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Abstract
Lattice surgery is a method to perform quantum computation fault-tolerantly by using operations on
boundary qubits between different patches of the planar code. This technique allows for universal
planar code computation without eliminating the intrinsic two-dimensional nearest-neighbor
properties of the surface code that eases physical hardware implementations. Lattice surgery
approaches to algorithmic compilation and optimization have been demonstrated to be more
resource ef�cient for resource-intensive components of a fault-tolerant algorithm, and consequently
may be preferable over braid-based logic. Lattice surgery can be extended to the Raussendorf lattice,
providing a measurement-based approach to the surface code. In this paper we describe how lattice
surgery can be performed on the Raussendorf lattice and therefore give a viable alternative to
computation using braiding in measurement-based implementations of topological codes.

1. Introduction

Fault-tolerant methods allow for quantum computation on systems that are prone to errors. The surface code is
one of the most attractive choices for fault tolerance due to its nearest-neighbor interactions and its high error-
threshold [1, 2]. For surface code-based architectures, qubits can be implemented using various approaches with
different methods of computation [3]. Among these are, for example, defects [2] or twists [4] where
computation is performed using braiding, or planar code patches where computation is performed using lattice
surgery [5].

For many implementations of physical qubits, the surface code is the method of choice, but for linear-optics
quantum computation [6–8] or other hardware architectures that utilize probabilistic connections [9] a
measurement-based approach [10] is the better choice. The Raussendorf lattice [11] is a measurement-based
approach to the surface code and, thus, the two methods have the same bene�ts in terms of fault-tolerant
thresholds, ability to perform a universal set of gates, and ability to largely detach the speci�cs of an algorithmic
implementation from the underlying physical hardware.

While braiding has been the method of choice for performing fault-tolerant computation, recently lattice
surgery has been investigated by several works [12–17]. It has also been extended to different implementations
than the surface code, such as the color-codes [18]. For the Raussendorf lattice, however, only braiding has been
investigated in depth. This paper closes this gap by describing how lattice surgery can be performed on the
Raussendorf lattice.

First we give brief reviews on measurement-based quantum computation and error correction using both
the surface code and the Raussendorf lattice. Furthermore, we show the translation between these two error
correction methods. Then, the elementary operations using lattice surgery on the Raussendorf lattice are
described.

RECEIVED

16 February 2018

ACCEPTED FOR PUBLICATION

14 May 2018

PUBLISHED

6 June 2018

© 2018 IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/aac450
https://orcid.org/0000-0002-0849-8339
https://orcid.org/0000-0002-0849-8339
https://orcid.org/0000-0002-1536-8858
https://orcid.org/0000-0002-1536-8858
https://orcid.org/0000-0002-5901-1391
https://orcid.org/0000-0002-5901-1391
https://orcid.org/0000-0003-3682-7432
https://orcid.org/0000-0003-3682-7432
mailto:daniel.herr@riken.jp
http://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/aac450&domain=pdf&date_stamp=2018-06-06
http://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/aac450&domain=pdf&date_stamp=2018-06-06




2.3. The Raussendorf lattice and the surface code
The Raussendorf lattice [20] is a 3D graph state that possesses a speci�c lattice structure. Figure 2 shows a unit
cell of this lattice. With the stabilizer de�nition given in equation (1) one can see that the product of all stabilizers
from the qubits colored in red corresponds to a simultaneous X-parity check of all the faces. Thus, we can de�ne
the X-stabilizer measurements for the Raussendorf lattice. This means that if no error occurred, this stabilizer
measurement should give a parity of+1.

In order to introduce Z-stabilizers of the Raussendorf lattice, we need to consider the dual lattice of the
Raussendorf lattice (as opposed to the primal lattice, that has been considered so far). This is a self-similar lattice
that is shifted by , ,1
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2( ). It is visualized in �gure 3, where the translucent boxes are given by primal unit cells
and the dark box represents the dual unit cell. The faces of the dual cell correspond to the edges of the primal cells
and give rise to chains of Z-stabilizers.

If an error occurs, two of these stabilizer measurements will show a parity of−1. From these syndromes one
can deduce which error occurred and how to correct for it.

2.4. Planar code
The planar code is a 2D error-correcting code whose syndromes are continuously measured to detect errors. The
only difference to the surface code is how the boundary is treated. A layout of the planar code can be seen in
�gure 4. The qubits in this �gure can be divided into two categories: syndrome qubits which are continuously

Figure 2. Unit cell of the Raussendorf lattice: the spheres represent individual photons and the connections between them show the
entanglement given by the de�nition of a graph states. The vertices in the middle of the unit cellʼs faces are colored in red and
contribute to a single parity check. The qubits colored in white are in the middle of dual lattice faces which also correspond to parity
check operations.

Figure 3. The dual unit cell is represented by the dark-gray box in the center. It can be created by stacking 8 primal unit cells
(translucent boxes) together.
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selective target and selective source teleportation methods [28, 29]. This results in a deterministic circuit, despite
being dependent on the probabilistic outcome of its teleportation operations.

A further extension of this representation is the inverted ICM representation [13]. The difference between
ICM and inverted ICM is that the former has arbitrary basis initialization and restricted-basis measurements,
whereas the latter has only a restricted initialization (Z or X) and arbitrary basis measurements. In the inverted
ICM representation, an error-corrected graph state which is speci�c to the algorithm is created and can be
readily realized by merges and splits of lattice surgery. Afterwards, measurements perform the computation of
the quantum algorithm. A complete discussion is available in [13].

4. Conclusion

So far the literature has only described braiding as a method of computation on the Raussendorf lattice. In this
paper we showed that a lattice surgery implementation can also perform quantum computation in the
Raussendorf lattice and we described how to implement all fundamental operations. An implementation of
transversal Hadamards proved to be hard without changing the lattice structure. We gave two approaches, both
with different drawbacks. In conclusion, lattice surgery can be implemented on the Raussendorf lattice such that
future quantum computation [30] on the Raussendorf lattice can use the bene�cial aspects of lattice surgery.
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