2⟩⟨ϕ̂1 | in biorthogonal quan-
tum mechanics. The expectation value (F̂) is based on (F̂) = ⟨ψ̂(t)|F̂|ψ(t)⟩.
For (b) and (d), the observable operators are chosen as standard Pauli opera-
tors σ̂z and σ̂y, and the expectation value ⟨F̂⟩ is based on ⟨F̂⟩ = ⟨ψ(t)|F̂|ψ(t)⟩.
The initial state is (|0⟩+ |1⟩)/

√
2, and we have set f1 = f2 = 1/

√
2 and s = 1.

All curves show the theoretical results while dots are the experimental data.
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contrast to Figure 2(a), Figure 2(c) shows that in the PT -
symmetry broken regime, (σ̃y) is a constant of motion, while
(σ̃z) changes over time. The experimental results here agree
well with the theoretical simulation results. As a contrast,
we also measure the expectation values of σ̂z and σ̂y in
standard quantum mechanics, shown in Figure 2(b) and (d).
One can see from Figures 2(b) and (d) that both ⟨σ̂z⟩ and
⟨σ̂y⟩ change over time in the PT -symmetry unbroken or
broken regime, i.e., one cannot obtain a constant of mo-
tion. Hence, according to the temporal evolution of ex-
pectation values of (σ̃z) and (σ̃y), one can judge whether
the system works in the PT -symmetry unbroken or broken
regime.

On the other hand, since our experimental apparatus is
quite general and capable of implementing a broad class of
nonunitary operators, we are able to investigate the role of
non-Hermiticities and the effects of initial states on the tem-
poral evolution of expectation values. It can be clearly seen
from Figure 3(a) and (b) that with different initial states, (σ̃z)
is always a constant in the PT -symmetry unbroken regime
even though the initial state is a mixed state. However, the ex-
pectation value (σ̃z) is dependent on the initial states. Com-
paring Figure 3(a) with Figure 3(b), one can see that the ex-
pectation value (σ̃z) gradually increases when the parame-
ter a (representing the degree of non-Hermiticity) increases.
Similarly, Figure 3(c) and (d) show that in PT -symmetry
broken regime, (σ̃y) is always a constant for different initial
states even though the initial state is a mixed state, and the ex-
pectation value (σ̃y) gradually decreases when the parameter
a increases.

(a) (b)

(c) (d)

a=0.8a=0.6

a=1.2
a=2

Figure 3 (Color online) The temporal evolutions of expectation values
(σ̃z) and (σ̃y) in the PT -symmetry single-photon system under different ini-
tial states and non-Hermiticities. The non-Hermiticities in (a)-(d) are chosen
as a = 0.6, 0.8, 1.2, and 2, respectively. The initial states are chosen as two
pure states 1√

2
(|0⟩ + |1⟩), 1

2 (|0⟩ −
√

3|1⟩) and a mixed state 1
2 (|0⟩⟨0| + |1⟩⟨1|).

We have set f1 = f2 = 1/
√

2 and s = 1. All curves show the theoretical
results while dots are the experimental data.

4.2 Expectation values of operators in a PT -symmetry
two-qubit system

We further study the PT evolution of a two-qubit sys-
tem using the optical setup shown in Figure 1(b). The
Hamiltonian of the two-qubit system is described by
Ĥ=ĤPT ,1+ĤPT ,2=s(Ŝ x+iaŜ z), with ĤPT , j=s(σ̂x, j+iaσ̂z, j),
Ŝ x=σ̂x,1+σ̂x,2, and Ŝ z=σ̂z,1+σ̂z,2. Here, σ̂x, j and σ̂z, j are the
standard Pauli operators for the photonic qubit j ( j = 1, 2).
The parameter s is still the energy scale. For different initial
states, the temporal evolutions of expectation values in the
two-qubit system are plotted in Figure 4. The observable op-
erators in Figure 4(a) and (c) are chosen as S̃ y=σ̃y,1+σ̃y,2 and
S̃ z=σ̃z,1+σ̃z,2, respectively. Here, σ̃y, j and σ̃z, j are deformed
Pauli operators for the qubit j ( j = 1, 2) in biorthogonal quan-
tum mechanics. One can verify {S̃ y, Ĥ} = 0 and [S̃ z, Ĥ] = 0.
As expected, Figure 4(a) and (c) show that (S̃ y) remains un-
changed, whereas (S̃ z) changes quickly in the PT -symmetry
broken regime (a = 1.2). Remarkably, it is worth noting that
the expectation value (S̃ y) is zero, which is independent of
the initial states. Taking an information-theoretic perspective
on this phenomenon, one can thus conclude that the infor-
mation of the initial states is masked when measuring the
expectation value (S̃ y), while the information of the initial
states can be disclosed by measuring the expectation value
(S̃ z). In addition, Figure 4(b) and (d) show that both ⟨Ŝ z⟩ and
⟨Ŝ y⟩ depend on the initial states and change over time, i.e.,

(a) (b)

(c) (d)

Figure 4 (Color online) The temporal evolutions of expectation values in
the PT -symmetry two-qubit system with different initial states in the PT -
symmetry broken regime (a = 1.2). The observable operators in (a) and
(b) are chosen as S̃ y = σ̃y,1 + σ̃y,2, and Ŝ y = σ̂y,1 + σ̂y,2, respectively;
while the observable operators in (c) and (d) are chosen as S̃ z = σ̃z,1 + σ̃z,2,
and Ŝ z = σ̂z,1 + σ̂z,2, respectively. Here, σ̂x, j and σ̂z, j (σ̃x, j and σ̃z, j) are
the standard (deformed) Pauli operators for the qubit j ( j = 1, 2) in stan-

dard (biorthogonal) quantum mechanics. |̃0⟩ ≡ |ϕ1⟩, |̃1⟩ ≡ |ϕ2⟩, ⟨̂̃0| = ⟨ϕ̂1 |,
⟨̂̃1| = ⟨ϕ̂2 |, and we set f1 = f2 = 1/

√
2 and s = 1. All curves show the

theoretical results while dots are the experimental data.



Q.-C. Wu, et al. Sci. China-Phys. Mech. Astron. April (2023) Vol. 66 No. 4 240312-7

the phenomenon of masking quantum information does not
exist in standard quantum mechanics. Hence, the masking of
quantum information is a unique phenomenon in biorthogo-
nal quantum mechanics.

5 Conclusion

We have extended Noether’s theorem to a class of signifi-
cant PT -symmetry non-Hermitian systems and introduced
a generalized expectation value of a time-independent oper-
ator based on biorthogonal quantum mechanics. We have
demonstrated that in thePT -symmetry unbroken regime, the
generalized expectation value of a time-independent opera-
tor is a constant of motion, if the time-independent opera-
tor and the non-Hermitian Hamiltonian satisfy the commuta-
tion relation, i.e., the operator presents a standard symme-
try. Moreover, even in the PT -symmetry broken regime,
the expectation value of a time-independent operator is still
a constant of motion provided the operator and the non-
Hermitian Hamiltonian satisfy the anti-commutation rela-
tion, i.e., the operator presents a chiral symmetry. Further-
more, we have experimentally confirmed our predictions in
PT -symmetry single-qubit and two-qubit systems by using
an optical setup. Our experiment has demonstrated the ex-
istence of the predicted constant of motion. Meanwhile, a
novel phenomenon of masking quantum information is first
observed in aPT -symmetry two-qubit system. The extended
Noether’s theorem not only contributes to a full understand-
ing of the relation between symmetry and conservation law
in PT -symmetry physics, but also has potential applications
in quantum information theory and quantum communication
protocols.

The present work has some elements in common with
previous works on obtaining conserved quantity in non-
Hermitian systems, especially the idea of using pseudo-
Hermiticity (equivalently, the intertwining relation) [19-23].
Therefore, we here address the difference between our work
and previous works. As shown in refs. [19,20], every Hamil-
tonian with a real spectrum is pseudo-Hermitian, and all the
PT -symmetry non-Hermitian Hamiltonians belong to the
so-called pseudo-Hermitian Hamiltonians. In the pseudo-
Hermitian representation of quantum mechanics, the expec-
tation value ⟨F̂⟩ of a time-independent operator F̂ is a con-
served quantity provided the intertwining relation, F̂Ĥ =

Ĥ†F̂, is satisfied. In principle, a complete set of conserved
observables can be obtained by numerically solving a set of
N2-dimensional linear intertwining relation [21-25]. How-
ever, a common problem, which one may encounter via
pseudo-Hermiticity (intertwining relation), is how to connect
the conserved quantities with the symmetries of dynamics.

Compared with previous studies [19-25], the main differ-
ence of our work is that by introducing a generalized expec-
tation value of an operator based on biorthogonal quantum
mechanics, we connect two important symmetries with con-
served operators in the PT -symmetry unbroken and broken
regimes, respectively. We remark that the proposed standard
symmetry F̂Ĥ = ĤF̂ and the chiral symmetry F̂Ĥ = −ĤF̂
are essentially different from the intertwining relation F̂Ĥ =
Ĥ†F̂, because of Ĥ , Ĥ† and Ĥ , −Ĥ† in PT -symmetry
systems.

We note that the extended Noether’s theorem is always
valid for such PT -symmetry systems provided the eigen-
values of ĤPT change from purely real numbers to purely
imaginary numbers; or equivalently, ĤPT exhibits an excep-
tional point of the order of the system’s dimension. As an ex-
ample, consider a 3-dimensional PT -symmetry system [23],
for which the Hamiltonian reads HPT = sJx + iγJz, where
Jx and Jz are the 3-dimensional angular momentum opera-
tors. Such a PT -symmetry Hamiltonian has a third-order
exceptional point at γ = s and its spectrum also changes from
real to purely imaginary [23]. Then, based on the extended
Noether’s theorem, one can quickly find its conserved quan-
tities in the PT -symmetry unbroken and broken regimes, re-
spectively.

For any quantum system, whose Hamiltonian can be sim-
plified to the form in eq. (6), the extended Noether’s the-
orem presented in this work can be implemented straight-
forwardly. Note that for the simplified Hamiltonian, arbi-
trary dressed states can be chosen as basis states as long as
the dressed states satisfy the biorthogonality and closure re-
lations. This might lead to a useful step toward realizing
fast symmetry discrimination and conserved quantity acqui-
sition for multi-qubit PT -symmetry systems. Moreover, in
above discussion, we focus on the case of an operator F̂ with-
out explicit time dependence. However, the derived eqs. (4)
and (5) also work well in a general case, i.e., the operator
F̂(t) is time-dependent. Then, one may obtain constant of
motion for a time-dependent operator in a time-dependent
PT -symmetry system, which may be interesting and attrac-
tive. Furthermore, in some sense, the PT -symmetry Hamil-
tonian in eq. (6) has parallels with non-Hermitian topolog-
ical phases [6, 36] and the extended classification of topo-
logical classes [3, 5]. The discovery of the relation between
conserved quantities and non-Hermitian topological invari-
ants [52, 53] is also interesting and attractive, which is a fas-
cinating field where further extension of this work may be
explored.
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Appendix

A1 Eigenstates of non-Hermitian Hamiltonians in
biorthogonal quantum mechanics

We first briefly recall some important properties of non-
Hermitian Hamiltonians in biorthogonal quantum mechan-
ics [27, 28, 31, 32, 55-58]. Consider an arbitrary time-
independent non-Hermitian Hamiltonian Ĥ with N eigen-
states {|ϕk⟩}, k = 1, 2, ...,N. It satisfies the following eigen-
value equation:

Ĥ|ϕk⟩ = Ek |ϕk⟩. (a1)

As the adjoint operator of Ĥ, the Hamiltonian Ĥ† satisfies the
following eigenvalue equation:

Ĥ†|ϕ̂k⟩ = E∗k |ϕ̂k⟩, (a2)

where {|ϕ̂k⟩} are the eigenstates of Ĥ† and also the biorthogo-
nal partners of {|ϕk⟩}. The asterisk here means complex con-
jugate. The biorthogonal partners are normalized to satisfy
the biorthogonality relation [55-58]

⟨ϕ̂k |ϕl⟩ = δkl, (a3)

and the closure relation∑
k

|ϕ̂k⟩⟨ϕk | =
∑

k

|ϕk⟩⟨ϕ̂k | = 1. (a4)

In this case, if the orthogonality of eigenstates in stan-
dard quantum mechanics is replaced by the biorthogonality
that defines the relation between the quantum states in the
Hilbert space and its dual space, the resulting quantum the-
ory is called biorthogonal quantum mechanics [55-58]. Then,
in biorthogonal quantum mechanics, the Hamiltonian Ĥ and
its adjoint Hamiltonian Ĥ† can be expressed as:

Ĥ =
∑

k

|ϕk⟩Ek⟨ϕ̂k |,

Ĥ† =
∑

k

|ϕ̂k⟩E∗k⟨ϕk |.
(a5)

For simplicity, {⟨ϕ̂k |} and {|ϕk⟩} are called the left and right
eigenstates of the Hamiltonian, respectively. In addition,
the overlap distance Θ between two arbitrary pure states
|ψ⟩ = ∑

l cl|ϕl⟩ and |φ⟩ = ∑
k dk |ϕk⟩ can be defined as [55]:

cos2 Θ

2
=
⟨ψ̂|φ⟩⟨φ̂|ψ⟩
⟨ψ̂|ψ⟩⟨φ̂|φ⟩

, (a6)

where ⟨ψ̂| = ∑
l c∗l ⟨ϕ̂l| and ⟨φ̂| = ∑

k d∗k⟨ϕ̂k |. In particular,
Θ = 0 only if |ψ⟩ = ±|φ⟩, whereas Θ = π only if ⟨φ̂|ψ⟩ =
⟨ψ̂|φ⟩ = 0. For a two-dimensional Hilbert space, the state |ψ⟩
can be expressed in the form |ψ⟩ = cosϑ|ϕ1⟩ + sinϑeiφ|ϕ2⟩,
with ⟨ψ̂|ψ⟩ = 1. The two eigenstates |ϕ1⟩ and |ϕ2⟩ here can
be considered as antipodal points on the Bloch sphere. This
is analogous to the counterpart of a Hermitian system, even
though |ϕ1⟩ and |ϕ2⟩ may not be orthogonal, i.e., ⟨ϕ2|ϕ1⟩ , 0.
The usual Bloch sphere description is not adequate at the ex-
ceptional points (EPs). Since at the EPs the intended antipo-
dal points (|ϕ1⟩ and |ϕ2⟩) completely overlap (i.e., |ϕ1⟩=|ϕ2⟩),
the Bloch sphere will then become a dot naturally.

A2 Eigenstates and eigenvalues of non-Hermitian
Hamiltonians in a PT -symmetry single-qubit system

We start with aPT -symmetry non-Hermitian Hamiltonian in
a single-qubit system:

ĤPT = sσ̂x + iγσ̂z =

 iγ s

s −iγ

 , (a7)

where sσ̂x is the Hermitian part of the Hamiltonian, iγσ̂z is
the non-Hermitian part of the Hamiltonian governing gain
or loss. Moreover, the parameter s > 0 is an energy scale,
a = γ/s > 0 is a coefficient representing the degree of non-
Hermiticity, and σ̂x and σ̂z are the standard Pauli operators.
The eigenvalues and eigenvectors of ĤPT are given by

E1 = s
√

1 − a2, |ϕ1⟩ = f1 ∗ (A1|0⟩ + |1⟩),

E2 = −s
√

1 − a2, |ϕ2⟩ = f2 ∗ (A2|0⟩ + |1⟩),
(a8)

where A1 = ia+
√

1 − a2, A2 = ia−
√

1 − a2. Here, f1 and f2
are undetermined coefficients. The eigenvalues are real num-
bers for 0 < a < 1 (the PT -symmetry unbroken regime),
while imaginary numbers for a > 1 (the PT -symmetry bro-
ken regime). As the adjoint operator of ĤPT , the eigenvalues
and eigenvectors of Ĥ†PT are given by

E
′

1 = s
√

1 − a2, |̂ϕ1⟩ = f3 ∗ (−A2|0⟩ + |1⟩),

E
′

2 = −s
√

1 − a2, |̂ϕ2⟩ = f4 ∗ (−A1|0⟩ + |1⟩),
(a9)
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where f3 and f4 are undetermined coefficients. By substitut-
ing eqs. (a8) and (a9) into eq. (a4), one can find that

f1 · f ∗3 × (1 − A∗2A1) = 1, f2 · f ∗4 × (1 − A∗1A2) = 1. (a10)

Theoretically, the coefficients f1, f2, f3, and f4 take arbitrary
values provided they satisfy the relation (a10). However, the
values of f1, f2, f3, and f4 may affect the transformation from
the orthogonal space representation to the biorthogonal space
representation.

In the PT -symmetry unbroken regime, the dynamics of
the non-Hermitian single-qubit system will gradually turn
into the dynamics of a Hermitian single-qubit system when
the parameter a (representing the degree of non-Hermiticity)
tends to zero. In this case, one can set

⟨ϕ1|ϕ1⟩ = ⟨ϕ2|ϕ2⟩ = 1, (a11)

so that |ϕ1⟩ and |ϕ2⟩ are in line with basis states in the Her-
mitian single-qubit system. That is, | f1|2 = 1 + |A2|2, | f2|2 =
1 + |A1|2. Moreover, in the PT -symmetry unbroken regime,
by setting sin θ = a, one can find

A1 = exp(iθ), A2 = − exp(−iθ),
1

f1 · f ∗3
= exp(2iθ) + 1,

1
f2 · f ∗4

= exp(−2iθ) + 1.
(a12)

While, in the PT -symmetry broken regime, by setting
sin θ = 1/a, one has

A1 = i cot θ
′
, A2 = i tan θ

′
, f1 · f ∗3 = f2 · f ∗4 = 1/2. (a13)

A3 Extended Noether’s theorem for a PT -symmetry
system

Theoretically, there is more than one way to define the inner
product in non-Hermitian systems. In biorthogonal quantum
mechanics, the inner product for a non-Hermitian system is
defined as [55-58]:

(φ, ψ) ≡ ⟨φ̂|ψ⟩ =
∑
k,l

d∗kcl⟨ϕ̂k |ϕl⟩ =
∑

k

d∗kck, (a14)

where |ψ⟩ = Σlcl|ϕl⟩ (|φ⟩ = Σkdk |ϕk⟩) is an arbitrary pure state
with its associated state ⟨ψ̂| ≡ Σlc∗l ⟨ϕ̂l| (⟨φ̂| ≡ Σkd∗k⟨ϕ̂k |).

Quantum systems are usually characterized by mixed
states. Thus, it is significant to find the extension of Noether’s
theorem for mixed states. For a general PT -symmetry sys-
tem, its mixed state at any given time t can be expressed as a
biorthogonal density operator:

ρ̂b(t) =
N∑

n=1

pn|ψn(t)⟩⟨ψ̂n(t)|, (a15)

where pn is the probability of the system being in the pure
state |ψn(t)⟩, with ⟨ψ̂n(t)|ψn(t)⟩ = 1. Then, for the case of
mixed states, the expectation value (F̂) of an operator F̂ is
defined as [55]:

(F̂) ≡ tr[ρ̂b(t)F̂]

=
∑

m

⟨ϕ̂m|ρ̂b(t)F̂|ϕm⟩

=
∑

n

∑
m

⟨ϕ̂m|pn|ψn(t)⟩⟨ψ̂n(t)|F̂|ϕm⟩

=
∑

n

pn

∑
m

⟨ϕ̂m|ψn(t)⟩⟨ψ̂n(t)|F̂|ϕm⟩

=
∑

n

pn

∑
m

⟨ψ̂n(t)|F̂|ϕm⟩⟨ϕ̂m|ψn(t)⟩

=
∑

n

pn⟨ψ̂n(t)|F̂|ψn(t)⟩, (a16)

where ⟨ψ̂n(t)|F̂|ψn(t)⟩ is the expectation value (F̂) of the op-
erator F̂ for an arbitrary pure state |ψn(t)⟩. Note that the
closure relation

∑
m |ϕm⟩⟨ϕ̂m| = 1 has been applied to derive

eq. (a16). Eq. (a16) is a natural generalization of the expec-
tation value of an operator F̂ for an arbitrary quantum state,
either a mixed state or a pure state.

Furthermore, consider an arbitrary initial pure state
|ψn(0)⟩ = Σkck |ϕk⟩ for a general PT -symmetry system. Ac-
cording to the Schrödinger equation:

d|ψn(t)⟩
dt

=
1
i~

ĤPT |ψn(t)⟩, (a17)

one can obtain the time-evolved state |ψn(t)⟩=∑k cke−iEkt/~|ϕk⟩
at any given time t and its associated state
⟨ψ̂n(t)|=∑k c∗keiE∗k t/~⟨ϕ̂k |.

For a general PT -symmetry system, the eigenvalues of
the PT -symmetry Hamiltonian ĤPT are real numbers in the
PT -symmetry unbroken regime. Whereas, the eigenvalues
are complex numbers or purely imaginary numbers in the
PT -symmetry broken regime. Thus, in the PT -symmetry
unbroken regime, all the eigenvalues {Ek} are real numbers
(i.e., Ek=E∗k), then ⟨ψ̂n(t)| satisfies the following Schrödinger
equation:

d ̂⟨ψn(t)|
dt

=
d
∑

k c∗keiE∗k t/~⟨ϕ̂k |
dt

=
∑

k

iE∗k
~

c∗keiE∗k t/~⟨ϕ̂k |

=
∑

k

iEk

~
c∗keiE∗k t/~⟨ϕ̂k |

=
∑

k

i
~

c∗keiE∗k t/~[Ĥ†PT |ϕ̂k⟩]†

=
1
−i~

∑
k

c∗keiE∗k t/~⟨ϕ̂k |ĤPT
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=
1
−i~
⟨ψ̂n(t)|ĤPT . (a18)

Note that the relations Ĥ†|ϕ̂k⟩ = E∗k |ϕ̂k⟩ and [Ĥ†PT |ϕ̂k⟩]† =
⟨ϕ̂k |ĤPT = Ek⟨ϕ̂k | have been applied.

On the other hand, in thePT -symmetry broken regime, all
the eigenvalues {Ek} are complex numbers or purely imagi-
nary numbers. Without loss of generality, consider the eigen-
value Ek with a real part Re[Ek] and a purely imaginary part
Im[Ek] (i.e., Ek=Re[Ek]+iIm[Ek]). Then ⟨ψ̂n(t)| satisfies the
following Schrödinger equation:

d ̂⟨ψn(t)|
dt

=
d
∑

k c∗keiE∗k t/~⟨ϕ̂k |
dt

=
∑

k

iE∗k
~

c∗keiE∗k t/~⟨ϕ̂k |

=
∑

k

i(−Ek + 2Re[Ek])
~

c∗keiE∗k t/~⟨ϕ̂k |

=
1
i~

∑
k

c∗keiE∗k t/~⟨ϕ̂k |(ĤPT − 2Re[Ek])

=
1
i~
⟨ψ̂n(t)|ĤPT −

1
i~

∑
k

2Re[Ek]c∗keiE∗k t/~⟨ϕ̂k |. (a19)

Here we remark that provided ĤPT exhibits an exceptional
point of the order of the matrix dimension [23, 65], then
Re[Ek]=Re[En], ∀ k. Eq. (a19) can be reduced to

d ̂⟨ψn(t)|
dt

=
1
i~
⟨ψ̂n(t)|(ĤPT − 2Re[En]). (a20)

According to eq. (a16), the temporal evolution of the ex-
pectation value (F̂) can be expressed as:

d
dt

(F̂)

=
∑

n

pn
d
dt
⟨ψ̂n(t)|F̂|ψn(t)⟩

=
∑

n

pn

d⟨ψ̂n(t)|
dt

|F̂|ψn(t)⟩

+⟨ψ̂n(t)|F̂|d|ψn(t)⟩
dt

+ ⟨ψ̂n(t)|dF̂
dt
|ψn(t)⟩

]
. (a21)

When the eigenvalues of the PT -symmetry Hamiltonian
ĤPT are real numbers, by substituting eqs. (a17) and (a18)
into eq. (a21), one can find that the temporal evolution of the
expectation value (F̂) reads

d
dt

(F̂) =
∑

n

pn

[
1
i~

(F̂ĤPT − ĤPT F̂)n +

(
dF̂
dt

)
n

]
=

∑
n

pn

[
1
i~

([F̂, ĤPT ])n +

(
dF̂
dt

)
n

]
(a22)

in the PT -symmetry unbroken regime. Here, (·)n = ⟨ψ̂n(t)| ·
|ψn(t)⟩.

On the other hand, when the eigenvalues of the
PT -symmetry Hamiltonian ĤPT are imaginary numbers
(Re[Ek]=0, ∀ k), by substituting eqs. (a17) and (a20) into
eq. (a21), one can find that the temporal evolution of the ex-
pectation value (F̂) reads

d
dt

(F̂) =
∑

n

pn

[
1
i~

(F̂ĤPT + ĤPT F̂)n +

(
dF̂
dt

)
n

]
=

∑
n

pn

[
1
i~

({F̂, ĤPT })n +

(
dF̂
dt

)
n

]
(a23)

in the PT -symmetry broken regime. One can see that
eq. (a22) is eq. (4) in the main text, while eq. (a23) is eq. (5)
in the main text.

However, if the eigenvalues of the PT -symmetry Hamil-
tonian ĤPT are not purely imaginary numbers (i.e., Re[En] ,
0), then by substituting eqs. (a17) and (a20) into eq. (a21),
one can find that the temporal evolution of the expectation
value (F̂) reads

d
dt

(F̂) =
∑

n

pn

[
1
i~

(F̂ĤPT + ĤPT F̂

−2Re[En]F̂)n +

(
dF̂
dt

)
n

]
(a24)

in the PT -symmetry broken regime. In this case, even if
ĤPT and F̂ satisfy the anti-commutation relation {ĤPT , F̂} =
0, the expectation value (F̂) is not a constant of motion.

Therefore, in order to obtain a conserved expectation value
(F̂) and connect the chiral symmetry with the conserved
operator in the PT -symmetry broken regime, for the PT -
symmetry systems considered in this work, the eigenvalues
of ĤPT should change from real numbers to purely imag-
inary numbers. We note that such PT -symmetric systems
have been widely used to investigate the dynamics of non-
Hermitian systems in the presence of balanced gain and
loss [24,26,39,45,49-51,62,63]. In these cases, the extended
Noether’s theorem presented in our work applies well.

A4 Conditions for obtaining real expectation values in a
PT -symmetry system

From an experimental point of view, it is preferable to keep
expectation values as real numbers. In the following, we will
briefly explore some conditions for obtaining real expecta-
tion values in a PT -symmetry system.

In standard quantum mechanics, consider an N-
dimensional Hilbert space:

HS = Span{|ϕ′1⟩, |ϕ
′

2⟩, ..., |ϕ
′

N⟩}, (a25)
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where the basis state |ϕ′k⟩ (k = 1, 2, ...,N), satisfies the or-
thogonality relation

⟨ϕ′k |ϕ
′

l⟩ = δkl, (a26)

and the closure relation

N∑
k=1

|ϕ′k⟩⟨ϕ
′

k | = 1. (a27)

Note that the basis state |ϕ′k⟩ here is not the eigenstate of the
PT -symmetry Hamiltonian.

A time-independent operator F̂ can be expressed by a den-
sity operator:

F̂ =
∑
k,l

Fkl|ϕ
′

k⟩⟨ϕ
′

l |, (a28)

where Fkl = ⟨ϕ
′

k |F̂|ϕ
′

l⟩ is the density matrix element of the
operator F̂. Suppose that the time-evolved state of the PT -
symmetry system reads |ψn(t)⟩ = ∑

k Dk(t)|ϕ′k⟩ at any given
time t and its associated state is ⟨ψn(t)| = ∑

k D∗k(t)⟨ϕ′k |.
Here, Dk(t) is a time-dependent and undetermined coeffi-
cient. Then, the standard expectation value ⟨F̂⟩ for the pure
state |ψn(t)⟩ reads

⟨F̂⟩ = ⟨ψn(t)|F̂|ψn(t)⟩

=
∑

i

D∗i (t)⟨ϕ′i |
∑
k,l

Fkl|ϕ
′

k⟩⟨ϕ
′

l |
∑

j

D j(t)|ϕ
′

j⟩

=
∑
k,l

D∗k(t)FklDl(t)

=
∑

k

|Dk(t)|2Fkk +
∑
k,l

D∗k(t)Dl(t)Fkl. (a29)

If the time-independent operator F̂ is Hermitian in the N-
dimensional Hilbert space:

F̂ =
∑
k,l

Fkl|ϕ
′

k⟩⟨ϕ
′

l | = F̂† =
∑
k,l

F∗lk |ϕ
′

k⟩⟨ϕ
′

l |, (a30)

one can obtain that Fkk should be a real number and Fkl = F∗lk
(k , l). In this case, the standard expectation value ⟨F̂⟩ (see
eq. (a29)) must be a real number, because |Dk(t)|2Fkk is real
and∑
k,l

D∗k(t)Dl(t)Fkl

=
∑

k,l,k<l

[
D∗k(t)Dl(t)Fkl + D∗l (t)Dk(t)Flk

]
=

∑
k,l,k<l

[
D∗k(t)Dl(t)Fkl + (D∗k(t)Dl(t)Fkl)∗

]
=

∑
k,l,k<l

2Re[D∗k(t)Dl(t)Fkl], (a31)

where the relation Flk = F∗kl (k , l) has been applied. Thus,
the condition for obtaining a real standard expectation value
⟨F̂⟩ in a PT -symmetry system is that the chosen operator F̂
is Hermitian in standard quantum mechanics.

In a similar way, one can prove that the condition for ob-
taining a real biorthogonal expectation value (F̂) in a PT -
symmetry system is that the chosen operator F̂ is Hermitian
in biorthogonal quantum mechanics. Here, we note that in
biorthogonal quantum mechanics, the biorthogonality rela-
tion and the closure relation (see eqs. (a3) and (a4)) are ap-
plied. A time-independent operator F̂ can be expressed by a
biorthogonal density operator:

F̂ =
∑
k,l

Fkl|ϕk⟩⟨ϕ̂l|, (a32)

where Fkl = ⟨ϕk |F̂|ϕ̂l⟩ is the biorthogonal density matrix el-
ement of the operator F̂. Moreover, according to eq. (a16),
the biorthogonal expectation value (F̂) reads

(F̂) =
∑

n

pn⟨ψ̂n(t)|F̂|ψn(t)⟩

=
∑

n

pn

∑
i

C∗i (t)⟨ϕ̂i|
∑
k,l

Fkl|ϕk⟩⟨ϕ̂l|
∑

j

C j(t)|ϕ j⟩

=
∑

n

pn

∑
k,l

C∗k(t)FklCl(t)

=
∑

n

pn

∑
k

|Ck(t)|2Fkk +
∑
k,l

C∗k(t)Cl(t)Fkl

 , (a33)

where the time-evolved state |ψn(t)⟩ = ∑
k Ck(t)|ϕk⟩ and its

associated state ⟨ψ̂n(t)| = ∑
k C∗k(t)⟨ϕ̂k | with Ck(t) = cke−iEkt/~

can be obtained from eq. (a17).
If the time-independent operator F̂ is Hermitian in the

biorthogonal Hilbert space:

F̂ =
∑
k,l

Fkl|ϕk⟩⟨ϕ̂l| = F̂† =
∑
k,l

F∗lk |ϕk⟩⟨ϕ̂l|, (a34)

one can obtain that Fkk is a real number and also Fkl = F∗lk
(k , l). Then, the biorthogonal expectation value (F̂) (see
eq. (a33)) must be a real number, because pn and |Ck(t)|2Fkk

are real and∑
k,l

C∗k(t)Cl(t)Fkl

=
∑

k,l,k<l

[
C∗k(t)Cl(t)Fkl +C∗l (t)Ck(t)Flk

]
=

∑
k,l,k<l

[
C∗k(t)Cl(t)Fkl + (C∗k(t)Cl(t)Fkl)∗

]
=

∑
k,l,k<l

2Re[C∗k(t)Cl(t)Fkl], (a35)

where the relation Flk = F∗kl (k , l) has been applied. That
is, the condition for obtaining a real biorthogonal expecta-
tion value (F̂) in a PT -symmetry system is that the chosen
operator F̂ is Hermitian in biorthogonal quantum mechanics.
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Therefore, in the main text, in order to ensure that the cho-
sen operators F̂ in eqs. (7) and (8) are Hermitian in biorthog-
onal quantum mechanics, the coefficients c1 and c2 in eq. (7)
are real numbers, and the coefficient c̃1 in eq. (8) is a purely
imaginary number. In addition, when we experimentally in-
vestigate the “biorthogonal” expectation value (F̂), the two
deformed Pauli operators σ̃z and σ̃y (which are Hermitian in
biorthogonal quantum mechanics) are applied. When we ex-
perimentally investigate the standard expectation value ⟨F̂⟩,
the two standard Pauli operators σ̂z and σ̂y (which are Her-
mitian in standard quantum mechanics) are chosen.

A5 Decomposition of the nonunitary time-evolution op-
erator

The dynamic evolution of a PT -symmetry single-qubit sys-
tem is characterized by the nonunitary time-evolution oper-
ator UPT = exp(−iĤPT ), with the PT -symmetry Hamilto-
nian ĤPT = s(σ̂x + iaσ̂z). Without loss of generality, we
set s = 1. In our experiment, we implement the nonunitary
time-evolution operator UPT by decomposing it into basic
operators.

Let us start with

ÛPT (t) = exp(−iĤPT t)

= exp
[−i(σx + iaσz)t

]
= exp


 a −i

−i −a

 t


=

 A + B −iC

−iC A − B

 . (a36)

Here A, B and C are given by
(1) for 0 < a < 1,

A = cos (ωt) , B =
a
ω

sin (ωt) , C =
1
ω

sin (ωt) , (a37)

where ω =
√

1 − a2 > 0.
(2) for a ≥ 1,

A = cosh (ωt) , B =
a
ω

sinh (ωt) , C =
1
ω

sinh (ωt) , (a38)

where ω =
√

a2 − 1 ≥ 0.
We set the parameters

A =
1
2

(λ2 + λ1) sin(−2θ1 + θ2 − π/4), (a39)

B =
1
2

(λ2 − λ1) sin(2θ1 + θ2 − π/4), (a40)

C = −[λ2 sin 2θ1 cos(θ2 + π/4)

+ λ1 cos 2θ1 sin (θ2 + π/4)], (a41)

θ2 =

(
2k1 +

3
4

)
π − 2θ1, (a42)

θ3 =

(
k2

2
+

1
8

)
π − θ1, (a43)

where k1 and k2 are integers. Base on eqs. (a39)-(a43), the
parameters λ1, λ2, θ1, θ2, and θ3 can be determined with given
A, B, and C. The matrix eq. (a36) can thus be decomposed
as follows:

ÛPT (t) =

 U11 U12

U21 U22


 0 λ1

λ2 0


 1 0

0 −1


×

 cos 2θ1 sin 2θ1

sin 2θ1 − cos 2θ1


 1 0

0 i

 , (a44)

where

U11 =
i
√

2
e−iπ/4 (sin θ2 + cos θ2) ei(θ2−2θ3), (a45)

U12 =
i
√

2
e−iπ/4 (sin θ2 − cos θ2) ei(θ2−2θ3), (a46)

U21 =
1
√

2
e−iπ/4 (sin θ2 − cos θ2) e−i(θ2−2θ3), (a47)

U22 =
1
√

2
e−iπ/4 (sin θ2 + cos θ2) e−i(θ2−2θ3). (a48)

A half-wave plate (HWP) and a quarter-wave plate (QWP)
realize rotation operations, which are described by the fol-
lowing operators:

R̂QWP(α) =

 cos2 α + i sin2 α (sin 2α cosα)/2

(sin 2α cosα)/2 sin2 α + i cos2 α

 , (a49)

R̂HWP (β) =

 cos 2β sin 2β

sin 2β − cos 2β

 , (a50)

where α and β are tunable setting angles. Based on eqs. (a49)
and (a50), we have

R̂QWP(45◦)R̂HWP(θ3)R̂QWP(θ2)

=

 1 + i 1 − i

1 − i 1 + i


 cos 2θ3 sin 2θ3

sin 2θ3 − cos 2θ3


×

 cos2 θ2 + i sin2 θ2 sin θ2 · cos θ2 (1 − i)

sin θ2 · cos θ2 (1 − i) sin2 θ2 + i cos2 θ2


=

 U11 U12

U21 U22

 , (a51)

R̂HWP (0◦) =

 1 0

0 −1

 , (a52)

R̂QWP (0◦) =

 1 0

0 i

 , (a53)
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R̂HWP (θ3) =

 cos 2θ3 sin 2θ3

sin 2θ3 − cos 2θ3

 . (a54)

After inserting eqs. (a51)-(a54) into eq. (a44), we obtain

ÛPT =R̂QWP(π/4)R̂HWP(θ3)R̂QWP(θ2)M̂(ξ1, ξ2)

R̂HWP(0)R̂HWP(θ1)R̂QWP(0), (a55)

with

M̂ =

 0 λ1

λ2 0

 . (a56)

The matrix M̂ can be expressed as:

M̂ = c

 0 sin 2ξ1

sin 2ξ2 0

 , (a57)

where c = λ1/sin 2ξ1 = λ2/sin 2ξ2 is a trivial constant. For
simplicity, we define

L̂ (ξ1, ξ2) =

 0 sin 2ξ1

sin 2ξ2 0

 . (a58)

Thus, we have M̂ = cL̂. Note that the functions of both op-
erators L̂ and cL̂ are identical. This is because the states L̂|ψ⟩
and cL̂|ψ⟩, obtained by enforcing the two operators L̂ and cL̂
on an arbitrary state |ψ⟩, are the same according to the prin-
ciples of quantum mechanics. Therefore, we can replace M̂
in eq. (a55) by the operator L̂. In this sense, we have from
eq. (a55):

ÛPT =R̂QWP(π/4)R̂HWP(θ3)R̂QWP(θ2)L̂(ξ1, ξ2)

× R̂HWP(0)R̂HWP(θ1)R̂QWP(0), (a59)

which is exactly the same as the decomposition of the
nonunitary time-evolution operator ÛPT , described by eq. (9)
in the main text.

A6 Reverse extraction of quantum information in
biorthogonal quantum mechanics

Although the mathematical expressions of a given quan-
tum state are different in standard quantum mechanics and
biorthogonal quantum mechanics, the physical meaning of
the given quantum state must be the same. Based on this idea,
for a given quantum state, one can obtain a one-to-one cor-
responding relation between the density matrix in standard
quantum mechanics and the density matrix in biorthogonal
quantum mechanics.

For instance, in the orthogonal representation for standard
quantum mechanics, a quantum state at any given time t can
be given by a density operator:

ρ̂(t) =
∑
n,m

ρnm(t)|n⟩⟨m| =
∑

n

λn|φn(t)⟩⟨φn(t)|. (a60)

Note that {ρnm(t)} are the density matrix elements of the den-
sity operator ρ̂(t) at any given time t in standard quantum
mechanics, which can be experimentally obtained via quan-
tum state tomography. Then, based on the obtained density
matrix elements {ρnm(t)}, one can calculate the eigenvalues
{λn} and eigenstates {|φn(t)⟩} of the density operator ρ̂(t).

On the other hand, according to biorthogonal quantum me-
chanics, the density operator ρ̂b(t) of a quantum state at any
given time t in biorthogonal representation can be expressed
as:

ρ̂b(t) =
∑

n

λn|φn(t)⟩⟨φ̂n(t)| =
∑
n,m

ρ̃nm(t)|ϕn⟩⟨ϕ̂m|, (a61)

where ρ̃nm(t)=⟨ϕ̂m|ρ̂b(t)|ϕn⟩ carries the key quantum informa-
tion of a quantum state in biorthogonal quantum mechanics.
Note that the eigenvalues {λn} and the eigenstates {|φn(t)⟩}
can be obtained from eq. (a60), while {⟨ϕ̂m|} and {|ϕn⟩} are
the left and right eigenstates of the non-Hermitian Hamilto-
nian of the system, and they can be obtained from eqs. (a1)
and (a2). In this way, we can reversely extract the exact
information ρ̃nm(t) (in biorthogonal quantum mechanics) of
a given quantum state from its density operator in standard
quantum mechanics.

A7 Dynamical evolution of a class of PT -symmetry sys-
tems in biorthogonal quantum mechanics

Note that the dynamical evolution of a class ofPT -symmetry
systems in biorthogonal quantum mechanics is quite different
from that in standard quantum mechanics. In biorthogonal
quantum mechanics, a mixed state ρ̂b(t) at any given time t
can be expressed as a biorthogonal density operator:

ρ̂b(t) =
∑

n

pnρ̂b,n(t) =
∑

n

pn|ψn(t)⟩⟨ψ̂n(t)|, (a62)

where pn is the probability of the system being in the pure
state |ψn(t)⟩, and ρ̂b,n(t) = |ψn(t)⟩⟨ψ̂n(t)|.

Let us first consider the system to be in the pure state
|ψn(t)⟩. When the eigenvalues of the PT -symmetry Hamilto-
nian ĤPT are real numbers, the system works in the PT -
symmetry unbroken regime. In this case, according to
eqs. (a17) and (a18), one can obtain the temporal evolution
of the density operator ρ̂b,n(t),

dρ̂b,n(t)
dt

=
d|ψn(t)⟩⟨ψ̂n(t)|

dt

=

(HPT
i~
|ψn(t)⟩⟨ψ̂n(t)| + |ψn(t)⟩⟨ψ̂n(t)|−HPT

i~

)
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=
1
i~

[HPT ρ̂b,n(t) − ρ̂b,n(t)HPT ]. (a63)

On the other hand, when the eigenvalues of the PT -
symmetry Hamiltonian ĤPT are imaginary numbers, the sys-
tem works in the PT -symmetry broken regime. In this situ-
ation, according to eqs. (a17) and (a19), one can find that the
temporal evolution of the density operator ρ̂b,n(t) follows:

dρ̂b,n(t)
dt

=
d|ψn(t)⟩⟨ψ̂n(t)|

dt

=
HPT

i~
|ψn(t)⟩⟨ψ̂n(t)| + |ψn(t)⟩⟨ψ̂n(t)|HPT

i~

=
1
i~

[HPT ρ̂b,n(t) + ρ̂b,n(t)HPT ]. (a64)

Moreover, one can verify that ρ̂b,n(t) = UPT (t)ρ̂b,n(0)U
′

PT (t)
satisfies the following relation:

dρ̂b,n(t)
dt

=
dUPT (t)

dt
ρ̂b,n(0)U

′

PT (t) + UPT (t)ρ̂b,n(0)
dU

′

PT (t)
dt

=
1
i~

[HPT ρ̂b,n(t) − ρ̂b,n(t)HPT ], (a65)

where ÛPT (t)=exp(−iĤPT t/~) and Û
′

PT (t)=exp(iĤPT t/~)
are time-evolution operators. Then, comparing eq. (a63) with
eq. (a65), one can see that ρ̂b,n(t) = UPT (t)ρ̂b,n(0)U

′

PT (t) is

the general solution of eq. (a63) in the PT -symmetry un-
broken regime. Similarly, it is easy to prove that ρ̂b,n(t) =
UPT (t)ρ̂b,n(0)UPT (t) satisfies the following relation:

dρ̂b,n(t)
dt

=
dUPT (t)

dt
ρ̂b,n(0)UPT (t) + UPT (t)ρ̂b,n(0)

dUPT (t)
dt

=
1
i~

[HPT ρ̂b,n(t) + ρ̂b,n(t)HPT ]. (a66)

One then has that ρ̂b,n(t) = UPT (t)ρ̂b,n(0)UPT (t) is the gen-
eral solution of eq. (a64) in the PT -symmetry broken regime
by comparing eq. (a64) with eq. (a66).

Let us now consider the system to be in the mixed state
ρ̂b(t). After substituting ρ̂b,n(t) = UPT (t)ρ̂b,n(0)U

′

PT (t) and
ρ̂b,n(t) = UPT (t)ρ̂b,n(0)UPT (t) into eq. (a62), it is then
straightforward that the temporal evolution of the density op-
erator ρ̂b(t) follows:

ρ̂b(t) = ÛPT (t)ρ̂b(0)Û
′

PT (t), (a67)

ρ̂b(t) = ÛPT (t)ρ̂b(0)ÛPT (t), (a68)

where eq. (a67) corresponds to the case when the system
works in thePT -symmetry unbroken regime, while eq. (a68)
corresponds to the case when the system works in the PT -
symmetry broken regime. One can see that eq. (a67) is
eq. (12) in the main text, while eq. (a68) is eq. (13) in the
main text.
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