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ABSTRACT

We show that polarization singularities, generic for any complex vector field but so far mostly studied for electromagnetic fields, appear
naturally in inhomogeneous yet monochromatic sound and water-surface (e.g., gravity or capillary) wave fields in fluids or gases. The vector
properties of these waves are described by the velocity or displacement fields characterizing the local oscillatory motion of the medium par-
ticles. We consider a number of examples revealing C-points of purely circular polarization and polarization M€obius strips (formed by major
axes of polarization ellipses) around the C-points in sound and gravity wave fields. Our results (i) offer a new readily accessible platform for
studies of polarization singularities and topological features of complex vector wave fields and (ii) can play an important role in characteriz-
ing vector (e.g., dipole) wave–matter interactions in acoustics and fluid mechanics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0056333

I. INTRODUCTION

Polarization and spin are inherent properties of vector waves.
These are typically associated with classical electromagnetic/optical
fields or quantum particles with spin.1–3 Recently, it was noticed that
sound waves in fluids or gases4–10 as well as water-surface (e.g., grav-
ity) waves11,12 also possess inherent vector properties, and the notions
of polarization and spin are naturally involved there (see also earlier
Refs. 13 and 14). These properties are related to the wave-induced
motion of the medium’s particles. Such motion can be characterized
by the vector velocity field Vðr; tÞ or the corresponding displacement
fieldRðr; tÞ; V ¼ @tR, in a way entirely analogous to, e.g., the elec-
tric field Eðr; tÞ or the corresponding vector-potential
Aðr; tÞ; E ¼ �@tA, in an electromagnetic wave.

The main difference between the electromagnetic and sound-
wave polarizations is that the former are transverse (the fields E and
A are orthogonal to the wavevector k for a plane wave), while the lat-
ter are longitudinal (the fields V andR are parallel to the wavevector
for a plane wave). In the case of gravity or capillary waves, which

appear on surfaces of classical fluids or gases,15 a plane wave has a
mixed nature. Namely, the fields V andR have longitudinal compo-
nents along the wavevector lying in the unperturbed water-surface
plane, as well as vertical components normal to the surface and the
wavevector. Akin to other surface or evanescent waves,4,5,16,17 these
two components are mutually p=2 phase-shifted, so that gravity plane
waves are elliptically polarized in the propagation plane.18

However, when one considers structured (inhomogeneous) wave
fields, consisting of many plane waves, these differences between trans-
verse, longitudinal, and mixed plane wave polarizations are largely
eliminated. Indeed, at a given point r, a vector monochromatic field,
whether electromagnetic, acoustic, or water-surface, traces an ellipse,
which can have arbitrary orientation in 3D. Considering the spatial
distribution of such ellipses across the r-space, one deals with inhomo-
geneous polarization textures. Important generic and topologically
robust characteristics of inhomogeneous wave fields are singularities:
phase singularities in scalar fields and polarization singularities in vec-
tor polarization fields.19
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In physics of fluids, the emergence of various singularities is a long-
standing problem attracting continuous interest.20,21 In particular, the
topological nature of singularities allows one to use these for the charac-
terization of complex flows (e.g., vortices in turbulence). Furthermore,
singularities can be closely related to the formation of robust topologi-
cally nontrivial objects, such as knots22,23 or M€obius strips.24,25

Therefore, it is not surprising that both phase singularities and
2D polarization singularities in wave fields were first observed in the
scalar and 2D-current representations of tidal ocean waves.26–29

However, a systematic treatment of structured wave fields has only
been developed within the framework of singular optics.19,30–32

According to this approach, generic singularities of 2D (paraxial) and
3D (nonparaxial) polarization fields are C-points or C-lines of purely
circular polarizations as well as L-lines or L-surfaces of purely linear
polarizations,19,30,32–35 and polarization M€obius strips,35–44 which are
formed (solely in 3D fields) by major axes of polarization ellipses
around C-points/lines. These objects are very robust because of their
topological nature; they also have important implications in the
geometric-phase and angular-momentum properties of the field.35

Being thoroughly described and observed for optical fields, polari-
zation singularities and topological polarization structures have not been
examined properly in sound and water waves. In this work, we fill this
gap. We consider both random and regular structured acoustic and
water-surface wave fields and show that polarization singularities and
M€obius strips are also ubiquitous for them. These results can have a two-
fold impact. First, they provide a new platform for studying polarization
singularities and topological structures. Importantly, while one cannot
directly observe elliptical motion of the electric field E or the vector-
potential A in optics, the velocity and displacement fields V and R,
respectively, are directly observable in acoustic and water-surface
waves.11,18,45–47 Second, the vector representation of sound and water-
surface waves can be relevant for wave–matter interactions, such as inter-
actions with dipole particles coupled to the vector velocity field.7,48,49

This paper is organized as follows. We start by presenting the
generic appearance of C-points and L-lines in random 2D acoustic fields

in Sec. II. Section III presents polarization singularities (C-points) in 3D
acoustic fields, both random and regular, as well as polarization M€obius
strips that appear around C-points. Section IV demonstrates the appear-
ance of C-points and polarization M€obius strips in structured water-
surface waves. Concluding remarks are provided in Sec. V.

II. POLARIZATION SINGULARITIES IN A 2D ACOUSTIC
FIELD

We consider monochromatic sound waves in a homogeneous
fluid or gas, which are described by the equations:15

ixb P ¼ $ � V ; ix qV ¼ $P: (1)

Here, x is the frequency, q and b are the density and compressibility of
the medium, respectively, whereas PðrÞ and VðrÞ are the complex pres-
sure and velocity fields, respectively. The real-time-dependent fields are
Pðr; tÞ ¼ Re½PðrÞ expð�ixtÞ� andVðr; tÞ ¼ Re½VðrÞ expð�ixtÞ�.

The plane wave solution of Eqs. (1) is

P ¼ P0 exp ði k � rÞ ; V ¼ V0
�k exp ði k � rÞ; (2)

where �k ¼ k=k; k is the wavevector, k ¼ x=c is the wavenumber,

c ¼ 1=
ffiffiffiffiffiffi
qb
p

is the speed of sound, and P0 ¼
ffiffiffiffiffiffiffiffi
q=b

p
V0. Sound waves

are longitudinal because V k k, but still have a vector nature described
by the velocity fieldV.4,6–10 In what follows, we will focus on the polar-
ization properties of this vector wave field: the real velocity field
Vðr; tÞ at a given point r traces a polarization ellipse.

We first examine a random speckle-like sound-wave field
in 2D. Namely, we consider the interference of N plane waves (2),
V ¼

PN
j¼1 Vj with wavevectors kj, j ¼ 1;…;N , randomly distributed

over the circle k2x þ k2y ¼ k2 (kz¼ 0), and with equal amplitudes jV0jj
but random phases /j ¼ ArgðV0jÞ, as shown in Fig. 1(a). Due to the
longitudinal character of sound waves, Vz¼ 0, the polarization ellipses
of such field all lie in the (x, y) plane. Figure 1 shows an example of such
random field including its intensity and polarization distributions.

FIG. 1. Random 2D acoustic field obtained by the interference of N¼ 7 plane waves with the same frequency and amplitude but with random directions within the (x, y) plane
and random phases. (a) Wavevectors of the interfering waves (with color-coded phases) and distribution of the intensity of the velocity field jVj2 (grayscale). (b) Color-coded
distribution of the phase of the quadratic field V � V. The phase singularities (vortices) of this field correspond to C-points of purely circular polarization in the field V. L-lines
correspond to purely linear polarizations. (c) Distribution of the normalized polarization of V. Red, blue, and green colors correspond to right-handed, left-handed, and near-
linear polarizations, respectively. The C-points in a 2D polarization field can be labeled by two independent topological numbers:35 (i) nD ¼ 1=2 and nD ¼ �1=2 [black and
white dots in (b), respectively] indicate half of the topological charge of the vortex in the quadratic field V � V; (ii) nC ¼ 1=2 and nC ¼ �1=2 [magenta and cyan dots in (c),
respectively] correspond to the number of turns of the major semiaxis of the polarization ellipse along a closed contour including the C-point.
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The distributions in Fig. 1 are similar to the corresponding distri-
butions in random paraxial electromagnetic fields, with wavevectors
directed almost along the z-axis and polarization ellipses approximately
lying in the (x, y) plane.19,33,35 The only difference is that paraxial elec-
tromagnetic fields have a typical inhomogeneity scale of ðhkÞ�1, where
h� 1 is the small characteristic angle between the wavevectors and the
z-axis, while in the acoustic case h ¼ p=2, the typical inhomogeneity
scale is k�1. Polarization singularities of generic 2D polarization fields
are the C-points of purely circular polarization and L-lines of purely lin-
ear polarization,19,30,32–35 as shown in Figs. 1(b) and 1(c).

C-points correspond to phase singularities (vortices) in the scalar
fieldWðrÞ ¼ VðrÞ � VðrÞ,19,32,35 Fig. 1(b). Notably, these points generi-
cally coincide neither with zeros of the scalar pressure field PðrÞ nor
with zeros of jVðrÞj2. Furthermore, each C-point in a 2D polarization
field can be characterized by two half-integer topological numbers.35

The first, nC, corresponds to the number of turns of the major semiaxis
of the polarization ellipse along a closed contour including the
C-point. The second, nD, is half the topological charge of the corre-
sponding phase singularity in the field W. In the generic (nondegener-
ate) case, singularities have the topological numbers nC ¼ 61=2 and
nD ¼ 61=2 (see Fig. 1). Note that the morphological classification of
2D polarization distributions around C-points, such as “stars,”
“lemons,” and “monstars,” is thoroughly described for optical polar-
ized fields19,50 and applies here as well. Note also that higher-order sin-
gularities can appear in degenerate cases, e.g., with imposed additional
symmetries, such as cylindrical beams.

III. C-POINTS AND POLARIZATION M €OBIUS STRIPS
IN 3D ACOUSTIC FIELDS
A. Random fields

Akin to nonparaxial 3D electromagnetic fields, generic sound-
wave fields have polarization characterized by the ellipses traced by
the velocity field Vðr; tÞ at every point r, which can be arbitrary ori-
ented in 3D space. To show an example of such field, we consider
an interference of N plane waves with equal amplitudes jV0jj, wavevec-
tors kj, j ¼ 1;…;N , with directions randomly distributed over the
hemisphere kz > 0 (k2x þ k2y þ k2z ¼ k2), and random phases
/j ¼ ArgðV0jÞ, see Fig. 2(a).

The distributions of the resulting intensity jVj2 and of the
phase of the quadratic field V � V over the z¼ 0 plane are shown in
Figs. 2(b) and 2(c), respectively. Similar to the 2D case, the phase sin-
gularities of the quadratic field correspond to the C-points (polariza-
tion singularities) in the polarization distribution, Fig. 2(d). However,
in the 3D case, the circular polarizations in these points do not generi-
cally lie in the (x, y) plane.19,30,32,35

Furthermore, distributions of the 3D polarization ellipses in the
vicinity of C-points have remarkable topological properties. Namely,
continuous evolution of the major semiaxes of the polarization ellipse
along a contour encircling a nondegenerate C-point traces a 3D
M€obius-strip-like structure,35–37,39–44 Fig. 2(e). Notably, the number of
turns of the polarization ellipse around the contour is not topologically
stable: continuous deformations of the contour (without crossing

FIG. 2. Random 3D acoustic field obtained by the interference of N¼ 7 plane waves with the same frequency and amplitude but with random directions within the kz > 0 hemisphere
and random phases. (a) Wavevectors of the interfering waves with color-coded phases. (b) Distribution of the intensity of the velocity field jVj2 in the z¼ 0 plane. (c) Color-coded distribu-
tion of the phase of the quadratic field V � V in the z¼ 0 plane. Phase singularities (vortices) of this field correspond to C-points of purely circular polarization in the field V. (d)
Distribution of the normalized polarization ellipses of V in the z¼ 0 plane. (e) Continuous evolution of polarization ellipses with their major semiaxes along a contour encircling a nonde-
generate C-point exhibits a M€obius-strip structure.36,37,39 (f) For a contour encircling an even number of C-points (including zero), there is no polarization M€obius strip.35
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C-points) can result in the change of the number of turns by an integer
number.38,51 However, the number of turns modulo 1, which distin-
guish the “M€obius” (half-integer number of turns) and “non-M€obius”
(integer number of turns) cases, is topologically stable. It directly
corresponds to the number of C-points enclosed by the contour mod-
ulo 2,35 see Figs. 2(d)–2(f).

Recently, polarization M€obius strips attracted great attention in
optics.35,39–44 We argue that entirely similar polarization structures
naturally appear in inhomogeneous sound-wave fields. In addition to
the random field shown in Fig. 2, below, we consider examples of reg-
ular sound-wave fields with polarization singularities and M€obius
strip.

B. Three-wave interference

We now consider examples of regular (nonrandom) 3D acoustic
fields with polarization singularities and M€obius strips. In optics, such
singularities are often generated in vector vortex beams.19,35,39,40,43,44

Here, we also consider a superposition of N acoustic plane waves with
wavevectors evenly distributed within a cone of polar angle h ¼ h0
and with an azimuthal phase difference corresponding to a vortex of
order ‘,

V ¼ V0

XN

j¼1

�k j exp i kj � rþ i ‘/j
� �

; (3)

where kj¼kðsinh0 cos/j; sinh0 sin/j; cosh0Þ and /j¼2pðj�1Þ= N .
In the limit of N�1, this superposition tends to an acoustic Bessel
beam.6

The minimal number of plane waves to generate polarization sin-
gularities is N¼ 3. Figure 3 shows the wavevectors kj, distributions of
the intensity of the velocity field, jVj2, and of the phase of the qua-
dratic field, ArgðV � VÞ, for the three-wave superpositions (3) with
h0 ¼ p=4; ‘ ¼ 0, and ‘ ¼ 1. One can see a number of first-order
C-points, i.e., phase singularities in the quadratic field V � V.
Accordingly, 3D polarization ellipses along a contour enclosing an
odd number of C-points form polarization M€obius strips.
Importantly, the spacing between the C-points in Fig. 3 is controlled
by the polar angle h0. When h0 � 1 (paraxial regime), the C-points
merge and form only even-order C-points with no M€obius strips
around them. In particular, the four C-points at the center of Fig. 3(f)
with the integer total topological charge nD ¼ 3=2� 1=2 ¼ 1 merge
into a single second-order (nD¼ 1) C-point in the paraxial limit. This
is in sharp contrast to the electromagnetic (optical) waves, where iso-
lated first-order C-points can appear even in the paraxial case.

C. Perturbed vortex beams

Consider now the large-N limit of the superposition (3), which
generates acoustic vortex (Bessel) beams. Due to the cylindrical sym-
metry, such beams can have an isolated C-point at the center.

FIG. 3. The wavevectors kj, distributions of the intensity of the velocity field, jVj2, and of the phase of the quadratic field V � V in the z¼ 0 plane, for the three-wave superpo-
sitions (3) with N¼ 3, h0 ¼ p=4; ‘ ¼ 0 (a)–(c), and ‘ ¼ 1 (d)–(f).
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However, in contrast to optical vectorial vortex beams, the
C-point at the center of an acoustic vortex beam always has an
even order (integer nD ¼ ‘)6 (see Fig. 4). This does not allow one
to generate an acoustic polarization M€obius strip in a symmetric
vortex configuration as in optics.35,39,40,43,44 However, breaking
the cylindrical symmetry of the beam results in splitting of the
even-order C-point at the center into a number of the first-order
C-points (nD ¼ 61=2), each of which carries polarization M€obius
strip structures around it. For example, one can break the symme-
try by interfering the vortex beam with a horizontally propagating
plane wave,

V ¼ Vvortex þ V 0�k
0
exp ði k0 � rÞ; (4)

where Vvortex is the vortex-beam field, such as Eq. (3) with N � 1,
whereas k0 ¼ kð1; 0; 0Þ. Figure 4 shows the splitting of the even-order
C-point into first-order C-points for the perturbed vortex field (4).

The above examples show that the typical spacing between the
C-points in structured sound waves is k�1, and this spacing can
decrease in the paraxial regime and in the presence of additional sym-
metries. This also determines the typical subwavelength size of the
acoustic polarization M€obius strips.

IV. POLARIZATION SINGULARITIES AND M €OBIUS
STRIPS IN WATER-SURFACE WAVES

One of the key differences between electromagnetic and acoustic
fields is that the electric and magnetic fields are vectors in abstract
spaces of the field components (there is no “ether” and nothing moves
in a free-space electromagnetic wave), while the velocity field corre-
sponds to the motion of the medium’s particles (atoms or molecules)
in real space. Moreover, instead of the velocity field, one can consider
the displacement field Rðr; tÞ: V ¼ @tR, or, for a monochromatic
field in the complex representation, V ¼ �ixR. The displacement
field can be regarded as a “vector-potential” for the velocity field.10 It
has the same polarization, but the polarization ellipses traced by R
correspond to real-space trajectories of the medium particles.

This opens an avenue to the direct observation of polarization
ellipses and more complicated structures.12 In sound waves, typical dis-
placement amplitudes are small, and their direct observations are chal-
lenging.45,46 However, similar medium displacements can be easily
observed in another type of classical waves, namely, water-surface (e.g.,
gravity or capillary) waves,15 with typical displacement scales ranging
from millimeters to meters. Recently, there were several studies on
polarization properties of structured water waves,11,12,47 and here, we
show that these waves naturally reveal generic polarization singularities.

FIG. 4. The wavevectors, distributions of the intensity of the velocity field, jVj2, and of the phase of the quadratic field V � V in the z¼ 0 plane, for the Bessel-beam superposi-
tion (3) with N¼ 20, h0 ¼ p=4; ‘ ¼ 2 (a)–(c), and the same Bessel beam interfering with an additional plane wave, Eq. (4), with V 0=V0 ¼ 2 (d)–(f). One can see the splitting
of the even-order C-point (integer nD ¼ ‘) (c) into 2jnDj first-order C-points (f) when breaking the cylindrical symmetry of the vortex beam.
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For the sake of simplicity, we consider deep-water gravity waves
on the unperturbed water surface z¼ 0.15 The equations of motion for
the complex displacement field R ¼ ðX;Y ;ZÞ of the water-surface
particles in a monochromatic wave field can be written in a form simi-
lar to the acoustic equations (1),11,12

x2Z ¼ �g $? � R? ; x2R? ¼ g $?Z: (5)

Here, g is the gravitational acceleration, R? ¼ ðX;YÞ, and
$? ¼ ð@x; @yÞ. Making the plane wave ansatz $? ! i k; k ¼ ðkx; kyÞ,
in Eqs. (5), we obtain the dispersion relationx2 ¼ gk.

The plane wave solution of Eqs. (5) is

Z ¼ Z0 exp ði k � rÞ ; R? ¼ i Z0
�k exp ði k � rÞ: (6)

These relations show that deep-water gravity waves have equal longi-
tudinal (k-directed) and transverse (z-directed) displacement compo-
nents phase-shifted by p=2 with respect to each other. In other words,

such plane waves are circularly polarized in the meridional (propaga-
tion) plane, including the wavevector and the normal to the unper-
turbed water surface.18 Such (elliptical in general) meridional
polarization is a common feature of surface and evanescent waves in
different physical contexts.4,5,16,17 Therefore, interfering plane water
waves with wavevectors lying in the (x, y) plane results in generic 3D
polarization structures with all three components of the displacement
field R.

To show that such polarization distributions generically
possess polarization singularities, we consider the interference of
N plane waves (6): R ¼

PN
j¼1 Rj �

PN
j¼1 R0j exp ði kj � r?Þ, with

R0j ¼ Z0jði�kjx; i�kjy; 1Þ, wavevectors kj randomly distributed over the
circle k2x þ k2y ¼ k2, and equal amplitudes jZ0jj but random phases

/j ¼ ArgðZ0jÞ, as shown in Fig. 5(a) (cf. Fig. 1). Figure 5(b) shows the
phase distribution of the quadratic field W ¼ R � R; it clearly exhibits
phase singularities corresponding to C-points of the vector field R.

FIG. 5. Random 3D water-surface wave field obtained by the interference of N¼ 7 plane waves with the same frequency and amplitude but with random directions in the
(x, y) plane and random phases. (a) Wavevectors of the interfering waves with color-coded phases and their circular polarizations. (b) Color-coded distribution of the phase of
the quadratic field R � R in the water-surface z¼ 0 plane. Phase singularities (vortices) of this field correspond to C-points of purely circular polarization in the field R. (c)
Distribution of the normalized polarization ellipses of the R field in the z¼ 0 plane. These ellipses are trajectories of water-surface particles. The instantaneous water surface
at t¼ 0 is shown in gray. (d) Akin to Fig. 2, the continuous evolution of polarization ellipses with their major semiaxes along a contour encircling a C-point exhibits a polarization
M€obius strip. Multimedia views: https://doi.org/10.1063/5.0056333.1; https://doi.org/10.1063/5.0056333.2
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The distribution of the polarization ellipses, i.e., trajectories of the
water-surface particles, over the z¼ 0 plane is shown in Fig. 5(c)
(Multimedia view). Tracing the orientation of the polarization ellipses
along a contour encircling a C-point reveals the generic M€obius-strip
structure, Fig. 5(d) (Multimedia view). We provide animated versions
of Figs. 5(c) and 5(d), where one can see motion of the water surface
and separate water particles. In particular, the animated version of Fig.
5(d) shows the temporal evolution of the displacement vectorsRðr; tÞ
along the contour, which can form “twisted ribbon carousels.”52

Thus, by tracing 3D trajectories of water particles in a random
(yet monochromatic) water-surface wave field, one can directly
observe generic polarization singularities of 3D vector wave fields.

V. CONCLUDING REMARKS

This work was motivated by recent strong interest in (i) polariza-
tion M€obius strips in 3D polarized optical fields35–44 and (ii) vectorial
spin properties of acoustic and water-surface waves.4–12 We have
shown that these research directions can be naturally coupled, and
that polarization singularities, such as C-points and polarization
M€obius strips, are ubiquitous for inhomogeneous (yet monochro-
matic) acoustic and water-surface waves. The vector velocity or dis-
placement of the medium particles provide complex-valued elliptical
polarization fields varying across the space. We have considered vari-
ous examples of random and regular interference fields consisting of
multiple (three or more) plane waves, which exhibit polarization sin-
gularities andM€obius strips.

In contrast to well-studied electromagnetic polarizations associ-
ated with the motion of abstract field vectors, acoustic and water-wave
polarizations correspond to real-space trajectories of the medium par-
ticles. In particular, these are readily directly observable for water-
surface waves.11,47 Also, while optical vectorial-vortex beams can bear
an isolated first-order C-point and a M€obius strip around it,35,39,40,43,44

acoustic C-points typically appear in clusters with subwavelength dis-
tance between the points.

Analyzing wave-field singularities is useful because of their
topological robustness; they provide a “skeleton” of an inhomoge-
neous field.53 This robustness is highly important because real-life
waves in fluids always have inherent perturbations, such as viscos-
ity and nonlinearity, with respect to the idealized nondissipative
linear picture. So far, only phase singularities of the scalar pressure
field P were considered in sound-wave fields. The vector velocity
field V / $P and its polarization singularities provide an alterna-
tive representation and can be more relevant, e.g., in problems
involving dipole wave-matter coupling. Note that the vectorial rep-
resentation of a gradient of a scalar wave field was previously con-
sidered in Ref. 54.

For water-surface waves, the scalar representation is based on the
vertical displacement field Z. Tidal ocean waves were also studied in
terms of the 2D polarization field of the horizontal current27–29,55,56

associated with the velocity components (Vx, Vy). We argue that these
scalar and 2D vector fields can be regarded as components of a single
3D vector displacement R or velocity V field. Moreover, we have con-
sidered gravity deep-water waves, which are much more feasible for
experimental laboratory studies than tidal waves.11,47

Notably, our arguments are not restricted to purely sound and
water-surface waves. They can be equally applied to any fluid/gas or
fluid/fluid surface waves as well as internal gravity waves in stratified

fluid or gas media. We hope that our work will stimulate further stud-
ies and possibly applications of 3D polarization textures and topologi-
cal vectorial properties of various waves in acoustics and fluid
mechanics.
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