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Abstract
We present an inference method utilizing artificial neural networks for parameter estimation of a
quantum probe monitored through a single continuous measurement. Unlike existing approaches
focusing on the diffusive signals generated by continuous weak measurements, our method
harnesses quantum correlations in discrete photon-counting data characterized by quantum
jumps. We benchmark the precision of this method against Bayesian inference, which is optimal in
the sense of information retrieval. By using numerical experiments on a two-level quantum system,
we demonstrate that our approach can achieve a similar optimal performance as Bayesian
inference, while drastically reducing computational costs. Additionally, the method exhibits
robustness against the presence of imperfections in both measurement and training data. This
approach offers a promising and computationally efficient tool for quantum parameter estimation
with photon-counting data, relevant for applications such as quantum sensing or quantum
imaging, as well as robust calibration tasks in laboratory-based settings.

1. Introduction

Quantum parameter estimation refers to the fundamental problem of inferring the value of unknown
physical quantities within a quantum system [1]. It has important practical applications in device
characterization [2–4], quantum feedback and control [5–10] and quantum communications [11, 12], and
most importantly, it is at the core of the field of quantum metrology [13–21], whereby quantum correlations
are exploited to estimate physical quantities with high precision.

The most conventional approach to quantum parameter estimation is based on the following steps: (i)
prepare a quantum system in a given state; (ii) allow it to evolve through a unitary transformation that
encodes the unknown parameters; (iii) perform a measurement on the system; (iv) estimate the parameter
from the measurement results; (v) repeat the process to gather statistical information and increase the
precision of the estimation [15, 17]. Beyond this standard prepare-evolve-measure approach, there are
relevant situations where, instead, one performs a single-shot continuous quantum measurement on a
quantum probe [1]. In this case, one is interested in obtaining an estimation that will be continuously
updated as data is gathered over the time evolution of a single quantum trajectory. Protocols of quantum
parameter estimation from continuous measurements have been developed and studied over the years
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[22–35]; such parameter estimation techniques are particularly relevant for applications such as atomic
magnetometry [36–38], quantum metrology with open quantum systems [28, 39–41] or estimation of
classical time-dependent signals [42]. Previous works have established computational approaches to calculate
the probability density P(θ|D) [23, 29–32] of unknown n-dimensional parameters θ = [θ1,θ2, . . . ,θn]
conditioned on the continuously recorded data, D, which could correspond, for instance, to
photon-counting records [30, 31, 43], continuous weak measurements [44–46], or homodyne
measurements [32]. These calculations rely on the application of Bayes’ theorem on the likelihood functions
P(D|θ), obtained as the trace of un-normalized conditional density matrices with the evolution conditioned
on the measured data record [47].

This Bayesian approach provides, in principle, the most accurate description of the knowledge that can
be gained about θ given the measurement data D. However, the application of this technique faces several
difficulties. Firstly, it requires exact modelling of the open quantum system and any source of error, which
can become challenging for noisy, complex quantum systems [48]. Secondly, the method can be
computationally demanding. For instance, when tackling the problem of multi-parameter estimation, where
one wishes to estimate several parameters simultaneously, Bayesian inference calls for the use of stochastic
methods to sample the posterior probability distribution [29]. Generally, the Bayesian parameter estimation
method will be computationally time-consuming, even in simple systems. This hampers the prospects for
real-time estimation and for the integration of the inference process in the actual measurement device taking
the data, which would be desirable for reduced latency and energy consumption [49, 50].

A novel approach to this problem that has gained attention in recent years is the application of
machine-learning methods in which a neural network (NN) is trained to aid in the inference process.
Crucially, this method allows to circumvent the requirement for detailed knowledge of the underlying
physical system, as long as a reasonable amount of training data is available. The use of NNs have been
demonstrated for a variety of tasks in quantum metrology, including parameter estimation in the presence of
unavoidable noise [51–55], calibration [56, 57], phase estimation in interferometry [56–58],
magnetometry [55, 59], control [54], and tomography [60, 61]. In the context of continuously monitored
systems, NNs have been employed for the reconstruction of quantum dynamics [2, 62] and parameter
estimation under continuous weak dispersive measurements [51, 52, 59, 63], which are characterized by a
continuous, diffusive evolution of the quantum system [1, 64].

Here, we assess the potential of deep learning to tackle the parameter estimation task from continuous
measurements of the photon-counting type. These measurements are described by point processes that,
rather than yielding a diffusive evolution of the system, are characterized by sudden quantum jumps upon
the acquisition of a discrete signal, such as the detection of a single photon [1]. This type of measurements,
ubiquitous in the field of quantum optics and cavity-QED [65–72], provide insights into the particle-like
nature of quantum systems and can produce strongly correlated signals that directly violate classical
inequalities, as in the case of the renowned effect of photon antibunching [72]. Our work addresses the
question of whether NNs can effectively process and exploit the quantum correlations present in this type of
discrete signals.

Our proposed NN architectures approach this task as a regression problem, taking the time delays
between individual photodetection events as an input and providing an estimate θ̂ for the desired parameters
of interest as the output, as sketched in figure 1. Our main finding is that the NNs can take advantage of the
quantum correlations within the signal, providing higher precision than using an equivalent signal that lacks
these correlations, e.g. the integrated intensity value. By computing the root-mean-squared error (RMSE) of
the estimations, we find that, after training, the NN can reach the limit of precision established by Bayesian
inference, while requiring dramatically fewer computational resources. We also demonstrate that parameter
estimation with NNs could be more resilient to noise than a simple Bayesian approach with no detailed
knowledge of the underlying noise sources incorporated into the model, since it is possible for NNs to
indirectly learn the noise model during the training phase. In contrast to a full Bayesian posterior
distribution, the architectures studied in this work provide a single point estimate of the parameters, without
including a confidence interval. Nevertheless, we evaluate their efficiency as estimators by conducting
statistical analyses of their performance across numerous data samples.

2. System and data generation

The data we use to train the deep NNs and perform parameter inference consists of simulated measurements
of single photo-detection times from the light emitted by a driven two-level system (TLS). This system
represents a paradigmatic example of the types of quantum parameter estimation problems studied
extensively in the literature [22, 23, 28]. It is a prototypical model that can describe various quantum
emitters, such as quantum dots [73], molecules [74], or color centres [75]. We consider a TLS with states
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Figure 1. Quantum parameter estimation strategies in open quantum systems. Parameters are encoded in the dynamics of an
open quantum system: here, these are the frequency detuning between the qubit transition frequency and the drive frequency,
∆= ωq −ωL, and the Rabi frequencyΩ of the coherent drive, proportional to the dipole moment of the qubit and the amplitude
of the electromagnetic field driving it. Photon-counting measurements of the quantum light radiated yield a record of the times
of photodetection. The unknown parameters can be reconstructed through Bayesian parameter estimation (left). Here, we show
the posterior probability distribution P(θ|D) for the data obtained from a single quantum trajectory, from which an estimator θ̂
is obtained by computing the mean value of the distribution. The ground truth value for the parameters is contained within the
posterior distribution in a region of high probability. An alternative approach is based on the use of neural networks (right). The
neural network learns the inverse process that maps observed data to the parameters x→ NN→ θ̂ through an initial training
phase that employs data generated with known parameters. Once trained, inference for new data is much faster using the neural
network than repeating the Bayesian parameter estimation with the new data.

{|0⟩, |1⟩}, lowering operator σ̂ = |0⟩⟨1| and transition frequency ωq, continuously excited by a coherent
drive with frequency ωL and a Rabi frequency Ω. This quantum probe is coupled to the environment, giving
rise to spontaneous emission with a rate γ. In the frame rotating at the drive frequency, the dynamics of such
a system is described by the master equation (we set h̄= 1 herein):

∂tρ̂=−i
[
∆σ̂†σ̂+Ω

(
σ̂+ σ̂†) , ρ̂]+ γ

2
D(σ̂) [ρ̂] , (1)

where∆≡ ωq −ωL and D(x̂)[ρ̂]≡ 2x̂ρ̂x̂† −
{
x̂†x̂, ρ̂

}
follows the definition of the Lindblad

superoperator [76]. The interplay between continuous driving and losses eventually brings the system into a
steady state.

The estimation is performed using the data D generated by the continuous photon-counting
measurement of the radiation emitted by the system during a single run of the experiment, considering an
initial state |ψ(0)⟩= |0⟩ and a total evolution time, T, much longer than the relaxation time towards the
steady state. We simulate this process using the Monte Carlo method of quantum trajectories [1, 47, 77]
implemented in the QuTiP library [78, 79]. Under continuous photon-counting measurements, the system
evolves stochastically under the following rules:

• at every differential time step, dt, the system can experience a quantum jump |ψ(t+ dt)⟩ ∝ σ̂|ψ(t)⟩ with a
probability p(t) = dtγ⟨σ̂†σ̂⟩(t), which corresponds to the detection of a photon emitted by the system;

• otherwise, the system follows a non-Hermitian evolution |ψ(t+ dt)⟩ ∝ [I− i(Ĥ− i σ̂†σ̂/2)dt]|ψ(t)⟩. The
wavefunction is normalized in each time step.

Each stochastic simulation of a trajectory corresponds to an individual realization of the experiment,
generating a data vector by storing the specific set of times (t1, . . . , tN) when a photodetection leading to a
quantum jump occurs during the course of a total evolution time T, with N being the total number of jumps
recorded. For convenience, we define our data as the set of time delays between these jumps, D= [τ1, . . . , τN],
where τi = ti − ti−1, i = 1, . . .N and t0 = 0 (see appendix A). An important feature of this particular system
is that each time interval τ i is an independent random variable, given that the system collapses to the ground
state |0⟩ after each emission [30].

Each trajectory is simulated for an evolution time T chosen to generate a data record D of precisely
N = 48 jumps. This number is chosen to meet a compromise; it is sufficiently large to ensure that the system
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Figure 2. Classical and quantum data. (a) Dynamics of an individual Monte Carlo quantum jump trajectory for∆= 0.8γ. Top
panel shows the posterior probability of the parameter∆ for the photon-counting data D(t) acquired up to time t from a certain
trajectory, starting from a flat prior. Bottom panel shows the corresponding evolution of the population of the qubit for the same
trajectory, with red grid lines marking the times when a quantum jump occurs, leading to the collapse of the population to zero
and subsequently restarting the system from the |0⟩ state. The list of time delays between jumps constitutes the quantum data D
from which we infer the unknown parameters θ. (b) Waiting-time distribution w(τ) of the measured time delays τ i between
photo-detection events during an individual trajectory, which constitute the quantum signal. The plot shows the distribution for
several∆ parameters of the system. Clear patters emerge which are∆-dependent. A classical signal corresponding to the
integrated intensity is defined as the mean of the measured delays, τ̄ =

∑N
i=1 τi/N. Since all τ i are independent random variables

coming from the same underlying distribution w(τ), E[τ̄ ] = E[τi] = E[τ ], shown as a black-dashed line. The red vertical gridline
marks the value∆= 0.8γ used as ground truth in panel (a). The horizontal grid line marks the corresponding expected value
E[τ ](∆ = 0.8γ) (c) Heatmap of normalized histograms of τ obtained from 104 trajectories with N= 48 clicks each, simulated
with∆= 0.8γ. The oscillatory patterns of the waiting-time distribution are clearly reproduced in the histograms, which
represent the quantum data. (d) Histogram of all the values τ̄ obtained for the 104 trajectories used in panel (c). This represents
the classical data, given by the mean of delays measured in a given trajectory. The resulting Gaussian distribution is centered
around E[τ ], marked by the dashed red gridline. We fixΩ= γ in all panels. All units are defined in terms of γ.

is in a steady state, while also allowing for inference with a limited number of photons in a relatively short
timescale spanning just a few tens of emitter lifetimes, which is typically within the range of nanoseconds for
solid-state quantum emitters [66]. It is important to note that fixing N requires that each trajectory will have
a different evolution time T [80, 81]. While the choice of fixing N allows us to work straightforwardly with
inputs of uniform dimension, there may be experimental scenarios where T is a more relevant metrological
resource. In such cases, it may be necessary to maintain a fixed T while allowing N to vary. Even in this
scenario, the analysis outlined below remains applicable, and the design and training of the NNs could be
easily adapted, as we discuss in appendix D. More detailed information about the unravelling of the
dynamics in quantum trajectories can be found in the supplemental material [82].

After obtaining the data D from a single trajectory or experiment, our goal is to estimate the unknown
parameters θ that govern the dynamics of the system. In this study, we specifically focus on the parameters∆
and/or Ω, considering that γ is known. While this might be an idealized setting, it is instructive enough to
benchmark the power of quantum correlations and NNs for the task of parameter estimation. We are
interested in benchmarking the NNs against the ultimate precision limit set by the Bayesian inference
process. This process yields a posterior probability distribution for the unknown parameters conditioned on
the measured data D: following Bayes’ rule we have P(θ|D) = P(D|θ)/

´
dθP(D|θ). A comprehensive

explanation of Bayesian inference from continuous measurements is provided in [28] and, within the context
of this work, in appendix B and [82]. An illustrative individual trajectory, generated through our simulation
approach, is depicted in figure 2(a), which shows the evolution of the posterior probability distribution for a
single parameter, namely θ = [∆], in the top panel, and the TLS population in the bottom panel. Red grid
lines mark the times when a quantum jump takes place. One can see how the regions of high probability in
the posterior distribution concentrate more around the ground truth as time increases and more data is
collected.

Once the posterior distribution is obtained, we build an estimator by taking the mean,
θ̂ = E[θ|D] =

´
dθP(θ|D)θ, which is known to be the estimator that minimizes the RMSE [83]. While

reducing the full posterior to a single estimation θ̂ implies a loss of information and involves a subtle choice
of the best estimator, this step allows us to straightforwardly compare the result with the estimation provided
by the NNs. Here we also note that we use a flat (uniform) prior on the parameters of interest, while in
general the Bayesian framework allows us to introduce our knowledge of the system using arbitrary priors.

A central question of our study is whether NNs can leverage the quantum correlations in the data. The
emission from a TLS is strongly correlated; the fact that the emitter can only store one excitation at a time
gives rise to the well-known non-classical phenomenon of antibunching [72], i.e. the suppressed probability
of detecting two photons simultaneously. These quantum correlations can be evidenced through several
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observables, such as the waiting-time distribution w(τ) (the probability of two consecutive emissions to be
separated by a time delay τ ), which presents a vanishing value at zero delay, w(τ = 0) = 0, and an oscillatory
behaviour that depends strongly on the system parameters. These features, shown in figure 2(b), are
translated directly into the histograms of time delays observed in each individual trajectory, as we show in
figure 2(c). We will refer to a signal containing these time delays as a quantum signal.

To assess the information contained in these correlations, we compare it to an equivalent classical signal
where the only relevant value is the integrated intensity, i.e. the total number of counts detected per unit
time, I= N/T. We can interpret such a classical signal as measurements lacking the necessary time resolution
to detect individual photons, providing an integrated intensity without any access to the internal temporal
correlations between photon emissions. In fact, we choose the inverse of the intensity as the classical signal,
since it conveniently represents that we have reduced the list of measured delays, that constitute the quantum
signal, by taking their average, τ̄ ≡

∑N
i=1 τi/N= I−1. Since τ̄ is a sum or independent random variables τ i

that all follow the probability distribution w(τi), the central limit theorem ensures that, when N is large, τ̄ is
itself a random variable that follows instead a normal distribution, with E[τ̄ ] = E[τi]. This normal
distribution stands in contrast to the more complicated probability distribution w(τi) followed by the
individual random variables τ i. In the steady state, this distribution is centered around
E[τi] = E[τ ]≡

´
dτw(τ)τ = (⟨σ̂†σ̂⟩ssγ)−1 (see figure 2(d)).

Access to E[τ ] instead of w(τ) represents an obvious loss of information, where any contributions from
quantum correlations is completely discarded. Thanks to this, the RMSE of the estimation made by using the
classical signal serves as a reference for comparison when doing estimations with the full quantum signal:
whenever the obtained RMSE is lower than that of the classical signal, we understand that the estimation
method is taking some advantage from quantum correlations. The process of parameter estimation from this
classical signal, described in more detail in appendix C, also follows a Bayesian approach in which the chosen
estimator θ̂ is the mean of the posterior P(θ|τ̄).

3. Training

We considered different neural-network architectures with the common structure of inputs and outputs that
we illustrate in figure 1. The input consists of a vector x= D= [τ1, τ2, . . . , τN] of time delays between
photodetection events, while the output is a vector of size n corresponding to the estimations of the
n-dimensional estimation problem, y= [θ̂1, θ̂1, . . . , θ̂n]. Here, we treat both one-dimensional estimation
problems, with θ = [∆] in the 1D case, and θ = [∆,Ω] in the 2D case. We fixed the size of the input vector to
N = 48, indicating that our networks perform estimations based on a single experiment run once 48 photons
have been detected.

Estimation via NNs requires a training stage akin to a calibration process (learning phase). In this work,
the input data used for training, xtrain, consists of a list of time delays obtained from trajectories simulated in
QuTiP, with the corresponding target data ytrain being the ground truth parameters used to run the
simulations. Our best results are achieved using two types of architectures:

1. RNN: recurrent neural network (RNN) with two long short-term memory (LSTM) layers. These
networks can learn correlations in sequential data, rendering them particularly promising for exploiting
temporal quantum correlations. It is worth noting that there are no such correlations between time delays
in our present system, since the τ i are independent due to the collapse following a quantum jump.
Nonetheless, these networks still deliver a very good performance. More information on these networks
and their application in parameter estimation from continuous signals can be found in [59].

2. Hist-Dense: Fully connected NN with a first custom layer designed to return a histogram of the input
data. The geometry of the bins of the histogram is defined by the number of bins and their range. We set
these as non-trainable hyperparameters fixed at 700 total bins and a range given by τmin = 0 and
τmax = 100/γ. This layer produces an efficient, physically-informed representation of the data, which
leverages the absence of correlations between time delays in this particular system.

Further details on the networks and the training process, can be found in appendix D. There, we also
discuss the minimal variations that would be required to handle the situation in which T is fixed and,
consequently, the inputs have variable data size N. In all the numerical calculations, the unit of time is set by
1/γ (which we assume to be a known parameter) by fixing γ= 1. After training, we benchmark the
estimations made by the NNs against the estimation made through Bayesian inference and, in the
single-parameter estimation case, also against the estimation done on the classical version of the signal.
Details of this validation process are in appendix E.

5



Quantum Sci. Technol. 9 (2024) 035018 E Rinaldi et al

Figure 3. Performance of different estimation strategies. (a) Scatter plot of estimations ∆̂ across a range of∆ values from classical
(left) and quantum (right) versions of the photon-counting signal, computed for 104 trajectories for each∆ value. All the
different estimators used for quantum data (Bayesian, NN) give a similar result, so only one is shown (NN-Hist). The blue shade
of the points represents the underlying probability density function obtained through kernel density estimation. The dashed red
line represents the ground truth. Orange points represent the mean of the the estimations. (b) RMSE of the estimators for on
classical (red) and quantum (yellow, blue, green) versions of the signal. Estimations on quantum signals clearly outperform the
classical estimation, signaling the useful information encoded in quantum correlations. The predictions made by NNs (blue,
green) are on par with Bayesian inference (yellow), which is the optimal process in terms of information retrieval. Dashed lines
mark the lower limit set by the biased Cramér-Rao bound for the classical and quantum signals. (c) Bias of the predictions for the
same cases as in (b).

4. Single-parameter estimation (1D)

First, we focus on the simplest situation in which a single parameter is estimated: the detuning θ = [∆].
Figure 3(a) depicts a scatter plot of the predictions made by each method for different values of∆. These
plots show that the predictions made using the quantum signal—regardless of whether Bayesian inference or
NNs are used—are more densely concentrated around the ground truth than the predictions obtained using
the classical version of the signal. This already suggests that quantum correlations in the data can provide an
advantage.

This advantage is clearly quantified in figure 3(b), which compares the RMSE of the predictions obtained
by each of the methods computed on a different set of validation trajectories (see appendix E for details on
the validation data). The estimation from classical data (red) always has a higher RMSE than estimation
methods that have access to the quantum correlations in the data. Figure 3(b) also shows that the NN
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Figure 4.Multidimensional parameter estimation for θ = [∆,Ω]. The qubit-drive detuning∆ and the Rabi frequencyΩ are
estimated simultaneously. (a) RMSE of the estimations made through Bayesian inference. (b) RMSE of the estimations made by
the NN. (c) Contours corresponding to Bayesian (red) and NN (blue) are overlaid for the sake of comparison.

architectures used in this work learn to extract information encoded in these correlations, with the resulting
RMSE reaching values very close to the ultimate limit set by Bayesian inference. The fact that NNs perform as
well as the Bayesian approach by leveraging on quantum correlations in a completely model-agnostic
manner is the main result of our work.

We note, however, that none of the approaches studied here provided an estimator that is unbiased for all
∆, as we show in figure 3(c). There, we plot the bias of several estimators, defined as bias(θ̂)≡ E(θ̂− θ). This
bias is not problematic per se, since it is known that biased estimators can be preferable to unbiased ones in
some cases [83]. However, this bias needs to be taken into account at the time of comparing the obtained
RMSE with the lower bound set by the Fisher information and the Cramér–Rao bound (CRB) [84, 85]. As
we discuss in more detail in [82], one needs to consider the biased CRBs [86]. We calculated the Fisher
information and the biased CRBs for the photon-counting measurements considered here [28–30],
incorporating the calculated biases shown in figure 3(c). The resulting lower limits for the RMSE are shown
as dashed lines in figure 3(b). We show that, for the quantum signal, both the Bayesian and NN estimators
saturate the CRB for a wide range of values of∆.

5. Multi-parameter estimation (2D)

We also benchmarked our results for the 2D parameter-estimation case, where both∆ and Ω are unknown
and estimated simultaneously, θ = [∆,Ω].

Our results for the 2D estimation case are shown in figure 4. In panel (a), we depict the RMSE of
Bayesian estimation from the quantum signal in a region of the plane [∆,Ω]. The resulting map shows a
nontrivial structure that reflects the underlying physical complexity of the system and that is consistent with
previous reports in the literature [29, 30]. The same physical complexity is captured by the NNs, as shown in
figure 4(b), which depicts the RMSE obtained by the estimation of a Hist-Dense architecture and shows that
the RMSE reflects the same underlying structure as the one obtained with Bayesian inference, yielding
comparably small values overall. Both results can be more clearly compared in figure 4(c), depicting
overlaying contour lines of the two plots in panels (a) and (b).

Our results clearly establish that NNs are able to exploit the information hidden in quantum correlations
in order to perform parameter estimation. Given their comparable precision to Bayesian inference, a careful
evaluation of the benefits of opting for NNs as an alternative becomes important.

6. Computation efficiency

A first aspect in which NNs can bring an important advantage is the efficiency of the computation, which is
particularly relevant for the case in which one wishes to achieve real-time estimation. For the 2D case of
simultaneous estimation of two parameters, the posterior for a single trajectory for Bayesian estimation can
be computed using the UltraNest package [87] (see appendix B) in a typical wall time of 10 seconds on a
MacBook Pro 2023 with an Apple M2 Max Chip. On the other hand, an estimation using the NNs built in
this work, while being less informative (unlike the Bayesian posterior they provide a single estimation
without a confidence interval) can be computed in a wall time of less than 1 ms, on the same device. The
efficiency of the required calculation is such that trained NNs can be converted into compact and efficient
TensorFlow Lite models, with a size of approximately 90 kB. These models are suitable for deployment and
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execution on microcontrollers, which would minimize resource demands and enable data collection and
estimation on the same device, leading to a significant reduction in latency [49, 50]. We can expect that,
during data collection of photon-counting measurements, different chunks of measured time-delays are fed
into the trained NN models for inference in real time. Such a situation would not only allow for precise and
robust real time inference, but could also inform about time-drifting parameters by looking at the temporal
sequence of predictions.

7. The challenge of noise

Another important challenge faced by the Bayesian inference approach is the requirement of a precise
modelling of the underlying physical system. This become particularly problematic in the presence of noise,
which not only requires a perfect characterization and modelling of the different sources of imperfections,
but also makes the subsequent calculation of posteriors much more involved. In contrast, the model-agnostic
approach of using NNs allows for a robust prediction without the need of any modelling of the sources of
noise, only by training the network directly on noisy data. In the particular case of photon-counting with
single-photon detectors, numerous sources of noise can be attributed just to the detection process, such as
the efficiency, bandwidth, dead time, dark counts or jitter noise [71]. All these sources of noise have
non-trivial consequences on the statistics of the photodetection events [88] and on the quantum trajectories
associated to these imperfect measurements [89]. Hence, the necessity of a perfect modelling and
characterization of these processes seriously hampers the utilization of Bayesian inference.

7.1. Noise in x: time jitter
We illustrate the potential advantage brought in by the estimation with NNs by considering the particular
case of time jitter [88], which we describe by adding a noise term to the values of time delays τ used both in
the training and estimation of the NNs for the 1D estimation case θ = [∆]. We consider noise following a
normal distribution with standard deviation στ , so that x→ x+ xnoise(στ ), with xnoise(στ )∼N (0,στ ). In
order to assess the resilience of the NN predictors to this type of noise, we defined a list of values of στ in the
range στ ∈ [0,γ−1]. For each value in this list, we sampled a population of xnoise and trained a model with the
corresponding noisy data.

The resulting RMSE of the predictions returned by each of these models is computed using the same
validation trajectories used in figure 3, but containing an added Gaussian noise with the same στ as the data
used to train the model. The resulting RMSEs are shown in figure 5(a), compared to the RMSE of the
prediction via an imperfect Bayesian inference process in which the noise is not explicitly modeled. We
observe that, in the case of NNs, the results are more insensitive to the jitter noise and the RMSE of the NN
predictor is always lower than that of the Bayesian predictor. This result remains true for all values of∆, as
shown in figure 5(b). We emphasize that this did not require any modelling of the imperfections, as would
have been required for a correct process of Bayesian inference. The latter would presumably recover the
values reported by the NN, but requiring a perfect characterization of the sources of noise, which may be
challenging in some scenarios.

7.2. Noise in ytrain: imperfect calibration
Another relevant question is the effect of noise in the training target data ytrain. In particular, we consider the
case in which the target data used for training differs from the underlying ground truth used to generate the
quantum trajectories by a Gaussian noise term with standard deviation σy, so that ytrain → ytrain + ynoise(σy),
with ynoise ∼N (0,σy). This could reflect, for instance, the finite precision of a calibration device employed to
experimentally measure the set of target values used to train the network.

The question we address is whether a NN will be able to perform parameter estimation with a lower
RMSE than the standard deviation σy of the noisy target data used for training. A positive answer to this
question would indicate that the precision of the NN estimator can outperform that of the calibration
method or device used to generate the training data. Figures 5(c) and (d) illustrate that this scenario is
indeed possible. Similarly to the process described for figure 5(a), we defined a series of values of σy and, for
each value, we sampled a population of ynoise and trained a model with noisy target data. The validation of
the trained models is done using the same set of trajectories as in figure 3. Figure 5(c) shows that, once the
standard deviation of the noisy training target data σy (dot-dashed line) becomes greater than the RMSE
achievable in the noiseless case (horizontal grid line), the predictions made by the NNs trained with this
noisy data remain robust and approximately equal to the ideal RMSE. As σy increases, the RMSE of the NN
predictor eventually reaches a threshold where it starts increasing as well, but remaining much smaller than
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Figure 5. Parameter estimation with noisy data. (a) RMSE of NN predictor trained and evaluated with data containing jitter noise
given by a Gaussian distribution with standard deviation στ (green circles). This is compared to the RMSE of Bayesian inference
lacking a description of the noise (yellow crosses). Results shown for a fixed∆= 0.27γ. (b) Same as in panel (a), shown versus∆
and with a fixed jitter noise στ = 0.76γ. RMSE of Bayesian predictor in the absence of noise shown for comparison (gray
crosses). (c) RMSE of NN predictor trained with noisy target training data ytrain, with noise following a Gaussian distribution
with standard deviation σy . We observe that the RMSE of the NN predictor (green circles) can remain smaller than the standard
deviation of the training data σy (gray dot-dashed line). The horizontal grid line marks the RMSE of Bayesian inference with
noiseless data for comparison . Results shown for a fixed∆= 0.27γ. (d) Same RMSE as in panel (c), shown as a function of∆.
Different colors represent different values of σy , which are also represented as horizontal grid lines, confirming that the RMSE of
NN predictor remains smaller than σy for all values of∆.

σy. Such threshold is established by the size of the training dataset. This observation holds for all values of∆,
as shown in figure 5(d). This result highlights the potential of the NNs to improve sub-optimal estimations
used to feed the training process.

8. Conclusions and outlook

We have established the potential of NNs to perform parameter estimation from the data generated by
continuous measurements of the photon-counting type. We have carefully benchmarked their precision
against the ultimate limit set by Bayesian inference, showing that NN approaches can reach comparable
performance in a much more computationally efficient way, while also being more robust against noise.

These results pave the way for future research that can explore more complex quantum optical systems
and measurement schemes. For example, future studies could investigate the radiation from cavity-QED
systems with non-trivial quantum statistics [65, 70, 90, 91] or several quantum emitters, as well as multiple
simultaneous detection channels, such as those provided by arrays of single-photon avalanche diodes for
generalized Hanbury-Brown and Twiss measurements [66, 68], streak cameras [67], or single-photon fibre
bundle cameras [69, 92]. We anticipate that such setups could yield more complex temporal correlations
than those considered in this study, where the various time delays are independently sampled from the
waiting time distribution. More complex temporal correlations have the potential to lead to non-trivial
scaling of the Fisher information with time T or the number of detected photons N [39]. Investigating
whether the saturation of the CRB by the NNs that we report in this work extends to these complex scenarios
represents a promising avenue for further exploration.

One aspect we leave for future work is the exploration of NN methods that incorporate mechanisms to
do uncertainty quantification (UQ) on the predictions (compute prediction intervals) [93]. For example,
Bayesian Neural Networks [94] train a set of weights distributions and the predictions from those networks
are obtained by sampling the posterior of the weights after training. Other approaches to UQ include
bootstrapping and ensemble methods which are easily implemented and only require extra training time,
maintaining all the benefits of NN estimators that we have shown in our work.

Another aspect deserving further exploration is leveraging domain knowledge and incorporating physical
models into the learning process [2, 4]. We note that the Hist-Dense architecture used in this study could
already be considered a physics-informed approach, taking advantage of a known feature about the model:
the absence of information contained in the particular ordering of delays in the input data x, given that the
source is a TLS that resets its state after every emission [30].

Moreover, it is worth noting that protocols of parameter estimation from photon-counting data, as the
one described here, may find applications in fields such as fluorescence quantum microscopy [69, 92, 95–97]
or quantum imaging [98, 99]. In these areas, experimental quantum signals beyond the capabilities of
classical simulations—due to the number of emitters and detectors involved—are already within reach,
calling for efficient methods of analysis for the optimal image reconstruction [100].
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Data availability statement

All the data necessary to reproduce the results in this work, including simulated quantum trajectories for
training of the NNs, validation trajectories, trained models and Bayesian inference calculations in 2D via
nested sampling are openly available on Zenodo [101].

The codes used to generate the results in this work, including the implementation of the proposed NN
architectures as TensorFlow models, are openly available on Zenodo and GitHub [102].

The data that support the findings of this study are openly available at the following URL/DOI: https://
zenodo.org/records/2009;509.
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Appendix A. Photodetection time data

In practice, rather than working with the absolute times of detection, ti, we find it more convenient to
consider D to be equivalently composed of a list of time delays τi = ti − ti−1, with i = 1, . . .N and t0 = 0. For
simplicity of calculations, we consider trajectories with different values of total evolution time T but a fixed
number of total detections N, and assume that the measurement is immediately terminated after the last
detection, i.e. t= tN. This means that t− tN will always be zero, becoming an irrelevant time interval that we
do not need to include in our data, which will then only consist of N values, D= [τ1, . . . τN]. This format
provides a set of data records with a fixed number of photodetection events or ‘clicks’ that can be easily used
as inputs for the NNs that we use in this work.

Appendix B. Bayesian Inference

Bayes’ Rule.—We consider that, at the beginning of our estimation protocol, our knowledge of the unknown
set of parameters is characterized by a constant prior probability distribution P0(θ) over an arbitrarily large
but finite support (we define an initial support that is big enough not to affect the final estimation, and
alternative prior distributions can also be used). Our goal is to update this knowledge upon the new evidence
provided by some measurement data D, i.e. to compute the posterior probability P(θ|D). According to Bayes’
rule, this is given by

P(θ|D) = P(D|θ)
P(D)

P0 (θ) =
P(D|θ)´

dθP(D|θ)P0 (θ)
P0 (θ) , (B1)

where the integral is defined over the domain of possible values of θ, i.e. the support of P0(θ). If we have no
prior knowledge of θ, as we assume here, P0(θ) is constant over its support and can be taken out of the
integral in the denominator in equation (B1), leaving us with a simple relation between P(θ|D) and P(D|θ):

P(θ|D) = P(D|θ)´
dθP(D|θ)

. (B2)
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Thus, the required step to compute the posterior P(θ|D) is the calculation of the likelihood P(D|θ), which in
general can be computed as the norm of a conditional density matrix evolving according to the list of
quantum-jump times in data D, as explained in detail in [82].

Likelihood computation.— The calculation of the likelihood is particularly simple for the dynamics of a
TLS, since each time interval is independent of the others, given that the system is completely reset to the
ground state |0⟩ after each emission [30]. Consequently, the probability for the set of data D= [τ1, . . . , τN] is
simply given by the product of the probabilities of each interval

P(D|θ) =
N∏

i=1

w(τi;θ) , (B3)

where the waiting-time distribution w(τ ;θ) gives the probability of two successive clicks being separated by a
time interval τ and we made explicit its dependence on the system parameters θ. In our system, governed by
the master equation (1), the waiting-time distribution has the following analytical form,

w(τ ;θ) =
8γΩ2

R
exp [−γτ/2]

×
∑

η=−1,1

η cosh

(
τ
√
γ2 − 4(∆2 + 4Ω2)+ ηR

2
√
2

)
(B4)

with R=

√
[γ2 + 4(∆2 + 4Ω2)]

2 − 64γ2Ω2. As explained in more detail in [30], we obtain this expression
directly from

w(τ) = γρ̃ee (τ) , (B5)

where ρ̃ee(τ)≡ ⟨e|ρ̃(τ)|e⟩ is the excited-state population of the conditional un-normalized density matrix
solution to the master equation in the absence of any quantum jumps, given by

∂τ ρ̃=−i
[
Ĥ, ρ̃

]
− γ

2

{
σ̂†σ̂, ρ̃

}
, (B6)

with ρ̃(0) = ρ̂(0).
Posterior computation.— Once the method to compute the likelihood P(D|θ) is established, the only

obstacle to using Bayes rule in equation (B1) is the calculation of the normalization factor in the
denominator. This factor is called the evidence or the marginal likelihood, as it marginalizes the likelihood
over all possible values of the parameters. While this integral can be computed analytically for simple
likelihood distributions, or numerically efficiently for a low-dimensional parameter space, many sampling
techniques are typically used in Bayesian inference to bypass its direct computation. Markov Chain Monte
Carlo [103] is a stochastic sampling method that allows us to compute samples from the posterior P(θ|D) as
draws from multiple Markov chains evolving in Monte Carlo time according to a stationary distribution
proportional to the posterior. Another method is Nested Sampling (NS) [104, 105], which is able to provide
an estimate for the marginal likelihood itself by converting the original multi-dimensional integral over the
parameter space to a one-dimensional integral over the inverse volume of the prior support. NS methods
have been shown to be effective also in the case of multi-modal posteriors (related to parameter degeneracy)
and when the posterior distribution has heavy or light tails, and they are routinely used in fields such as
astrophysics and cosmology when Bayesian model selection is crucial.

For the multi-dimensional case n= 2, we compute the posterior probability distributions P(θ|D) using
the UltraNest package [87] in Python. UltraNest contains several advanced algorithms to improve the
efficiency and correctness of nested sampling, including bootstrapping uncertainties on the marginal
likelihood and handling vectorized likelihood functions over parameter sets (together with additional MPI
support).

Appendix C. Parameter estimation from classical signals

We consider that the classical version of the measured quantum signal is given by the sample mean of the N
observed delays τ̄ =

∑N
i=1 τi/N. Being a sum of many independent random variables τ i, τ̄ is itself a random

variable that, in the limit of large N, will follow a Gaussian distribution τ̄ ∼N (µ,σ), where µ= E[τi] and
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σ2 = Var[τi]/N. Since the independent random variables follow the waiting-time distribution given by
equation (B4), τi ∼ w(τ ;θ), µ and σ can be directly obtained:

µ(θ) =
[
γ⟨σ̂†σ̂⟩ss (θ)

]−1
=
γ2 + 4∆2 + 8Ω2

4γΩ2
, (C1a)

σ (θ)
2
=

(
γ2 + 4∆2

)2 − 8
(
γ2 − 12∆2

)
Ω2 + 64Ω4

N16γ2Ω4
, (C1b)

were we assume that the emission is recorded when the driven emitter has reached a steady state and we
made explicit the dependence of these quantities on the unknown parameters θ. Within a Bayesian
framework, this means that the likelihood of the classical data is

P(τ̄ |θ) = 1

σ
√
2π

exp

[
−1

2

(
τ̄ −µ

σ

)2
]
, (C2)

and the posterior is given by equation (B2), assuming a constant prior. From here, we obtain a single
estimation by taking the mean of the posterior, i.e. θ̂ = E[θ|D] =

´
dθθP(θ|D). We make this choice in order

to be consistent with the estimator used for Bayesian inference with quantum data, and because it shows
overall lower RMSE and bias than the maximum-likelihood estimator, see [82].

Appendix D. Training and design of the neural networks

For the 1D estimation case, the networks are trained with 4× 106 trajectories in which the first 48
photodetection times are stored. From these, 80% are taken as training data, and 20% as validation data
during the training process. Each trajectory is simulated by fixing Ω= γ, and choosing randomly a value of
the detuning within the domain∆ ∈ [0,5γ], which should be large enough to cover the expected range of
possible values of∆. We choose this domain to be the same as the support of the prior in the Bayesian
inference, so that both methods rely on the same underlying assumptions about the probability distribution
of∆. All the networks are trained using the Adam optimizer. A summary of these architectures—including
number of trainable parameters and details about the batch size and number of epochs used in training—is
provided in table 1. All the networks are defined and trained using the Tensorflow library [106].

For the 2D parameter estimation, we train the network with a new set of 4× 106 trajectories generated
for random values of∆ and Ω in the range∆ ∈ [0.,3γ] and Ω ∈ [0.25γ,5γ] (lower values of Ω are not used
in order to avoid longer simulations times associated with the lower pumping rate).

The first layers of both architectures (Histogram and LSTM) accept an input of any size. This would
allow, in principle, to adapt our training and inference to the situation in which T is considered a relevant
metrological resource to keep fixed, and N is let to change among trajectories. However, efficient batch
processing during training typically requires a uniform input size. For the situation of non-uniform data
obtained by fixing the evolution time T for all trajectories (resulting in a non-constant size N of each data
record), this could easily be achieved through preprocessing, setting a consistent data size among trajectories
by padding the quantum-jump data with neutral values that would be subsequently disregarded by the input
layer.
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Table 1. Summary of the NN architectures used for parameter estimation. All networks are trained with the Adam optimizer, with a
learning rate 0.001, using a batch size of 12 800 and with a mean squared logarithmic error (MSLE) loss function.

Recurrent Neural Network (RNN)

Layer Output shape Activation # Parameters

LSTM 17 ReLU 1292
LSTM 17 ReLU 2380
Dense 1 Linear 18

Trainable params. 3690
Epochs 1200

Hist-Dense

Layer Output shape Activation # Parameters

Histogram 700 — 0
Dense 100 ReLU 70 100
Dense 50 ReLU 5050
Dense 30 ReLU 1530
Dense 1 Linear 31

Trainable params. 76 711
Epochs 1200

Hist-Dense 2D

Layer Output shape Activation # Parameters

Histogram 700 — 0
Dense 100 ReLU 70 100
Dense 50 ReLU 5050
Dense 30 ReLU 1530
Dense 20 ReLU 620
Dense 10 ReLU 210
Dense 2 Linear 22

Trainable params. 77 532
Epochs 1200

Appendix E. Validation process

E.1. 1D case
In order to validate the performance of the NNs, we generate a set of validation trajectories for a uniform
grid of 40 values of∆ (with Ω= γ) in the range∆ ∈ [0,2.1γ]. For each value of∆, we generated 104

trajectories containing 48 photodetection events each. For each trajectory, we obtained an estimation of the
parameter for each of the methods, taking the mean of the posterior as the estimation in the Bayesian case.
We then computed the MSE from the 104 different predictions with each of the methods for each value of∆.

E.2. 2D case
Validation is done for a grid of (∆,Ω) pairs built from a grid of 40 values of∆ in the range∆ ∈ [0.,2.1γ] and
a grid of 40 values of Ω in the range Ω ∈ [0.25γ,2.1γ], spanning a square grid of 1600 points. For each of
these points, we simulate 104 validation trajectories with 48 clicks each.
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