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a b s t r a c t

The interaction of light and matter at the single-photon level is of central importance
in various fields of physics, including, e.g., condensed matter physics, astronomy,
quantum optics, and quantum information. Amplification of such quantum light–matter
interaction can be highly beneficial to, e.g., improve device performance, explore novel
phenomena, and understand fundamental physics, and has therefore been a long-
standing goal. Furthermore, simulation of light–matter interaction in the regime of
ultrastrong coupling, where the interaction strength is comparable to the bare frequen-
cies of the uncoupled systems, has also become a hot research topic, and considerable
progress has been made both theoretically and experimentally in the past decade. In
this review, we provide a detailed introduction of recent advances in amplification of
quantum light–matter interaction and simulation of ultrastrong light–matter interaction,
particularly in cavity and circuit quantum electrodynamics and in cavity optomechanics.

© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

1.1. The importance of light–matter interactions

The quantum interaction of light and matter is a fundamental area of research in physics that spans across its
arious fields, encompassing: quantum optics (see, e.g., Refs. [1–3]), photonics [4], cavity quantum electrodynamics
QED) [5], circuit QED [6–14], atom optics [15–17], quantum sensing [18] and quantummetrology [19], as well as quantum
ptical technologies [20], including quantum cryptography, quantum communications, and optical quantum information
rocessing (QIP) [21]. Moreover, light–matter interactions have been actively investigated in condensed matter physics,
oth at the fundamental level concerning, e.g., cavity quantum materials [22], non-equilibrium condensed matter physics
ith light [23], light-induced effects in three- and lower-dimensional materials or topological materials [24]; but also
t the applied level to understand the principles behind devices like lasers, light-emitting diodes, photodetectors, and
olar cells. Moreover, we should also mention the importance of light–matter interactions in astronomy (ranging from
nalyzing emission and absorption spectra to understanding, e.g., black holes, neutron stars, as well as other stellar and
nterstellar structures and their evolution), quantum chemistry (especially photochemistry) [25], and quantum biology
2
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Main abbreviations and basic notations used in this review.
Notation Meaning
QED quantum electrodynamics
QIP quantum information processing
RWA rotating-wave approximation
JC Jaynes–Cummings
USC ultrastrong coupling
DSC deep strong coupling
BEC Bose–Einstein condensate
VQS variational quantum simulation
VQA variational quantum algorithm
SQUID superconducting quantum interference device
D(α) displacement operator with a complex amplitude α

S (ξ) squeezing operator with a complex parameter ξ

σx, σy, σz , σ± Pauli operators
g atom–cavity coupling strength
J inter-cavity coupling strength
κ photon loss rate
γ atomic spontaneous emission rate
C C = g2/κγ single-photon cooperativity
r squeezing degree
ωcav cavity frequency
ωq atomic transition frequency

(ranging from understanding and simulating photosynthesis to controlling the activity of neurons or other cell types with
light using the methods of optogenetics) [26].

1.2. The importance of amplifying light–matter interactions

The strength of the quantum interaction between light and matter has a significant impact on various aspects of
cience and technology. A stronger quantum interaction can lead to several advantages and opportunities for exploring
ew phenomena, improving technologies, and gaining deeper insights into the fundamental nature of the universe.
Here are some reasons why a stronger quantum interaction between light and matter is beneficial:

1. Greater sensitivity in quantum measurements: In fields like quantum sensing and quantum metrology, a stronger
quantum interaction allows for more sensitive measurements. This is especially important in applications such as
gravitational wave detection, where precise measurements of tiny perturbations are crucial.

2. Enhanced control in QIP: Stronger interactions can lead to better control over quantum systems, enabling more
efficient and reliable QIP, such as quantum computing, quantum communication, and quantum cryptography.

3. Emergence of novel phenomena: In many cases, stronger interactions can lead to the emergence of new and
unexpected phenomena, providing opportunities for discovery and innovation.

4. Exploring exotic quantum states: Stronger interactions can facilitate the creation and study of exotic quantum states
that can be harnessed for various applications.

5. Better understanding of fundamental physics: Stronger interactions enable exploring the boundary between
classical and quantum behavior, providing insights into the fundamental principles of quantum mechanics and
potentially revealing new physics beyond our current understanding.

6. Advanced materials and nanotechnology: Stronger interactions between light and matter can lead to the develop-
ment of novel materials and technologies. This includes the creation of metamaterials with unprecedented optical
properties and the design of more efficient photonic devices.

7. Improved imaging and spectroscopy: Stronger interactions improve the resolution and sensitivity of imaging
techniques and spectroscopic measurements. This is valuable for various fields, including medical imaging, materials
characterization, and remote sensing.

8. Exploring quantum phase transitions: In condensed matter physics, stronger interactions can enable studying
quantum phase transitions, where a material’s properties change dramatically due to quantum effects, especially
at low temperatures.

9. Testing fundamental principles: Stronger interactions can lead to more accurate tests of fundamental principles,
such as the equivalence principle or Lorentz invariance, potentially revealing deviations from these principles that
could point to new physics.
3
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10. Faster dynamics: Increasing the interaction between light and matter enhances the speed of energy exchange
and dynamic processes in a system. Stronger interaction allows for faster energy transfer, coherent dynamics, and
efficient information exchange between the two components.

11. Increasing system nonlinearities: By increasing the interaction strength between light and matter, the energy levels
of the matter can be significantly perturbed, leading to enhanced nonlinear responses in the system.

12. Quantum simulation: Strong interactions can be used to simulate complex quantum systems that are difficult to
study directly. This has applications in understanding condensed matter physics, simulating chemical reactions, and
exploring fundamental physical phenomena.

.3. Prototype models for studying light–matter interactions

The most popular description of the interaction between a two-level quantum system (such as a real or artificial atom
r a qubit) and a single-mode quantized electromagnetic field (a cavity mode) without the rotating-wave approximation
RWA) — a simplification that disregards non-resonant components in light–matter interaction Hamiltonians — is the
uantum Rabi model [27]. This model simplifies to the standard Jaynes–Cummings (JC) model [28,29] under the RWA,
.e., when the counter-rotating terms in the Rabi interaction Hamiltonian are negligible. The multi-atom generalizations
f the quantum Rabi and JC models are known as the Dicke [30] and Tavis–Cummings [31] models, respectively. Several
nteraction-amplification methods exist with the goal of simulating the Rabi (or Dicke) model by using the JC (or
avis–Cummings) models under the RWA together with classical or quantum drives, as described in more detail below.
The quantum Rabi model serves as a prototype closely linked to various fundamental models and emerging phenomena.

hese encompass the Hopfield [32] and Jahn–Teller [33–37] representations, as well as renormalization-group models,
ncluding the spin-boson [38–40] and Kondo [39,41,42] descriptions. Thus, simulating the quantum Rabi model enables
imulating these or many other models.
The quantum Rabi model and its generalizations have led to a discovery of a diverse range of novel physical effects

like the creation of photons from the quantum vacuum [43–48]), but they have also brought about notable theoretical
omplexities. Among these challenges, a prominent one is the breakdown of the RWA. As a result, various aspects of
he standard quantum-optical theoretical framework require reconsideration to ensure the precise incorporation of all
nteraction terms inherent to this regime [49–52]. Note that this breakdown is not unique to quantized fields, and has also
ed to many interesting phenomena with classical fields, including, e.g., Bloch–Siegert shift [53–55], coherent destruction
f tunneling [56–58], and driven tunneling oscillations [59–62]. In order to correctly describe a quantum Rabi-like system
hen the counter-rotating terms cannot be neglected, the standard formalisms should be generalized to avoid violating
arious no-go theorems. For example, as discussed in, e.g., Refs. [63,64] and references therein:

1. The conventional master equation used in quantum optics does not accurately capture the way a quantum Rabi-like
system interacts with its surrounding environment [65–68].

2. The expected photon output rate is no longer directly linked to the number of photons within the cavity. This means
that usual normal-order correlation functions do not correctly describe the photon emission rate in the quantum
Rabi and Dicke models. Thus, it is not possible to observe, e.g., a continuous flow of photons from the ground state
of the Rabi model, which would apparently imply a perpetual-motion behavior [69–71]. A direct application of the
standard formalism could lead to such unphysical results.

3. Additionally, these observations seem to contradict the principle of gauge invariance. Thus, one should be very
careful in calculating observables to avoid gauge ambiguities [72–77].

.4. Ultrastrong and deep strong coupling regimes

The coupling between light and matter, particularly in the context of quantum systems, is often categorized into four
egimes defined by the strength (which can be weak, strong, ultrastrong, and deep strong) of the interaction between
he two subsystems [49–51]. These regimes have important implications for the behaviors and properties of the coupled
ight–matter systems.

The determination of whether the coupling is strong or weak hinges on the comparison between the value of a coupling
trength g and the losses (characterized by some damping rates, say κi) in the system. Thus, the weak-coupling and strong-
coupling regimes are g ≤ κi and g > κi, respectively. However, ultrastrong coupling (USC) and deep strong coupling
(DSC) should not be misunderstood as just stronger coupling, as their characterization does not involve the losses κi, but
rather juxtaposes the value of g against the frequency of light (say ωc of a cavity mode) and the transition frequency
of the matter (say ωa of an atom), the uncoupled constituents of the system. In these regimes, the coupling strength
becomes comparable to or even larger than the natural frequencies, which implies that the counter-rotating terms in
the quantum Rabi Hamiltonian cannot be neglected. Specifically, the USC and DSC regimes are defined by the conditions
η ≡ g/ωc,a > 0.1 and η > 1 [78], respectively. Note that this 10% threshold value for USC is a matter of convention.

The USC regime can lead to dramatic changes in the energy levels and dynamics of the coupled system. New
phenomena, such as avoided level crossings and nonperturbative effects, can arise, causing significant deviations from
the behaviors observed for the weak coupling and the strong coupling. This regime is of particular interest for exploring
fundamental quantum effects and potentially enabling new quantum technologies.
4
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In the USC and DSC regimes, the interaction between light and matter is so intense that it can even affect the vacuum
state of the electromagnetic field. More specifically: (i) In the strong coupling regime, the ground state of a coupled
light–matter system, e.g., a cavity mode and a two-level atom described in the JC model, corresponds to the uncoupled
system with the cavity in the vacuum state and the atom in the ground state. However, (ii) in the USC regime, the ground
state of the quantum Rabi model is a coherent superposition of all states with an even total number of virtual excitations
in the cavity mode and the atom, with the superposition amplitudes decreasing with the increasing number of virtual
photonic excitations. Moreover, (iii) the ground state of the quantum Rabi model in the DSC regime corresponds to virtual
photonic even and odd Schrödinger’s cat states entangled with the atomic cat states. These counterintuitive results lead
to the emergence of entirely new energy levels and states, which fundamentally alter the system behavior.

Numerous novel effects inherent in the USC and DSC regimes have been theoretically predicted and their various
applications have been proposed, including those summarized in Refs. [49,50]. In addition to quantum nonlinear optics,
quantum optomechanics, and atom optics, which are described in a greater detail in this review, those proposals
encompass also various other fields including: QIP [79–87], quantum metrology [88–91], quantum plasmonics [92–96],
quantum field theory [74,97–99], polariton-enhanced superconductivity [100,101], metamaterials [102–104], quantum
thermodynamics [105], and quantum chemistry (especially chemistry QED) [106–115].

Concerning applications of USC for quantum sensing and quantum metrology, we mention novel high-resolution
spectroscopy [88], which takes advantage of reduced linewidths and enhanced signal-to-noise ratios achievable in USC
setups. Criticality-enhanced metrology in the USC regime has been predicted for the quantum Rabi [89], Dicke [90], and
Hopfield [91] models. In particular, Ref. [91] predicted an improved precision of a thermometric quantum sensor operating
at a quantum phase transition. Recent experimental observation of a superradiant phase transition with emergent cat
states in a controlled quantum Rabi model [116] shows a feasible way of realizing criticality-enhanced metrology in
the USC regime. Mechanical states, which enable quantum-enhanced metrology, can be deterministically generated in
USC-regime optomechanics, as shown in Ref. [117]. The experimental approach developed in Ref. [116] can also lead to
realizing noise-biased cat qubits for fault-tolerant quantum computation in the USC regime.

It is worth noting that QIP often relies on the coherent exchange or transfer of excitations between light and
matter, and this pivotal aspect finds significant relevance in both the strong coupling and USC regimes. However,
USC proves notably more efficient at such transfer processes by using virtual photons. The realm of QIP benefits
extensively from the capabilities of USC systems. Proposals of applications encompass: QIP protocols with dramatically
improved coherence times and quantum-operation fidelity [79], ultrafast quantum gate operations [80,83,84], long-lasting
quantum memories [81,86], holonomic QIP protocols [82], quantum error-correction codes [85], and scalable quantum
processors [87]. Noteworthy advantages span beyond mere reduction in operation times and improved coherence times
and gate fidelity: for example, USC also empowers simpler protocols, where the inherent evolution of an USC system
supersedes the need for intricate sequences of quantum gates (see, e.g., Ref. [85]). Several of these proposed applications
utilize entangled ground states and the underlying parity symmetry.

As mentioned above, it is possible to observe entirely new phenomena in the USC or DSC regimes, e.g., the entangled
hybrid light–matter ground state (corresponding to a Schrödinger cat of other Schrödinger cat states) of the quantum Rabi
model in the DSC regime, which can be considered a new stable state of matter observed experimentally in Ref. [118]. The
most recent experiment of that research group demonstrated another interesting effect in the DSC regime — an extremely
large Lamb shift in a multimode QED system [119].

Various experimental demonstrations of the USC regime (for reviews, see Refs. [49,50]) have been reported in different
systems including: intersubband polaritons [120–128], superconducting quantum circuits [118,119,129–137], Landau
polaritons [102–104,138–142], organic molecules [94,143–151], optomechanical systems [93,152–154], magnons [155–
157], quantum dots [158,159], and hybrid superconducting-optomechanical systems [160]. In several experiments, even
the DSC regime has been reached [104,118,119,136,161]. To date, the highest normalized coupling constant (close to 2)
was experimentally achieved in Ref. [161] for plasmon polaritons in three-dimensional nanoparticle metallic crystals.

Despite this impressive experimental progress, it is important to note that probing and controlling the dynamics of
such USC systems over a wide range of parameters remains difficult. In general, while stronger quantum interactions offer
numerous advantages, they also bring challenges, such as increased complexity and technical difficulties in controlling
and manipulating quantum systems. Striking a balance between harnessing the benefits and overcoming the challenges
is a key aspect of research and technological development in this field.

The USC regime presents the potential for inducing and observing various classes of higher-order processes and
nonlinear optical phenomena involving only two-level systems and virtual photons [85,162–165], multiphoton quantum
Rabi oscillations [166], nonclassical state preparation [167], parity symmetry breaking and Higgs-like mechanism [168],
bunched-light emission from individual qubits [169], conversion of an atomic superposition state into an entangled
photonic state [170], as well as simultaneous excitation by a single photon of two or more qubits in a single-mode
resonator [83,171–174] or in different resonators in an array of two or three weakly coupled resonators [175]. Unfor-
tunately, most of these and other interesting effects predicted for the quantum Rabi model in the USC regime have not
been experimentally demonstrated yet, because of the technological challenges mentioned above. We believe that it will

be much easier to induce and observe them by quantum simulations.

5
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.5. The importance of quantum simulations

To overcome significant experimental problems of reaching and coherently controlling the USC and DSC regimes,
arious quantum simulation methods have been developed [176–180]. These methods use an easy-to-control quantum
ystem to simulate the properties of a more complex quantum model of interest. More specifically, quantum simulations
efer to using controllable quantum systems, such as quantum computers or specialized quantum simulators, to model and
nderstand the behavior of complex quantum systems that are difficult to study using classical computers or analytical
ethods. These simulations aim to simulate and mimic the behavior of quantum systems in order to gain insights into

heir properties, dynamics, and interactions.
The need for quantum simulations arises from various reasons. To mention only some of them:

1. Complexity of quantum systems, which are often intractable by classical simulations: As the number of quantum
particles or quantum excitations increases, simulating their interactions using classical computers becomes expo-
nentially difficult. Quantum simulations have the potential to outperform such classical computations by utilizing
quantum parallelism, which allows quantum systems to explore multiple possible states simultaneously.

2. New insights and discoveries: Quantum simulations can provide insights into quantum phenomena that are
otherwise difficult to observe or understand. They enable the exploration of novel materials, the study of exotic
quantum states, and the investigation of fundamental physical principles that govern quantum systems.

3. Understanding quantum dynamics: Quantum simulations enable to study the time evolution of quantum systems,
shedding light on processes like chemical reactions, energy transfer, and quantum phase transitions.

4. Verification of quantum algorithms: Quantum computers are still in their early stages of development, and verifying
the correctness of quantum algorithms is crucial. Quantum simulations can be used to test and verify these
algorithms on small scales before they are scaled up to larger and more complex problems.

5. Quantum optimization: Quantum simulations can be used to tackle quantum and classical optimization problems
that arise in various fields including: material science and engineering, energy and resource optimization, crypt-
analysis and security, optimization in telecommunications, climate modeling and environmental management, or
aerospace and aviation, as well as those fields which are not necessarily directly related to physics, like machine
learning and artificial intelligence, drug discovery and development, traffic and transportation optimization, logistics
and supply chain management, or even finance and portfolio optimization, among many others. Quantum annealing
and other quantum optimization techniques hold the promise of solving these problems more efficiently than
classical methods.

In summary, quantum simulations are essential tools for understanding and harnessing the behavior of quantum
ystems, providing means to explore complex phenomena, discover new materials and properties, and develop and verify
uantum algorithms. As quantum technologies continue to advance, quantum simulations are expected to play a pivotal
ole in various scientific and technological advancements.

In this review, we focus on increasing light–matter interactions via quantum simulations, which covers (at least
artially) all the above-mentioned applications. As such, we mainly cover methods for simulating the quantum Rabi model
n the USC regime by applying drives to the JC model operating in the strong coupling regime. But it is worth noting that
he standard and generalized quantum Rabi models enable further simulating and testing large classes of phenomena
r even other theories. These include simulating: deterministic quantum nonlinear optics without real photons, but only
ith virtual photons and single atoms [85,162,163], supersymmetry (SUSY) [181], unconventional (polariton-enhanced)
uperconductivity [100], the Higgs mechanism [168], and other effects and theories (for a review, see Ref. [49]).
Finally, we note that standard formalisms of quantum optics can indeed be used to describe light–matter systems in

he simulated USC or DSC regime, which can be realized by, e.g., applying quantum or classical drives to a JC-like system.
his is another important theoretical advantage of studying the simulated USC regime compared to the true one.

.6. Examples of methods for amplifying light–matter interactions

Among various methods of the light–matter-coupling amplification in JC-type systems, as reviewed in Sections 2 and
, we pay special attention to two approaches, which are based on applying classical and quantum drives.

.6.1. Light–matter interactions amplified by classical drives
As demonstrated theoretically in Ref. [182], the quantum Rabi model in the USC regime can be fully simulated by

pplying two-tone classical drives to the JC model. That method has been demonstrated experimentally in Ref. [183] by
riving a trapped ion by a pair of counter-propagating Raman laser beams. A similar quantum-simulation method has been
xperimentally implemented with a superconducting qubit embedded in a cavity-QED setup (a microstrip resonator) and
riven by two microwave tones [184].
The simulation of the quantum Rabi model by applying strong classical drives (instead of quantum ones) to a JC system

nables enhanced-fidelity ultrafast geometric quantum computation [185]. Although a single classical drive applied to a JC
ystem cannot simulate a full quantum Rabi model, it is enough to induce numerous effects, which are usually attributed
o the USC regime [83,186]. These include the examples described in detail in Appendix D, i.e., frequency conversion,
imultaneous emission of two photons by a single atom, and an analogous effect of the simultaneous excitation of two

toms by a single photon.

6
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.6.2. Light–matter interactions amplified by quantum drives
Another popular method of amplifying light–matter interactions is based on applying parametric amplification (often

eferred to as degenerate and non-degenerate parametric amplification, or parametric down-conversion), which can
enerate squeezed states of light (or other bosonic fields) as an output. When a weak quantum signal interacts with
strong pump beam in a nonlinear medium, the interaction can lead to squeezing of one of the quadratures of the signal
eam, which means that the uncertainty in that quadrature is reduced below the vacuum noise level.
Parametric amplification and quadrature squeezing have a significant role in various fields, including quantum

ptics [1–3,187,188], atom optics [15], and even nonrelativistic and relativistic quantum field theories [189]. Parametric
mplification offers ways to manipulate the quantum properties of light for various purposes, including improving signal-
o-noise ratios, enhancing measurement sensitivity, and enabling advanced quantum technologies. We note that the
ioneering work of Kennard [190] on nonclassical states (which are now referred to as squeezed states) was published
lmost a century ago, while the first applications of squeezing in quantum metrology, i.e., for gravitational-wave detectors
nd interferometers were developed over 40 years ago in Refs. [191–194]. Those works can be considered as the beginning
f quantum metrology. To date, the most visible applications of quadrature squeezing are for (i) quantum metrology
ith squeezed vacuum in the Laser Interferometer Gravitational-Wave Observatory (LIGO) [195–197] and the Advanced
irgo Detector [198], and (ii) quantum-optical information processing, e.g., in experimental demonstrations of quantum
dvantage via boson sampling with squeezed light [199–201].
Various applications of the USC regime simulated by applying parametric amplification as a quantum drive have been

roposed. For example, giant entangled cat states can be generated in a time-dependent quantum Rabi model simulated by
pplying parametric amplification to a JC system [202]. Parametric amplification can further enable creating and stabilizing
ong-lived macroscopic quantum superposition states, not only in a single atom, but also in atomic ensembles [203], and
an even enable ensemble qubits for QIP [204]. It can also be used for beating the so-called 3-dB limit for intracavity
queezing via quantum reservoir engineering [205]. Other examples can be found in the main part of the review.
Squeezing-enhanced interactions between a boson field and matter are not limited to squeezed optical photons.

ctually, the first experimental demonstrations of such amplification schemes were realized with squeezed phonons in
oulder [206,207] (see also Ref. [208]) and squeezed microwave photons in Paris [209]. More specifically, the Boulder
roup reported in Ref. [206] the 3.25-fold amplification of a phonon-mediated interaction between two trapped-ion

25Mg+ hyperfine qubits by parametric modulation of the trapping potential. Another Boulder experiment [207] showed
the interaction between the motional and spin states of a single trapped 25Mg+ ion amplified by phonon squeezing.
Phonons in those experimental implementations correspond to a normal mode of trapped-ion motion. The experiments
reported in Refs. [207,208] are based on sequential and multiple application of proper squeezing and displacement
operations in a close analogy to the theoretical proposal for amplifying Kerr interactions [210]. Moreover, the Paris-
group experiment [209] demonstrated two-fold amplified interactions via microwave-photon squeezing (at 5.5 dB) in
a superconducting circuit. Specifically, the amplified interaction was observed between a coplanar waveguide resonator
capacitively coupled to a transmon qubit. Moreover, a recent theoretical proposal applies the same idea in magnonics,
i.e., for amplifying phonon-mediated magnon–spin interactions via virtually-excited squeezed phonons [211,212].

Other quantum simulation methods of the USC regime include cavity-assisted Raman transitions, digital simulations,
and variational methods among others; they are reviewed in Section 3.

1.7. Outline of the review

In summary, this review provides a comprehensive overview of various mechanisms for the amplification and
simulation of light–matter interactions, especially in cavity and circuit QED, and cavity optomechanics.

The review is focused on describing USC between photons or phonons and qubits, which are realized by real atoms (like
trapped ions) or artificial atoms (e.g., superconducting quantum circuits). Nevertheless, many methods reviewed in this
paper can be readily generalized to achieve or simulate the USC between other types of quantum excitations, e.g., between
phonons and magnons (see, e.g., Refs. [211,212]), photons and magnons [213], or photons and plasmons [161]. Thus, the
reviewed methods offer new opportunities for quantum technologies also in other fields, like microwave superconducting
spintronics or microwave plasmonics.

We discuss different methods which enable amplifying the interactions between light and matter from the strong
to ultrastrong, or even deep strong, coupling regimes. These methods include resonant, parametric, and collective am-
plification, among others. The amplified photon-mechanical and photon–atom interactions are then explored in detail,
with an overview of various amplification mechanisms. Next, simulation methods are discussed, including cavity-assisted
Raman transitions, coupled waveguides, and ultracold atoms in optical lattices. Theoretical proposals and experimental
implementations are presented, including the application of single or two classical drives in the JC model to simulate the
quantum Rabi model or Rabi-like models, and then to nonlinear processes in the USC regime. The review also covers digital
simulation methods and variational quantum simulations (VQSs). Finally, we discuss simulation techniques involving
coupled waveguides, ultracold atoms in an optical lattice, atomic quantum dots, and a superfluid Bose–Einstein condensate
(BEC), as well as the USC between two resonators through three-wave mixing.

For pedagogical reasons, we also present, in the main text and in appendices, detailed derivations of some key results
of the applied methods. In particular, we show how the noise induced by squeezing the cavity with a squeezed vacuum
7
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eservoir can be effectively eliminated, and how effective Hamiltonians can be intuitively derived within a second-order
erturbation theory. We give a few illustrative and detailed examples showing how the effective Hamiltonians, derived
or JC-type systems driven by a single classical drive in the strong coupling regime, can enable the simulation of some
onlinear effects characteristic for the USC regime.

. Amplification of quantum light–matter interactions

Below, we first review, in Section 2.1, amplification methods for optomechanical interactions in cavity optomechanics,
ncluding, e.g., amplification via linearization, resonant amplification, parametric amplification, and so on. Then, in
ection 2.2, we consider amplification methods of photon–atom interactions in cavity and circuit quantum electrody-
amics, including, e.g., parametric amplification, collective amplification, etc. Furthermore, in Section 2.4, we introduce
ecent experimental demonstrations of using parametric squeezing to amplify light–matter interactions in trapped-ion
nd superconducting-circuit systems. Finally, in Section 2.3, we introduce the amplification of Kerr-type light–matter
nteractions with squeezing.

.1. Amplified photon-mechanical interactions in cavity optomechanics

Cavity optomechanics explores the interaction between electromagnetic radiation and mechanical motion [214,215].
his optomechanical interaction fundamentally originates from the momentum transfer of cavity photons to mechanical
bjects, referred to as radiation-pressure forces, and can be described by the Hamiltonian (hereafter we set h̄ = 1) [216]

HOMI = −Ga†ax, (1)

here G is the cavity-frequency dispersive shift per displacement, a is the annihilation operator for the cavity mode, and
is the mechanical displacement, e.g., of the cavity mirror. The radiation-pressure force upon the mechanical object is
ccordingly given by F = Ga†a. The mechanical motion can be modeled by a single-mode harmonic oscillator with a
amiltonian

Hm = ωmb†b, (2)

where ωm is the mechanical frequency and b is the phonon annihilation operator. The displacement x is accordingly
expressed as

x = xzpf
(
b + b†), (3)

where

xzpf =
1

√
2meffωm

(4)

is the zero-point fluctuation of the mechanical resonator, with meff being the effective mass of the mechanical resonator.
As a result, the optomechanical interaction HOMI becomes

HOMI = −g0a†a
(
b + b†), (5)

where g0 = Gxzpf is the single-photon optomechanical-coupling strength. A necessary condition for Eq. (5) to be valid
is that g0 is much smaller than 2ωcav ± ωm, such that the mechanically induced creation and annihilation of photon
pairs can be neglected. In most experimental situations, this condition is well satisfied. Indeed, g0 is extremely weak
nd, as a result, the ratio g0/ωm is very small. For these reasons, it is an experimental challenge to observe effects of
he detuned optomechanical interaction HOMI. Therefore, a large number of methods have been proposed to amplify the
ptomechanical interaction. Below, we review such methods.

.1.1. Amplification via linearization
When the cavity mode is driven by a strong coherent drive, the optomechanical interaction HOMI can be linearized

approximately and, as a result, the coupling strength g0 is enhanced with the average number of intracavity photons. Let
us assume that the Hamiltonian of the coherent driving is

Hdr = E exp(iωdt)a†
+ H.c., (6)

with complex amplitude E and frequency ωd. The quantum Langevin equations of motion for the operators a and b in a
frame rotating at the cavity frequency ωcav are then given by

ȧ = − i∆a + ig0a
(
b + b†)

− iE −
κ

2
a −

√
κain(t), (7)

ḃ = − iωmb + ig0a†a −
γm

2
b −

√
γmbin(t), (8)
8
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here ∆ = ωcav − ωd is the detuning of the cavity resonance ωcav from the strong driving field, κ is the cavity decay
ate, and γm is the mechanical decay rate. Moreover, ain(t) and bin(t) are the input-noise annihilation operators for the
cavity field and the mechanical motion, respectively. Note that here, to derive the quantum Langevin equations of motion
in Eqs. (7) and (8), the Weisskopf–Wigner approximation has been made [1], such that the decay rates κ and γm are
constant.

Because of the presence of a strong drive E , one can divide the cavity field into the sum of an average amplitude α and
a small fluctuation δa, such that a = α+δa. Likewise, the mechanical motion is reexpressed as b = β +δb. Indeed, δa and
δb can also be understood as the displaced versions of the operators a and b, respectively. Substituting these displaced
operators into the equations of motion in Eqs. (7) and (8), and then separating the classical and quantum parts, yields

α̇ = − i∆′α − iE −
κ

2
α, (9)

β̇ = − iωmβ + ig0|α|
2
−

γm

2
β, (10)

δȧ = i∆′δa + ig0(α + δa)
(
δb + δb†)

−
κ

2
δa −

√
κain(t), (11)

δḃ = − iωmδb + ig0
(
a†a + αa†

+ α∗a
)
−

γm

2
δb −

√
γmbin(t), (12)

here ∆′
= ∆ − g0(β + β∗) is a new detuning induced by the optomechanical interaction. By setting α̇ = β̇ = 0, the

verage amplitudes α and β are found to be

α = −
iE

i∆′ + κ/2
, (13)

β =
ig0|α|

2

iωm + γm/2
≈

g0|α|
2

ωm
. (14)

Neglecting the weak nonlinear coupling terms in Eqs. (11) and (12), the equations of motion for the displaced operators
δa and δb are given by

δȧ = − i∆′δa + iαg0
(
δb + δb†)

−
κ

2
δa −

√
κain, (15)

δḃ = − iωmδb + ig0
(
αδa†

+ α∗δa
)
−

γm

2
δb −

√
γmbin, (16)

oth of which correspond to an effective optomechanical interaction

HL
OMI = −gc

[
exp(−iθ)δa + exp(iθ)δa†](δb + δb†), (17)

here

gc = g0
√
n̄c, (18)

is referred to as the linearized optomechanical interaction strength, and θ is the phase of the amplitude α. Here, n̄c = |α|
2

s the average number of intracavity photons. Thus gc is enhanced by a factor of
√
n̄c , compared to the bare single-photon

oupling g0. It has been experimentally shown that such an enhanced coupling can even reach the regime of the USC [217].
In the case of ∆′

≈ ωm, i.e., in the red-detuned regime, the linearized Hamiltonian HL
OMI can, under the RWA, be reduced

o

HL
OMI ≈ H− = −gc

[
exp(−iθ)δaδb†

+ exp(iθ)δa†δb
]
. (19)

n the displaced frame, H− acts as a beam-splitter-like interaction and results in the exchange of a single excitation
etween the cavity and the mechanical resonator. In the original frame, this exchange corresponds to an anti-Stokes
cattering process where a single photon of the driving field is scattered into the cavity resonance, while simultaneously
bsorbing a mechanical phonon. The Hamiltonian H− has already been widely used for, e.g., sideband cooling of
echanical motion [218–222] and coherent state transfer between the cavity and mechanical modes [223–225].
In the case of ∆′

≈ −ωm, i.e., in the blue-detuned regime, the linearized Hamiltonian HL
OMI, under the RWA, reduces

o

HL
OMI ≈ H+ = −gc

[
exp(−iθ)δaδb + exp(iθ)δa†δb†]. (20)

n the displaced frame, H+ acts as a two-mode-squeezing-like interaction and results in a simultaneous excitation of a cav-
ty photon and a mechanical phonon. In the original frame, this simultaneous excitation corresponds to a Stokes scattering
rocess, where a single photon of the driving field is scattered into the cavity resonance, while simultaneously exciting a
echanical phonon. The Hamiltonian H+ has already been widely used for, e.g., quantum-limited amplification [226,227]
nd generating entanglement between the cavity and mechanical modes [228–230].
9
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Fig. 1. (a) Schematics of the double-cavity approach to enhance the single-photon optomechanical interaction. The two cavities, both with frequency
cav , are coupled through a beam-splitter interaction of strength J , which in turn leads to two normal modes with resonance frequencies ω± = ωcav±J .

The rightmost mirror is oscillating with frequency ωm . (b) Resonant two-mode optomechanical interaction described by HDC
OMI in Eq. (24). Under the

resonance condition ωm ≈ 2J , a photon can be scattered, through the optomechanical interaction g0 , from the mode a− (a+) into the mode a+ (a−)
by the absorption (emission) of a mechanical phonon in the mode b.
Source: Panels (a) and (b) are reproduced with permission from Ref. [233], P. Kómár et al. Phys. Rev. A 87, 013839 (2013).

2.1.2. Resonant amplification
In Section 2.1.1, we introduced a method of amplifying the optomechanical interaction with a strong coherent driving.

This is the most commonly used method in cavity optomechanics. However, such a method neglects the intrinsic
nonlinearity of the optomechanical interaction HOMI in Eq. (5). To make that nonlinearity significant, the single-photon
strong coupling regime is required. In this regime, the single-photon coupling strength g0 exceeds the cavity loss rate
κ , i.e., g0 ≳ κ . However, the optomechanical interaction HOMI in fact describes an off-resonant interaction, and thus its
strength strongly depends on the ratio g0/ωm. Unfortunately, that ratio is usually very small, typically of the order of 10−5

to 10−2. This strongly suppresses the nonlinearity of the optomechanical interaction, even in the case of g0 ≳ κ . For this
reason, many proposals to amplify the single-photon nonlinearity in cavity optomechanics focused on how to make the
nonlinear interaction resonant or near-resonant.

A possible approach is to linearly couple the optomechanical cavity to another empty cavity [231–233], as shown in
Fig. 1. Such a double-cavity setup can be realized with, e.g., a membrane-in-the-middle optomechanical system [234] or
two coupled whispering-gallery-mode microresonators [235–237].

Let us assume that the intercavity coupling is given by

HIC = −J
(
ac†

+ a†c
)
, (21)

where c is the annihilation operator for the empty cavity and J is the coupling strength. Note that the presence of the
negative sign does not affect the results of interest. In the case when these two cavities have the same frequency ωcav,
the coupling HIC leads to the formation of the normal modes (often referred to as supermodes)

a+ =
1

√
2
(a + c) and a− =

1
√
2
(a − c), (22)

ith resonance frequencies ω± = ωcav ± J , respectively. When expressed in terms of the normal modes, the optomechan-
ical interaction HOMI in Eq. (5) becomes

HOMI = −
g0
2

(
a†

+a+ + a†
−a−

)(
b + b†)

−
g0
2

(
a+a

†
− + a†

+a−

)(
b + b†). (23)

y tuning the splitting of the two normal modes to be equal to the mechanical frequency, i.e., ωm ≈ 2J , one can apply
he RWA, yielding

HOMI ≈ HDC
OMI =

g0
2

(
a+a

†
−b + H.c.

)
, (24)

here the superscript ‘‘DC’’ refers to the double-cavity optomechanical system and a phase factor of −1 has been absorbed
nto g0. The Hamiltonian HDC

OMI describes the resonant exchange of photons between the two normal modes by the
absorption or emission of a mechanical phonon, as depicted in Fig. 1(b). Such an exchange process leads to the formation
of dressed states, e.g.,

|1±⟩ =
1

√
2
(|100⟩ ± |011⟩), (25)

|2±⟩ =
1

√

(
|200⟩ ±

√
3 |111⟩ +

√
2 |022⟩

)
, (26)
6
10
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Fig. 2. (a) Maximum mechanical displacement, 2g/|δ|, in a double-cavity optomechanical system with a periodically modulated intercavity coupling.
Inset: the second-order Bessel function of the first kind, J2(2ζ ), plotted as a function of the modulation amplitude ζ . (b) Modified cavity density
of states by the residual optomechanical interaction [described by Hδ in Eq. (31)] for the ‘‘+ ’’ polariton mode. The inset shows the asymmetrical
density of states for the ‘‘−’’ (left) and ‘‘+ ’’ (right) polariton modes. The solid curves are analytical results; the dashed curve is obtained from a
numerical simulation of the master equation.
Source: Panels (a) and (b) are adapted with permission, respectively, from Ref. [239], J.-Q. Liao et al. Phys. Rev. Lett. 116, 163602 (2016) and Ref. [243],
M.-A. Lemonde et al. Phys. Rev. Lett. 111, 053602 (2013).

|20⟩ =
1

√
3

(√
2 |200⟩ − |022⟩

)
(27)

or the three lowest energy levels, with the unchanged ground state, i.e., |0⟩ = |000⟩. Here, |n+n−nm⟩ refers to a state with
± photons in the normal modes a±, and nm phonons in the mechanical mode b. The resonant nonlinearity in Eq. (24)
an enable the double-cavity optomechanical system to enter the single-photon strong coupling regime more easily than
he usual single-cavity optomechanical system.

As demonstrated in Refs. [238,239], if the coupling strength J in Eq. (21) is assumed to be modulated sinusoidally so
hat

J ↦→ J(t) = ζω0 cos(ω0t), (28)

hen the optomechanical interaction HOMI becomes

HOMI ≈ HM
OMI = gM

(
c†c − a†a

)
[b exp(−iδt) + H.c.], (29)

ith

gM =
1
2
g0J2n0(2ζ ) (30)

being an effective optomechanical interaction. Here, ζ is the dimensionless modulation amplitude, ω0 is the modulation
frequency, δ = ωm − 2n0ω0 is the modulation-induced detuning, and Jn(z) is the nth-order Bessel function of the first
ind. The number n0 is a special integer such that the coupling with a detuning δ is nearly resonant. The superscript ‘‘M’’
efers to the modulation of the intercavity coupling.

The Hamiltonian HM
OMI essentially describes an effective force ∝ ⟨c†c − a†a⟩ acting on a mechanical resonator with

n effective frequency δ. Compared to the natural optomechanical interaction HOMI, the near-resonant coupling HM
OMI

an induce a single-photon mechanical displacement proportional to g0/|δ| rather than to g0/ωm. This indicates that, as
hown in Fig. 2(a), the optomechanical nonlinearity is strongly amplified. The physical reason for this amplification is that
he single-photon hopping between the two cavities at the proper times accumulates the displacement effect when the
riving force is in phase with the mechanical oscillation. A similar enhancement of the nonlinearity can also be obtained
y modulating the cavity frequencies [240]. The resonant amplification based on modulation has been studied for the
eneration of mechanical Schrödinger cat states via flipping a qubit repeatedly [241], and even for the detection of the
irtual radiation pressure arising from atom–field USC [242].
To obtain the linearized Hamiltonian HL

OMI in Eq. (17), the residual optomechanical interaction

Hδ = −g0δa†δa
(
δb + δb†) (31)

s neglected. This coupling is of the same form as the standard optomechanical interaction and, as suggested in Refs. [243–
45], can be amplified when the coupling Hδ is treated as a perturbation to the linearized Hamiltonian HL

OMI in Eq. (17).
n the absence of the coupling Hδ , the Hamiltonian HL

OMI can be diagonalized, yielding

HL
= E p† p + E p† p , (32)
OMI + + + − − −

11
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here the operators p± represent two normal modes with eigenenergies

E± =
1

√
2

(
∆2

+ ω2
m ±

√(
∆2 − ω2

m

)2
− 16∆g2

c ωm

)1/2

, (33)

espectively. These two normal modes hybridize the photonic and mechanical degrees of freedom and can thus be
onsidered as polaritons. Expressed in terms of the polariton modes, the Hamiltonian Hδ is transformed to

Hδ ≈ H̃δ = g̃0
(
p†

+p
2
−

+ H.c.
)
, (34)

here g̃0 is an effective coupling strength proportional to the single-photon coupling g0. Here, we have assumed that
+ = 2E−, such that the coupling H̃δ becomes resonant and, thus, dominant. Other off-resonant couplings have been
eglected under the RWA. The Hamiltonian H̃δ describes a process where a ‘‘+ ’’ polariton is created and simultaneously
wo ‘‘−’’ polaritons are destroyed, and vice versa. This process can strongly modify the cavity density of states even with
weak single-photon coupling g0, as depicted in Fig. 2(b). It could be further exploited for observing optomechanically

nduced transparency and also measuring the average number of mechanical phonons.

.1.3. Parametric amplification
In this section, we introduce another method, which uses parametric amplification to enhance the nonlinear optome-

hanical interaction [210,246]. Before discussing this method, let us first recall degenerate parametric amplification, which
s a very common nonlinear process in quantum optics.

Parametric amplification essentially describes a nonlinear interaction between three distinct light fields, usually
eferred to as the pump, signal, and idler, respectively. This nonlinear interaction down-converts a pump photon into
correlated photon pair (i.e., a signal photon and an idler photon) under energy and momentum conservation. Here, we

ocus our attention mainly on degenerate parametric amplification (DPA), in which the signal and idler photons in each
air are identical, i.e., have the same frequency and the same polarization. There are similar results for non-degenerate
arametric amplification. The Hamiltonian describing DPA inside a cavity is

HDPA = ∆2pha†a +
1
2
Ω2ph

[
exp

(
−iθ2ph

)
a2 + H.c.

]
, (35)

here Ω2ph and θ2ph are the amplitude and phase of the parametric (or two-photon) driving, and ∆2ph = ωcav − ω2ph/2
is the detuning between the cavity frequency ωcav and half the parametric driving frequency ω2ph.

The dynamics described by HDPA squeezes the cavity field. To proceed, we now introduce the squeezing operator
defined by

S(ξ) = exp
[
1
2

(
ξ ∗a2 − ξa†2)], (36)

here ξ = r exp
(
iθ2ph

)
is an arbitrary complex number. Here, r is the squeezing parameter, which determines the degree

of squeezing. The squeezing operator acting on the cavity mode a causes a squeezed cavity mode asq, which is given by
the Bogoliubov transformation

asq ≡ S(ξ)aS†(ξ) = a cosh(r) + a† exp
(
iθ2ph

)
sinh(r). (37)

It is easily found, after a straightforward calculation, that

a = asq cosh(r) − a†
sq exp

(
iθ2ph

)
sinh(r). (38)

By expressing HDPA in terms of the as mode and then choosing a proper squeezing parameter, i.e.,

r =
1
4
ln

∆2ph + Ω2ph

∆2ph − Ω2ph
, (39)

he Hamiltonian HDPA becomes diagonal,

Hsq
DPA = ωsqa†

sqasq, (40)

here ωsq =

√
∆2

2ph − Ω2
2ph is the frequency of the squeezed cavity mode. Here, we have assumed that ∆2ph > Ω2ph,

uch that the system is stable. Note that the ground state of the Hamiltonian Hsq is the vacuum state in the squeezed
frame, which corresponds to the squeezed vacuum in the lab frame.

The nonlinear transformation in Eq. (38) shows a Bogoliubov coefficient of cosh(r), which increases exponentially with
the squeezing parameter r. This indicates that in the squeezed frame, the coupling of the cavity mode to other degrees of
freedom can be enhanced exponentially. Such a mechanism has been used for enhancing the optomechanical interaction
in cavity-optomechanical systems [246]. A schematic setup is illustrated in Fig. 3(a). Crucially, a nonlinear χ (2) crystal is
placed inside a cavity, such that the cavity mode is subject to a detuned two-photon driving. As mentioned above, the
12
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Fig. 3. (a) Schematics of using parametric amplification to enhance the optomechanical interaction. A cavity, with frequency ωcav , contains a χ (2)

onlinear crystal, which is driven by a two-photon driving of frequency ω2ph , amplitude Ω2ph , and phase θ2ph . The right mirror of the cavity is
scillating with frequency ωm and position x(t). (b) Enhanced optomechanical interaction gsq0 (left axis) and resonance frequency of the squeezed
avity mode ωsq (right axis) as a function of the detuning ∆2ph for Ω2ph = 4000ωm . The inset shows the ratios gsq0/ωm and g ′

sq0/ωsq .
ource: Panels (a) and (b) are reproduced with permission from Ref. [246], X.-Y. Lü et al. Phys. Rev. Lett. 114, 093602 (2015).

avity mode a is squeezed by the two-photon driving and, as a result, becomes the squeezed mode asq. Expressed in terms
f the mode asq, the optomechanical interaction Hamiltonian in Eq. (5) is transformed to

HOMI = −gom
sq a†

sqasq
(
b + b†)

+
1
2
g2ph
sq

(
a2sq + a†2

sq

)(
b + b†), (41)

here

gom
sq = g0 cosh(2r) (42)

escribes the strength of the optomechanical interaction between the squeezed cavity field and the mechanical resonator,
nd

g2ph
sq = g0 sinh(2r) (43)

s the strength of a two-photon process in the squeezed frame.
We now consider the case of ωsq ≫

{
ωm, g2ph

sq

}
, as shown in Fig. 3(b). Here, the RWA is allowed, such that the second

erm in Eq. (41) is negligible, yielding a standard optomechanical interaction Hamiltonian in the squeezed frame,

HOMI ≈ Hsq
OMI = −gom

sq a†
sqasq

(
b + b†). (44)

hen r ≥ 1, the coupling strength, gom
sq , can be approximated by

gom
sq ≈ g0 exp(2r) = g0

√
∆2ph + Ω2ph

∆2ph − Ω2ph
. (45)

This implies that, compared to the single-photon coupling g0 in the original laboratory frame, an exponential enhancement
f gom

sq can be achieved with increasing the squeezing parameter r , i.e., when ∆2ph approaches Ω2ph from the right,
s seen in Fig. 3(b). Under a similar mechanism, the quadratic optomechanical interaction can also be exponentially
nhanced [247,248].
The parametric driving, while squeezing the cavity mode, also introduces thermal noise and two-photon-correlation

oise into the cavity. These two types of noise are generally considered detrimental in strong-squeezing processes.
owever, by injecting a squeezed vacuum field into the cavity [see Fig. 3(a)], one can eliminate both types of noise (see
ppendix A), and as a result the dynamics of the optomechanical system can be described by the master equation

ρ̇ = −i
[
Hsq

OM, ρ
]
+ κL

(
asq

)
ρ + γm(nth + 1)L(b)ρ + γmnthL

(
b†)ρ, (46)

here

Hsq
OM = ωsqa†

sqasq + ωmb†b + Hsq
OMI, (47)

hile γm is the mechanical decay rate and nth is the thermal phonon number of the mechanical mode. It is seen
hat by increasing the squeezing parameter r , the optomechanical system can be driven into the single-photon strong
oupling regime (i.e., gom

sq > κ) even from the single-photon WC regime (g0 < κ). As a direct result, such a parametric
nhancement of the optomechanical interaction improves the conversion [249], entanglement [250], and even cross-Kerr
onlinearity [251] between the optical and microwave fields. The two-mode squeezing of the cavity field is also capable
13
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f exponentially enhancing the optomechanical interaction, but at the same time a two-mode, rather than single-mode,
queezed vacuum field is needed to suppress the noise induced by this two-mode squeezing [252].
In the case of ωm ≈ 2ωsq, the Hamiltonian in Eq. (41) reduces to

HOMI ≈ Hsq
− =

1
2
g2ph
sq

(
a2sqb

†
+ H.c.

)
, (48)

hich can be used to simulate the dynamical Casimir effect [46,253]. In fact, the dynamics described by Hsq
− can be

nterpreted in the laboratory frame as mechanically induced two-photon hyper-Raman scattering, i.e., an anti-Stokes
cattering of a driving photon pair, rather than a single photon, into a higher-energy mode by absorbing a phonon.
Furthermore, by squeezing the cavity field, one can also eliminate the quantum backaction heating even in the

nresolved sideband regime, such that ground-state cooling [254] and mechanical squeezing [255] can be implemented.
nstead, squeezing the mechanical mode provides another way to enhance the optomechanical interaction. For examples,
long this line, photon blockade [256,257], mechanical squeezing [258], superradiant quantum phase transition [259], and
nhancing quadratic optomechanical interaction [247] have been studied.
Recently, Ref. [260] showed that by combining parametric amplification processes and dynamical-decoupling tech-

iques, one can amplify the desired interaction, and at the same time suppress an undesired interaction, so as to speed
p the dynamical evolution of the system.

.1.4. Other amplification mechanisms
arity-time symmetry. In contrast to conventional Hermitian Hamiltonians, non-Hermitian parity-time (PT ) symmetric
amiltonians [261–263] exhibit a phase transition from the unbroken to broken PT phases at an exceptional point,
here the eigenvalues are changed from real to complex numbers. By coupling two different optical or microwave
avities, one with passive loss and the other with active gain, PT -symmetric systems can be created [264–266]. In
uch double-cavity systems, many counterintuitive aspects occur, particularly in the vicinity of exceptional points, which
an be explored to implement a strong nonlinearity for cavity optomechanics. By manipulating the gain-to-loss ratio,
nonlinear regime for the intracavity-photon intensity can emerge, such that the optical pressure and the mechanical
ain are enhanced simultaneously, resulting in an ultralow-threshold phonon laser [236,237]. A PT -symmetry-induced
nhancement mechanism has also been used for demonstrating optomechanical chaos [267], optomechanically-induced
ransparency [268], and high-precision metrology [269].

ollective effects. By coupling a cavity field to an array of mechanical resonators, a collectively enhanced optomechanical
nteraction can be obtained [270,271]. It has been predicted in Refs. [272,273] that the single-photon coupling strength of
he cavity mode to a collective mechanical mode can scale as N3/2, where N is the number of mechanical resonators.
Compared to the case of a single mechanical resonator, the resulting collective coupling can be made up to several
orders of magnitude stronger, which, as a direct consequence, enables exploiting the long-range interactions between
distant mechanical resonators. Optimal configurations for these optomechanical arrays are given in Ref. [274], such that
the optomechanical interaction strength scales exponentially with N before the saturation. Furthermore, the collective
enhancement of the single-photon optomechanical interaction has also been shown in the cases where the collective
motion of ensembles of ultracold atoms, serving as a mechanical resonator, is coupled to the cavity field [275–278].

Nonlinear Josephson junctions. For microwave-regime superconducting cavities, the mechanical motion, which modulates
the capacitance of a cavity, can couple to the cavity mode via the radiation-pressure interaction [220,226,279]. When a
Cooper-pair transistor is embedded inside a superconducting cavity [280], the single-photon optomechanical interaction
strength can be enhanced by several orders of magnitude. Such a giant enhancement arises due to the presence of the
nonlinearity of the Josephson junctions, and has been experimentally demonstrated in Ref. [281]. Similarly, the nonlin-
earity of Coulomb blockade can also be used to significantly enhance the single-photon optomechanical interaction [282].
It has been suggested that, with a Cooper-pair transistor [283] or a Cooper-pair box [284], even the USC between cavity
photons and a mechanical resonator can be reached. Moreover, an ultrastrong single-photon optomechanical interaction
can also be obtained by embedding a dc superconducting quantum interference device (SQUID), with a suspended arm
as a mechanical resonator, into a superconducting cavity [285–287].

2.2. Amplified photon–atom interactions in cavity quantum electrodynamics

Cavity QED is the field of studying the fundamental interactions of atoms with photons in high-Q cavities, in which
photons are confined for a long time and, thus, can repeatedly interact with the atoms. Cavity QED has been considered to
be a promising platform to explore various applications ranging from fundamental tests of quantum theory to powerful
quantum technologies. To understand this platform, let us first recall the interaction of a single-electron atom and a
single-mode radiation field.

The atom can be considered as a dipole with a dipole momentum d = er , where e is the electronic charge and r is the
position vector of the electron. Typically, the wavelength of an electromagnetic field is much larger than the size of the
14
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tom, such that the dipole approximation can be applied. Under this approximation, the interaction between the atom
nd the field is modeled by

Hint = −d · E, (49)

here

E = ϵ
(
a + a†) (50)

epresents the field at the location of the atomic nucleus, with ϵ being a vector with the dimension of the electric field,
nd a (a†) is the annihilation (creation) operator for the field mode. When expressed in terms of atomic energy eigenstates
i⟩, the dipole momentum d is

d =

∑
i,j

d ijσij, (51)

here d ij = e⟨i|r|j⟩ is the dipole transition matrix element between the levels |i⟩ and |j⟩, and σij = |i⟩⟨j| denotes the
orresponding atomic transition operator. It follows, by substituting Eqs. (50) and (51) into Eq. (49), that

Hint = −

∑
i,j

(
d ij · ϵ

)(
a + a†)σij. (52)

or a two-level atom with the ground state |g⟩ and the excited state |e⟩, dgg = dee = 0 because the electronic states |g⟩

nd |e⟩ are of a definite parity, ggg = gee = 0. Moreover, we assume that dge = deg , such that the interaction Hamiltonian
int now becomes the well-known quantum Rabi interaction Hamiltonian, i.e.,

H int
Rabi = g

(
a + a†)(σ−

+ σ+
)
, (53)

here g = −dge · ϵ = −deg · ϵ is the coupling strength, while σ−
= |g⟩⟨e| and σ+

= |e⟩⟨g| are the ladder operators of
he atom. Eq. (53) can describe the atom–field interaction, in particular, when the coupling strength g is comparable to
he atomic transition frequency or the cavity frequency. The quantum Rabi model is discussed in the following sections.
ere, we focus on the case when g is much smaller than these two characteristic frequencies. In this case, one can apply
he RWA so as to neglect the counter-rotating components, yielding the JC interaction Hamiltonian [28], i.e.,

H int
Rabi ≈ H int

JC = g
(
aσ+

+ a†σ−
)
, (54)

escribing an important and basic type of atom–field interactions.
In cavity QED, the interaction H int

JC leads to a coherent exchange of energy between the atom and the cavity and,
hus, has been widely used, particularly for QIP. However, owing to the presence of decoherence, exploiting such an
tom–cavity system for QIP often requires the strong coupling regime, where the strength g exceeds both the atomic
pontaneous emission rate γ and the cavity decay rate κ . Within the strong coupling regime, a single excitation can be
oherently exchanged between the atom and the cavity before their coherence is lost. A typical parameter quantifying
his property is the cooperativity, defined as

C =
g2

κγ
, (55)

hich shows that the ability, e.g., to process quantum information, increases with the coupling strength g . The first
demonstration of strong coupling with single atoms was reported in Ref. [288]. Below we review several methods for
amplifying the coupling strength g and the cooperativity C .

2.2.1. Parametric amplification
The coupling in Eq. (54) essentially originates from the fluctuations of the electromagnetic vacuum [5], and thus

amplifying these fluctuations via antisqueezing could induce an enhancement of the coupling strength g . The basic idea
nderlying this amplification method, essentially the same as the idea presented in Section 2.1.3, is shown schematically
n Fig. 4(a).

When the cavity field is parametrically driven (i.e., is squeezed), as described by the Hamiltonian in Eq. (35), the
oupling strength g can be exponentially enhanced [289–291]. Upon substituting the Bogoliubov transformation in Eq. (38)
nto Eq. (54), the atom–cavity coupling Hamiltonian H int

JC is transformed to

H int
JC = g rw

sq

(
asqσ+

+ H.c.
)
+ gcr

sq

[
exp

(
iθ2ph

)
asqσ−

+ H.c.
]
, (56)

here

g rw
sq = g cosh(r), (57)

gcr
sq = −g sinh(r) (58)

haracterize the strengths of the rotating-wave and counter-rotating interactions, respectively, between the squeezed
avity mode a and the atom. The counter-rotating interaction describes the processes not conserving excitation number,
sq

15
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Fig. 4. (a) Schematics of using parametric amplification to enhance the photon–atom interaction g and thus the cooperativity C . The single-mode
avity contains a χ (2) nonlinear medium, which is strongly pumped at amplitude Ω2ph , frequency ω2ph , and phase θ2ph . A two-level atom, with the
round state |g⟩ and the excited state |e⟩, is coupled to the cavity mode with a strength g; ωcav and ωq are the resonance frequencies of the cavity
nd the atom, respectively, κ is the cavity decay rate, and γ is the atomic spontaneous emission rate. (b) Exponentially enhanced cooperativity Csq
nd coupling g rw

sq (inset) between the squeezed cavity mode and the atom. The gray and yellow shaded areas refer to the weak (Csq < 1) and strong
Csq > 1) coupling regimes under the assumption of C = 0.2. (c) Exponentially enhanced entanglement of two three-level Λ-type atoms mediated
y the squeezed cavity mode. With squeezing, the lower bound of the entanglement error δ = 1− F is lowered to ≈ 6/

(
e2rC

)
, clearly far below 1/C

nd 1/
√
C , which are the lower bounds imposed, respectively, by unitary and dissipative state preparation without squeezing. Curves show effective

predictions and symbols indicate exact results.
Source: Panels (a)–(c) are adapted with permission from Ref. [289], W. Qin et al. Phys. Rev. Lett. 120, 093601 (2018).

and thus can be neglected in the large-detuning regime
⏐⏐g ′

sq

⏐⏐/(ωsq + ∆q
)

≪ 1. Here, ∆q = ωq − ω2ph/2, where ωq is the
tomic transition frequency. As a result, the interaction Hamiltonian H int

JC in Eq. (56) becomes approximated by

H int,sq
JC = g rw

sq

(
asqσ+

+ H.c.
)
, (59)

iven in terms of the coupling strength g rw
sq . Therefore, for r ≥ 1, an exponentially enhanced atom–cavity coupling,

gsq ≈
1
2
g exp(r), (60)

can be predicted, as plotted in the inset of Fig. 4(b). Since there are ∼ exp(2r) photons converted into a squeezed single-
photon state, the exponential enhancement, given in Eq. (60), can also be understood as a collective enhancement. This
mechanism is to some degree similar to a collective enhancement of the coupling of a single photon to an atomic ensemble.

As demonstrated in Appendix A, in order to suppress the noise induced by the parametric driving (i.e., by squeezing the
cavity mode), one can couple a squeezed vacuum reservoir to the cavity mode. By properly tuning the relevant parameters,
the dynamics of the atom–cavity system can be described by a standard master equation,

ρ̇ = −i
[
Hsq

, ρ
]
+ κL

(
a

)
ρ + γL

(
σ−

)
ρ, (61)
JC sq
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Hsq
JC = ωsqa†

sqasq +
1
2
∆qσz + H int,sq

JC (62)

s the system Hamiltonian in terms of the squeezed mode asq, and ρ is the density matrix of the system. This master
quation indicates that one can define an effective cooperativity

Csq =
g2
sq

κγ
, (63)

n the squeezed frame. It is found that, as shown in Fig. 4(b), an exponential enhancement in the cooperativity for r ≥ 1
an occur, i.e.,

Csq ≈
1
4
C exp(2r). (64)

A typical application of such a giant enhancement is to improve quantum entanglement or gate operations between
separated atoms in the same cavity. Note that in this type of applications, the interaction between these atoms is mediated
by a cavity mode in the squeezed vacuum, rather than in the usual vacuum. However, this is not a problem because the
cavity mode, often serving as a quantum data bus, can be made effectively decoupled from the atoms of interest, or
disentangled from the already entangled atoms at the end of the state preparation or the gate operation.

When entangled states of separated atoms are prepared in optical or microwave cavities, the state error δ = 1 − F
scales as δ ∝ 1/

√
C for the preparation approaches based on unitary gates, and as ∝ 1/C for dissipative state preparation.

Here, F is the fidelity between the actual and ideal states. Thus, the cooperativity enhancement given in Eq. (64), when
applied to dissipative state preparation, can enable an exponential improvement in the state error [289], i.e.,

δ ∝
1

e2rC
, (65)

as shown in Fig. 4(c). There, two three-level Λ-type atoms are considered, and the desired state is an entanglement of the
ground states of these two atoms. The role of the parametrically enhanced coupling between the atoms and the squeezed
cavity mode is to exponentially suppress the transitions from the desired state to some decaying states and, as a result, suppress
he decay out of the desired state. Note here that the cavity degree of freedom is always effectively decoupled from the
toms and, thus, the state of the cavity mode (e.g., the vacuum or squeezed vacuum) is not important.
So far, parametrically amplified photon–atom interactions, and thus mediated atom–atom interactions, have been

idely studied. This mechanism has been explored to generate lasing into a squeezed cavity mode [292]. It has also
een shown that when adiabatically eliminating the degree of freedom, an exponential enhancement of the dipole–
ipole coupling between atoms can be observed [293]. If the amplitude of the atom driving is modulated in time, then
fast and high-fidelity generation of steady-state entanglement [294], and similarly, a high-fidelity implementation of
rbitrary phase gates [295] can be achieved by a parametric driving of the cavity. In the case of two coupled cavities, it
s possible to parametrically drive a single cavity, which is coupled to an atom, to enhance the coupling of this atom
o another cavity [296]. When, furthermore, a multiphoton coupling between the atom and the cavity is taken into
ccount, their single-photon or two-photon coupling can be greatly enhanced even for a small squeezing parameter [297].
nhanced spin–phonon, and in turn spin–spin, interactions via squeezing a mechanical resonator have been theoretically
emonstrated in hybrid systems in Ref. [298]. Very recently, a theoretical proposal that can amplify magnon–spin
nteractions via virtually-excited squeezed phonons has also been put forward in magnonics [211,212].

.2.2. Collective amplification
In Section 2.2.1, we showed that a detuned parametric driving of a cavity enables the coupling between an atom

nd the squeezed cavity mode to be enhanced exponentially. Because exponentially many photons are converted into a
ingle-photon state of the squeezed cavity mode, this parametric enhancement of the atom–field coupling can thus be
nderstood as originating from the coupling of a single atom to many photons.
In this section, we introduce an opposite enhancement mechanism, which is based on the coupling of a single photon to

n ensemble containing many atoms or spins. To proceed, let us assume that the ensemble contains N identical two-level
toms. The coupling between the ensemble and a cavity mode is described by the interaction Hamiltonian

H int
ens =

N∑
j=1

gj
(
a†σ−

j + aσ+

j

)
, (66)

here gj is the single atom–cavity coupling strength, and σ±

j are the ladder operators of the jth atom. The atomic ensemble
an be considered as a large collective pseudospin with S = N/2, such that it can be described with collective spin
perators

S± =
1
g

N∑
gjσ±

j and Sz =
1
2

N∑
σ z
j , (67)
j=1 j=1
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here g2
=

1
N

∑N
j=1 g

2
j . In the special case where gj is a constant, i.e., gj = g , one has S± =

∑N
j=1 σ±

j . The interaction
amiltonian H int

ens is accordingly transformed into

H int
ens = g

(
aS+ + a†S−

)
. (68)

Let us now apply the Holstein–Primakoff transformation [299]

S− =

√
N − s†ss, S+ = s†

√
N − s†s, and Sz = −N/2 + s†s, (69)

where s and s† are the bosonic annihilation and creation operators, which satisfy the commutation relation
[
s, s†

]
= 1. In

the low-excitation regime, where the average number of excited atoms is much smaller than the total number of atoms
(i.e., ⟨s†s⟩ ≪ N), the operators S− and S+ are further simplified to

S− ≈
√
Ns and S+ ≈

√
Ns†, (70)

espectively. It is seen that the collective spin behaves as a quantum harmonic oscillator. In this case, the Hamiltonian
int
ens becomes

H int
ens = gcol

(
as† + a†s

)
, (71)

here

gcol =
√
Ng. (72)

This means that the collective coupling gcol is enhanced by the square root of the number of atoms, compared to the
single-atom coupling strength g . Such a collective enhancement comes at the expense of reducing the nonlinearity of the
coupled atom–cavity system.

The collective strong coupling between light and matter was first demonstrated experimentally with an ensemble of
Rydberg atoms in Ref. [300], and has been a fundamental building block of quantum repeaters for long-distance quantum
communication [301–312]. Moreover, a collective enhancement of light–matter interactions allows one to generate vari-
ous nonclassical states in large ensembles, e.g., spin-squeezed states [173,313–323] and atomic Schrödinger cat states [203,
324,325]. Thus, it also forms an essential ingredient of quantum metrology for high-precision measurements [326].

Recently, much attention has been focused on coupling nitrogen-vacancy (NV) electronic-spin ensembles to super-
conducting circuits to simultaneously exploit the complementary advantages of these two different physical systems
(e.g., strong nonlinearity and ease of design of superconducting circuits [6–14], and extremely long coherence times of NV
spins [327]), therefore building an important type of hybrid quantum system [328,329]. However, the coupling of a single
NV spin to a superconducting cavity usually is g/2π ≈ 10Hz [330], which is too weak to allow for a coherent exchange
of quantum information between the NV spin and the cavity field. However, the NV spin ensembles typically contains
N ≈ 1012 NV spins, and therefore a collective coupling of gcol/2π ≈ 10MHz can be achieved according to Eq. (72).
Such a collective enhancement has been widely demonstrated experimentally [331–337]. The most common setup of
such experiments is sketched in Fig. 5(a) [331]. A diamond single crystal containing a number of NV centers is placed on
top of a superconducting coplanar resonator, whose resonance frequency is tunable with an array of four SQUIDs [see
Fig. 5(b)]. The collectively enhanced ensemble–cavity coupling can, as seen from Fig. 5(c), cause two clear anticrossings,
an indication that the ensemble–cavity system is in the strong coupling regime. Note that here these two anticrossings
arise from the fact that there are two distinct microwave transitions between the ground-state spin–triplet sublevels of
NV centers, and both can be coupled to the resonator mode. In addition, the collectively enhanced coupling of ensembles
of ion spins [338–340] or 87Rb atoms [341] to a superconducting cavity has also been reported in experiments.

The dissipative dynamics of the atomic ensemble can be described with the standard Lindblad operator

γ

2

N∑
j=1

L
(
σ−

j

)
ρ =

γ

2

N∑
j=1

(
2σ−

j ρσ+

j − σ+

j σ−

j ρ − ρσ+

j σ−

j

)
. (73)

ere, we have assumed the atoms to be fully independent. It follows, on performing the Fourier transform

σ̃−

k =
1

√
N

∑
j

exp(−ikj)σ−

j (74)

nd then using the relation
√
Nσ̃±

k=0 = S±, that∑
j

L
(
σ−

j

)
ρ =

1
N
L(S−)ρ +

∑
k̸=0

L
(
σ̃−

k

)
ρ, (75)

here the first and second terms on the right-hand side describe the dissipative processes of the zero and nonzero
omentum modes, respectively. If the coherent dynamics only involves the zero-momentum (k = 0) mode, then one
18
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Fig. 5. Experimental demonstration of collectively enhanced photon–atom interaction. (a) Photograph of the experimental sample: a nitrogen-
vacancy (NV) electronic-spin ensemble is placed on top of a superconducting coplanar waveguide resonator, whose resonance frequency is tuned by
modulating the magnetic flux Φ threading a SQUID array shown in (b). (c) Transmission spectrum |S21(ω)| of the resonator. Two avoided crossings,
induced by the strong coupling of the resonator mode to two microwave transitions between the ground-state spin–triplet sublevels of NV centers,
can be observed clearly. Here, BNV is an external magnetic field applied to induce the spin Zeeman splitting and Φ0 = h/2e is the flux quantum.
Source: Panels (a)–(c) are adapted with permission from Ref. [331], Y. Kubo et al. Phys. Rev. Lett. 105, 140502 (2010).

can focus on only that mode [173,342,343]; that is,∑
j

L
(
σ−

j

)
ρ =

1
N
L(S−)ρ. (76)

his is also valid in the steady-state limit or the long-time limit, because the nonzero momentum modes in Eq. (75) only
ecay. In particular, such a reduction can exactly describe the dissipative dynamics of an atomic ensemble initially in the
round state. Therefore in the low-excitation regime, the dissipative dynamics of the atomic ensemble is determined by

N∑
j=1

L
(
σ−

j

)
ρ = L(s)ρ, (77)

hich corresponds to a damped quantum harmonic oscillator. It is found from that the local dissipation can be described
y the collective dissipation in some cases, such that the collective cooperativity is given by

Ccol = NC, (78)

which increases proportionally to the number, N , of atoms in the ensemble. It has been shown that even an ensemble
weakly coupled to the cavity can induce strong coupling of a single atom to the cavity [344].

The collective cooperativity Ccol in Eq. (78) is only valid for ensembles of independent atoms. When well separated,
the atoms can be considered as independent. But when the spacing of these atoms is very small, their dipole–dipole
interaction and their collective dissipative dynamics need to be taken into account. In this case, it has been suggested
that the collective cooperativity can be further enhanced [345,346], with an effective collective cooperativity given by

Ceff
col =

G⊺G
κγeff

, (79)

here G = (g1, . . . , gN)⊺ and γeff is an effective collective decay rate. By optimizing the amplitude profile of the transverse
cavity field, the maximum value of G⊺G can be obtained. At the same time, for collective subradiant states, the decay rate
γeff is strongly suppressed such that γeff ≪ γ . Thus, the effective collective cooperativity Ceff

col is significantly enhanced.
Compared to Ccol in the cases of independent atoms, which scales linearly with the number of atoms N , this subradiant
enhancement results in a nonlinear scaling of Ceff

col with N (e.g., ∝ N4).

2.2.3. Other amplification mechanisms
Plasmonic cavities. Usually, improving both the quality factor Q and the mode volume V for the same cavity remains
challenging, due to the diffraction limit. This means that it is difficult to simultaneously achieve a small cavity decay rate
19
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and a strong photon–atom interaction g , which limits the cooperativity C . Plasmonic particles (i.e., metal nanoparticles)
riven by an external field can produce intense localized fields near them [92]. Many cavities have already utilized such a
echanism to localize an electromagnetic field into a region of nanometer scale and, as a result, to significantly decrease

he mode volume of these cavities [347–351]. This yields an enhancement in the coupling of an atom to the cavity
ield when the atom is placed closed to the plasmonic particles, and in turn drives the system to the strong coupling
egime. For example, for whispering-gallery-mode cavities with an ultrahigh Q but relatively large V , the resulting
ooperativity is enhanced by approximately two orders of magnitude compared to that obtained in the case of a bare
avity [352,353]. This type of enhancement has been used, e.g., to generate indistinguishable single photons [354] and
uantum entanglement [355].

ybrid cavities. In addition, it has been demonstrated that coupling two different cavities, one with a low Q (i.e., with a
arge cavity loss rate) and the other with a high Q (i.e., with a small cavity loss rate) can effectively realize a high-Q and
mall-V cavity [356]. The atom is assumed to be coupled to the low-Q cavity. Due to a large detuning and, thus, a low
hoton occupation, the low-Q cavity mode can be eliminated adiabatically, yielding an effective interaction between the
tom and the high-Q cavity mode. This effective atom–cavity system combines the respective advantages of these two
avities (i.e., a high Q and a small V ). The strong coupling regime, characterized by C > 1, can then be reached, as long
as the detuning of the low-Q cavity is large enough.

2.3. Amplified Kerr-type light–matter interactions via quadrature squeezing

Phase shifts induced by Kerr-type effects are typically very small when dealing with single photons [357]. A number of
experiments have demonstrated the feasibility to generate and observe cross-Kerr phase shifts even on the order of a few
tens of degrees per photon, which can enable performing at least limited quantum logic gates. These include experiments
based on cavity QED using single atoms [358], quantum dots [359], or atomic ensembles [360], circuit QED [361], and
photonics using optical fibers [362]. Anyway, much larger phase shifts at the single-photon level are in high demand in
order to harness the full power of the Kerr or Kerr-type effects for quantum computing.

As demonstrated in Ref. [210], it is possible, at least theoretically, to boost a cross-Kerr phase shift to an arbitrary
value by employing sequentially either one- or two-mode quadrature-squeezing operations. Utilizing such Kerr amplifi-
cation techniques may prove valuable in implementing quantum nondemolition (QND) measurements [363] or practical
quantum-optical entangling gates, like a deterministic Fredkin gate [364] or a conditional phase (CPHASE) gate [365,366],
which rely on giant Kerr nonlinear interactions at the level of individual photons.

There is yet another fundamental advantage of the approach proposed in Ref. [210]; namely, this method shows the
feasibility of enhancing (at least some types of) higher-order nonlinear interactions by applying lower-order nonlinear
effects. Indeed, the Kerr effect generated in an nonlinear medium is proportional to its third-order susceptibility χ (3),
hile squeezing generation depends on the second-order susceptibility χ (2).
In this section, we recall the amplification method and circuits proposed in Ref. [210]. The method was developed based

n a vector coherent-state theory and applied physical operations that adhere to the commutation relations associated
ith the SU(1,1) generators. Thus, let us consider cross-Kerr-type nonlinear interaction between a two-level atom a and
n optical mode b, as described by the effective Hamiltonian (h̄ = 1)

Hab
Kerr = gσ+σ−b†b = gnanb, (80)

here g is the strength of the Kerr interaction, which is proportional to the third-order susceptibility, χ (3), of the nonlinear
edium; σ+ (σ−) is the atomic raising (lowering) operator; na = σ+σ− is the atomic excitation number operator; b (b†)

s the annihilation (creation) operator for the optical mode b; and nb = b†b is the photon number operator in the mode
.
The main purpose of this method is to amplify g by applying either standard single-mode quadrature-squeezing

perators (k = 1, 2)

Sk ≡ Sb(θk) = exp
[
−

θk

2

(
b2 − b†2)] (81)

o the mode b, or the two-mode squeezing operators

Sbc(θ1) = exp
[
−θ1

(
bc − b†c†)] (82)

o the mode b and an auxiliary mode (say c). In these definitions, θk is a real squeezing parameter; the extra minus
ndicates that the squeezing angle is π ; the subscripts b and c indicate the modes on which the squeezing operations are
pplied; and c (c†) is the annihilation (creation) operator for the mode c. The circuit shown in Fig. 6(a) enables enhancing
he Kerr nonlinearity according to the relations

squeezing  
S (θ )

Kerr&PS  
ei

g
2 (2nanb−nb)

squeezing  
S (θ )

Kerr&PS  
ei

g
2 (2nanb−nb)

squeezing  
S (θ ) =

PS  
e

i
2 (gγ −g)(2na−1)

amplified Kerr&PS  
eigγ (2nanb−nb) , (83)
b 1 b 2 b 1
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Fig. 6. Circuits of Ref. [210] for amplifying the cross-Kerr interaction between a two-level atom (in path a) and optical modes (in paths b and c) by
equentially applying quadrature squeezing: (a) single-mode squeezing S1 = Sb(θ1) and S2 = Sb(θ2), according to Eq. (83); or (b) two-mode squeezing
1 = Sbc (θ1) and S2 = Sbc (θ2), according to Eq. (91), separated with proper phase shifts (PSs). The SWAP gates are represented by the lines connecting
he × symbols.

here PS stands for a linear phase shift (or shifter) in the mode b. The parameters g and θ1 determine the squeezing
arameter

θ2 = arctanh[− cos g tanh(2θ1)] (84)

n the gate S2 in Fig. 6(a), and the amplified Kerr interaction strength

gγ = arctan[tan g cosh(2θ1)]. (85)

By defining the Kerr unitary operator as K (∆φ) = exp[i∆φ nanb], the left-hand side of Eq. (83) can be rewritten in a
orm with the operations clearly corresponding to the gates in Fig. 6(a), i.e.,

K (∆φamp) = P ′S1K (∆φin)PS2PK (∆φin)S1, (86)

here P = exp(−iβ), with β = gnb/2; and P ′
= exp(−iβ ′), with β ′

= (gγ −g)(na−1/2)−gγ nb, are linear phase shifts. For
revity, the less important phase shift P ′ is not shown in Fig. 6(a). Moreover, ∆φin = g and ∆φamp = 2gγ are, respectively,
he initial and amplified Kerr interaction strengths. The cross-Kerr amplification factor can be defined by the ratio of these
inal and initial phase shifts,

κamp =
∆φamp

∆φin
=

2gγ

g
. (87)

Let us assume typical experimental conditions, for which ∆φin ≪ 1 and also the squeezing parameter θ1 is relatively
small, to guarantee that tan(2∆φin) cosh(2θ1) ≪ 1. Then it is easy to show, by expanding gγ in Eq. (85) in power series
of g = 2∆φin, that the method enables increasing the initial Kerr interaction strength by an exponential factor determined
by the squeezing parameter θ1, i.e.,

∆φamp ≈ 4∆φin cosh(2θ1), (88)

and so

κamp ≈ 2 cosh(2θ1), (89)

which is independent of the initial Kerr interaction strength ∆φin.
The single-optical-mode amplification method, described by Eq. (83), was generalized in Ref. [210] to the two-optical-

mode case. Specifically, the cross-Kerr interaction, given in Eq. (80), is also assumed between the atom a and another
optical mode c , i.e.,

Hac
= gσ σ c†c = gn n , (90)
Kerr + − a c
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here nc = c†c is the photon-number operator in the mode c . This generalized amplification method is described by the
relation

squeezing  
Sbc(θ1)

Kerrab&PS  
ei

g
2 (2nanb−nb)

Kerrac&PS  
ei

g
2 (2nanc−nc )

squeezing  
Sbc(θ2)

Kerrab&PS  
ei

g
2 (2nanb−nb)

Kerrac&PS  
ei

g
2 (2nanc−nc )

squeezing  
Sbc(θ1)

= ei(gγ −g)(2n̂a−1)  
PS

eigγ (2nanb−nb)eigγ (2nanc−nc )  
amplified Kerr&PS

, (91)

here the squeezing parameter θ2 is given by Eq. (84), while the Kerr amplification factor gγ is given by Eq. (85) multiplied
y a factor two.
The operations on the left-hand side of Eq. (91) correspond to the gates shown in Fig. 6(b). This correspondence can

e even better seen by rewriting Eq. (91) in the form of Eq. (86), but for the combined Kerr operators and phase shifts,
s defined by (for j = b, c)

K = KabKac, where Kaj = exp(ignanj), (92)

P = PbPc, where Pj = exp[−i(g/2)nj], (93)

P ′
= exp(−iβ ′), where β ′

= 2(gγ − g)(na − 1/2) − gγ (nb + nc), (94)

espectively, and for the two-mode squeezing operators instead of the single-mode ones. Note that the phase shift P ′,
hich does not affect the Kerr amplification factor, is, for brevity, not shown in Fig. 6(b), analogously to how it was
mitted in Fig. 6(a). It might be surprising that Eq. (91) contains the terms describing the Kerr interactions of the atom
with both optical modes, while the circuit shown in Fig. 6(b) includes only the Kerr gates between the atom a and the
ode b. This modification of the circuit is explained by the relation

K = KabUbc
SWAPKabUbc

SWAP, (95)

sing the SWAP gate, Ubc
SWAP, between the optical modes b and c .

.4. Experimental demonstrations of parametrically amplified light–matter interactions

In 2021, an experimental demonstration of parametrically squeezing a bosonic mode to enhance the generation of
uantum entanglement between qubits was reported in a trapped-ion system in Ref. [206] by a group at the National
nstitute of Standards and Technology (NIST). It has further been experimentally shown, by the same group in Ref. [207]
n 2023, that the use of parametric squeezing can realize the amplification of the system Hamiltonian, even without
he precise knowledge of this Hamiltonian [260]. Recently, the parametrically amplified dispersive interaction between
n atom and a squeezed microwave cavity mode was also demonstrated in a superconducting-circuit experiment in
ef. [209]. Below, we introduce these experiments in more detail.

.4.1. Trapped ions
We start with the trapped-ion experiment reported in Ref. [206]; the experimental setup is shown in Fig. 7. The

xperiment used two 25Mg+ ions, which were trapped ∼ 30µm above a linear surface-electrode ion trap [see Figs. 7(a)
nd 7(b)]. Furthermore, an out-of-phase radial motional mode, shared by the two 25Mg+ ions and cooled to near the
round state using resolved-sideband cooling from oscillating magnetic field gradients, was used as a bosonic harmonic
scillator degree of freedom, and therefore played the role of light in light–matter interactions. Its parametric modulation,
nd in turn its squeezing, was implemented by applying an oscillating potential at or close to twice the motional frequency
o the rf electrodes of the ion trap [see Figs. 7(b) and 7(c)]. The states |↓⟩ ≡ |F = 3,mF = 1⟩ and |↑⟩ ≡ |F = 2,mF = 1⟩
n the 2S1/2 electronic ground state hyperfine manifold of the trapped 25Mg+ ions were used as qubit states. Here, F refers
o the total angular momentum, and mF refers to the projection of the total angular momentum along a quantization axis
defined by an external magnetic field.

The two trapped-ion qubits are coupled to the shared motional mode through the Mølmer-Sørensen interaction,
making the phase-space displacement of the motional mode conditioned on the qubit state. In the case of no squeezing,
the time evolution drives the states |+−⟩ and |−+⟩ to traverse circular trajectories in phase space, as depicted in Fig. 8(a).
ere, |±⟩ =

1
√
2
(|↑⟩ ± |↓⟩). Consequently, the states |+−⟩ and |−+⟩ accumulate their geometric phases, which are given

y the areas enclosed by the respective trajectories and thus are of the same amount [see Fig. 8(a)]. The motional mode,
fter some time, returns to its starting point in phase space, i.e., its initial state, and is disentangled from the qubits. At
he same time, the states |+−⟩ and |−+⟩ acquire a geometric phase of π/2 for a single phase-space loop, which in turn
nduces quantum entanglement between the qubits.

If a detuned parametric driving is applied to the motional mode, the time evolution rotates the direction of squeezing
f the motional mode, and also changes the degree of squeezing periodically. Correspondingly, as shown in Fig. 8(b),
he phase-space trajectories, along which the geometric phases that are accumulated for the states |+−⟩ and |−+⟩,
ecome elliptical [367,368], with larger-amplitude displacements originating from the parametrically amplified ion–
otion coupling. This indicates that compared to the no-squeezing case, a larger geometric phase can be accumulated for
22
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Fig. 7. Experimental setup and circuits of Ref. [206] for demonstrating parametrically amplified light–matter interactions. (a) Photograph of the
surface-electrode ion trap. (b) False-color SEM image of the central region, boxed in (a), of the ion trap. Two 25Mg+ ions are trapped ∼ 30µm above
he trap surface. The blue electrodes provide the qubit control, while the red electrodes provide the trapping rf and the parametric modulation for
he motional mode. (c) Circuit diagram for parametric modulation of the ion motional frequency. BPF refers to a band-pass filter.
ource: Panels (a)–(c) were provided by Dr. Daniel H. Slichter from NIST.

Fig. 8. Phase-space representation of the geometric phase accumulation demonstrated in Ref. [206] for the cases (a) without and (b) with squeezing
the motional mode of trapped-ion qubits. The horizontal arrow at the bottom represents the evolution time, with the initial time assumed to be
0. In the case of no squeezing, the geometrical phases acquired by the states |+−⟩ and |−+⟩ are accumulated along circular trajectories, and are
qual to the (gray shaded) areas enclosed by their respective trajectories. When the motional mode is squeezed (in fact, periodically), the circular
rajectories become elliptical with larger-amplitude displacements. The squeezing speeds up the geometric phase accumulation and, in turn, leads
o a faster generation of quantum entanglement. For both cases, the motional mode is disentangled from the already entangled trapped-ion qubits
t the end of the state preparation and, thus, the quantum state of the motional mode is not important.
23
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given evolution time, thus leading to a faster generation of quantum entanglement. On the other hand, in analogy to
he no-squeezing case, the squeezed motional mode is also disentangled from the qubits after a single phase-space loop.
herefore, whether the motional mode is in a squeezed vacuum or the usual vacuum is not important.
In the experiment in Ref. [206], the observed results demonstrated that with parametric amplification, the entan-

lement generation is sped up by a factor of ≃ 3.74, from which an increase of up to 3.25-fold in the strength of the
on–motion coupling can be estimated. That experiment also showed the dependence of the interaction amplification
n the phase θ2ph, i.e., on the direction of squeezing. This is different from the θ2ph-independent amplification process
roposed in Ref. [289].
In proposals [246,256,289–291] of using parametric squeezing to enhance light–matter interactions, precise knowledge

f the system Hamiltonian is needed in advance, e.g., the relative phase between the squeezing operation and the rest
f the system dynamics. To clarify this issue, the use of parametric squeezing to amplify a coherent displacement of a
osonic field can be taken as an example. A direct method is to apply a squeezing operation and then an antisqueezing
peration to the bosonic field, yielding

D(αsq) = S†(ξ )D(α)S(ξ ). (96)

ere, D(α) = exp(αa†
− α∗a) is a displacement operator and S(ξ ) is the squeezing operator defined in Eq. (36). A

traightforward calculation gives

αsq =
[
cosh(r) + ei(θ2ph−2φα ) sinh(r)

]
α, (97)

where φα = arg(α). Clearly, choosing θ2ph − 2φα = 2nπ (n = 0, ±1, ±2, . . .) can lead to an exponential amplification
in the coherent amplitude α, such that αsq = erα. This kind of amplification was experimentally reported in Ref. [208],
using the same setup as shown in Fig. 7, but with a single trapped 25Mg+ ion. The displacement operation of motion was
implemented by applying a resonant oscillating potential to an electrode of the ion trap. An increase in α by a factor of
≈ 9.17 was demonstrated in that experimental work. However, it is also clear that the amplification given in Eq. (97)
depends strongly on the phase difference θ2ph − 2φα . Indeed, for some values of θ2ph − 2φα , the coherent amplitude α

even becomes deamplified; e.g., the phase difference of θ2ph − 2φα = (2n+ 1)π (n = 0, ±1, ±2, . . .) leads to αsq = e−rα,
i.e., an exponential decrease in α. Thus, in order to achieve the desired amplification, the accurate value of the phase φα is
needed. However, in some cases, the phase φα may be unknown or even fluctuate in time. To address this kind of issue,
a proposal, which, in the absence of the precise knowledge of the system parameters, can amplify or speed up quantum
dynamics using parametric squeezing, was put forward in Ref. [260].

In order to amplify the coherent amplitude α of a bosonic field, whose full knowledge is unknown, the expression in
Eq. (96) needs to be modified, according to the formalism of Ref. [260], to become

D(αsq) = S†(−r)D(α/2)S(−r)S†(r)D(α/2)S(r), (98)

In this case, αsq is then found to be

αsq = cosh(r)α, (99)

indicating that the coherent amplitude α can be amplified by a factor cosh(r), but independently of its phase. This
mplification process can be understood better in phase space as shown in Fig. 9.
More generally, the method presented in Ref. [260] can also amplify a qubit–field interaction without precise

nowledge. Consider, as an example, the JC interaction H int
JC given in Eq. (54). The evolution operator U(t) under H int

JC
or an evolution time t is Trotterized, such that

U(t) =

N∏
n=1

U
(

t
N

)
. (100)

ere,

U
(

t
N

)
= S†(−r)U0

(
t
2N

)
S(−r)S†(r)U0

(
t
2N

)
S(r), (101)

here U0(t/2N) = exp(−iH int
JC t/2N) accounts for the evolution operator under H int

JC for a sufficiently small time
/2N [207,260]. According to the Trotter formula [260], a sufficiently large N can enable

U(t) ≈ exp
(
−iH int,amp

JC t
)
, (102)

here

H int,amp
JC = cosh(r)H int

JC . (103)
24
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Fig. 9. Phase-space representation of squeezing-induced amplification of a coherent displacement of motion, demonstrated in Ref. [207]. The gray
dotted outlines and the orange blobs represent the phase-space distributions before and after, respectively, the operations shown in the corresponding
boxes at the top are applied. The gray and blue arrows refer to the squeezing and displacement operations, respectively, while the red and black
arrows in the final panel refer to the unamplified and amplified displacements, respectively.
Source: All panels are reproduced from Ref. [207], S. C. Burd et al. PRX Quantum 5, 020314 (2024), with permission.

t is easily seen that this is an interaction amplification by a factor cosh(r), but without the need to know precisely
he exact form of the interaction. Note that the JC interaction H int

JC taken as an example here does not commute with
he squeezing operators and thus Trotterization is needed as mentioned above; however, for some other interaction
amiltonian that commutes with the squeezing operators (up to a phase), as is the case for a simple displacement
peration, Trotterization is not necessary.
Recently, this kind of squeezing-induced amplification in the absence of a full knowledge of the details of the system

arameters has been experimentally reported in trapped-ion systems in Ref. [207]. The experimental setup was the same
s given in Fig. 7, but a single trapped 25Mg+ ion was used there. The theoretical predictions given in Eq. (99) and Eq. (103)
ere demonstrated in that experimental work. The experiment showed that the coherent amplitude α can be amplified
y a mean gain of ≈ 1.77, in good agreement with the theoretical prediction of ≈ 2.11 (corresponding to a squeezing
arameter of r ≈ 1.38).
In order to demonstrate the amplification of the qubit–field interaction given in Eq. (103), the experiment used the

yperfine states |↓⟩ ≡ |F = 3,mF = 3⟩ and |↑⟩ ≡ |F = 2,mF = 2⟩ of the trapped 25Mg+ ion as qubit states. This qubit is
coupled to a radial motional mode of the ion through a laser-driven stimulated Raman transition, which can be described
by a JC Hamiltonian. Note that the phase of such a laser-driven JC interaction is not stabilized with respect to the squeezing
phase, representing an example of strengthening the qubit–motion interaction where the exact phase (and thus the form)
of Hquad is not known. Experimentally, an increase in the ion–motion coupling strength by a factor of ≈ 1.56 was observed
for N = 6, in good agreement with the theoretical prediction of ≈ 1.7 (corresponding to r ≈ 1.1).

2.4.2. Superconducting circuits
In the superconducting-circuit experiment in Ref. [209], a quarter-wavelength coplanar-waveguide resonator inter-

rupted by a superconducting nonlinear asymmetric inductive element (SNAIL) is capacitively coupled to a transmon
qubit, as shown in Fig. 10(a). This SNAIL resonator, when pumped close to twice the resonator frequency, can behave as a
degenerate parametric amplifier, and as a result can induce a significant squeezing but with a very weak Kerr nonlinearity.

The experiment was operated in a dispersive regime to provide spectroscopic features able to decouple the effect of
the undesired enhanced noise (i.e., thermal noise and two-photon correlation noise) from the expected enhanced coupling
(as opposed to the resonant case). In this regime, the interaction given in Eq. (56) leads to a dispersive coupling between
the qubit and the squeezed cavity mode, with a strength

χ =
2g2

cosh2(r) +
2g2

sinh2(r). (104)

∆q − ωsq ∆q + ωsq

25

https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.020314
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.020314
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.020314
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.020314
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.020314


W. Qin, A.F. Kockum, C.S. Muñoz et al. Physics Reports 1078 (2024) 1–59

o
T
c
∆

S

H
t

I
χ

Ω

∆

Fig. 10. Experimental demonstration of the squeezing-enhanced dispersive atom–cavity coupling reported in Ref. [209]. (a) Experimental setup with
a diagonal break. A quarter wavelength coplanar waveguide resonator (blue), as a single-mode cavity, is shunted to ground through a SNAIL element
(boxed in green), such that it can act as a degenerate parametric amplifier, whose reflection spectrum is measured through an inductive coupler
(boxed in blue). This SNAIL resonator is capacitively coupled to a transmon qubit (red) with a SQUID loop (boxed in red) threaded by a flux. (b)
Dispersive coupling χtrans of the qubit and the cavity versus the two-photon driving Ω2ph for ∆2ph/2π = 0, ±20, ±30, and ±40MHz, and with
ffsets 0.2, 0.1, and 0MHz for clarity. The colormap represents the squeezing in decibels, and the gray shaded area refers to the instability regime.
he curves are theoretical predictions, and the symbols are experimental data; moreover, in the case of ∆2ph ̸= 0, the open and solid symbols
orrespond to ∆2ph > 0 and ∆2ph < 0, respectively. Clearly, there is no improvement in χtrans for ∆2ph = 0, but a two-fold increase in χtrans for
2ph/2π = 20MHz at a squeezing of ≃ 5.5 dB.
ource: Figures, with some modifications, from Ref. [209], M. Villiers et al. PRX Quantum 5, 020306 (2024), with permission.

ere, the physical parameters are defined in Section 2.2.1. This expression is only for a pure two-level system, and for a
ransmon qubit with an anharmonicity χanh, it needs to be modified to

χtrans =
2g2

∆q − ωsq

χanh

χanh + ∆q − ωsq
cosh2(r) +

2g2

∆q + ωsq

χanh

χanh + ∆q + ωsq
sinh2(r). (105)

t can be seen that as χanh → ∞, χtrans → χ . Clearly, the dispersive coupling χ in Eq. (104) and its transmon version
trans in Eq. (105) can increase (even exponentially) with the squeezing parameter r .
As shown in Fig. 10(b), a two-fold increase in χtrans can be experimentally observed for ∆2ph/2π = 20MHz and

2ph/2π = 17MHz (corresponding to a squeezing of ≃ 5.5 dB). Note that there is no improvement in χtrans when
2ph = 0. An asymmetric improvement of χtrans for the two cases of ∆2ph > 0 and ∆2ph < 0 was also demonstrated

in the experiment. Such an asymmetry arises mainly due to the fact that for ∆2ph > 0 (or ∆2ph < 0), the resonance of
the squeezed cavity mode shifts towards (or away from) the qubit resonance, thus decreasing (increasing) the detuning
between the qubit and the squeezed cavity mode.

In the case of ∆2ph = 0, the amplification bandwidth decreases as the gain increases. This is because of the fundamental
gain-bandwidth constraint; that is, the product of the gain and the amplification bandwidth is approximately equal to
the single-photon loss rate κ . In sharp contrast, in the detuned case of ∆2ph ̸= 0, the amplification bandwidth becomes
constant and thus independent of the gain [369]. This interesting feature was also observed in the experiment in Ref. [209].

3. Simulation of ultrastrong and deep-strong light–matter interactions

In this section, we switch from considering schemes for amplifying existing interactions to ways of simulating
interactions that are significant compared to the bare transition frequencies in the system. There are many ways to
perform such quantum simulations [177,178], and a plethora of experimental systems in which it can be implemented.
Here, we first consider, in Sections 3.1–3.3, analog simulation schemes where one or two drives are added to a system with
a low interaction strength, such that a reference frame can be found where the renormalized parameters can be tuned
by the external drives to reach the USC or DSC regimes. Then, in Section 3.4, we review digital protocols for quantum
simulation. Finally, in Section 3.5, we review a number of additional simulation methods and setups, including VQS,
two analog simulation setups with cold atoms, and ways to simulate the USC between resonators or in optomechanical
systems.

3.1. Cavity-assisted Raman transitions

3.1.1. Derivation
Some of the most important instances of simulating light–matter systems in the USC regime are based on the use

of cavity-assisted Raman transitions to obtain an effective Dicke Hamiltonian. Crucially, the effective frequencies of the

involved subsystems in the simulated Hamiltonian are strongly reduced, thereby providing a way to explore regimes

26
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Fig. 11. Level structures of simulations of the quantum Rabi model with cavity-assisted Raman transitions. (a) Original proposal with the atomic
lectronic states, and (b) alternative proposal with the atomic motional states in a BEC. See also Refs. [370,372], respectively.

here the light–matter coupling can be very strong in comparison. Such a simulation was originally proposed in Ref. [370]
s a way to observe the superradiant phase transition of the Dicke model, and has been followed by many proposals for
articular systems. For example, in Ref. [371], a method was proposed to simulate the quantum Rabi model in cavity QED
ith a single rubidium atom in a cavity.
This proposed scheme is shown in Fig. 11(a). The atomic part consists of two ground states, |0⟩ and |1⟩, and two excited

states |s⟩ and |r⟩. The two ground states constitute an effective two-level system. The cavity mode a of frequency ωcav is
coupled to the transitions |1⟩ ↔ |s⟩ and |0⟩ ↔ |r⟩. Two external lasers, of frequencies ωlr and ωls, drive the transitions
1⟩ ↔ |r⟩ and |0⟩ ↔ |s⟩, respectively, with Rabi frequencies Ωr and Ωs. By defining the lowering operators σ−

1s ≡ |1⟩⟨s|,
−

1r ≡ |1⟩⟨r|, σ−

0s ≡ |0⟩⟨s|, and σ−

0r ≡ |0⟩⟨r|, and the number operators σi ≡ |i⟩⟨i|, i ∈ {0, 1, s, r}, the Hamiltonian of the
ystem reads

H = H0 + Hint + Hdr, (106)

ith

H0 = ωcava†a + ω1σ1 + ωrσr + ωsσs, (107)

Hint = gs
(
a†σ−

1s + H.c.
)
+ gr

(
a†σ−

0r + H.c.
)
, (108)

Hdr =
Ωs

2

(
eiωlst σ−

0s + H.c.
)
+

Ωr

2

(
eiωlr t σ−

1r + H.c.
)
. (109)

The time dependence of the Hamiltonian can be removed via a unitary transformation

U = exp
{
i
[
ω′

1σ1 + ωlsσs + (ωlr + ω′

1)σr + (ωls − ω′

1)a
†a

]
t
}
. (110)

The time independence is enforced by fixing the parameter ω′

1 to be

ω′

1 = (ωls − ωlr )/2, (111)

which implies ω′

1 ≈ ω1, since ωlr ≈ ωcav − ω1 and ωls ≈ ωcav + ω1. In the new rotating frame, the time evolution is
governed by the Hamiltonian HR = UHU + i(∂tU)U†, which is now time-independent and reads HR = HR,0 + V , where
HR,0 is the new bare Hamiltonian, given by

HR,0 = δca†a + ∆1σ1 + ∆rσr + ∆sσs, (112)

with δc = ωcav − (ωls + ωlr )/2, ∆1 = ω1 − ω′

1, ∆r = ωr −
1
2 (ωls + ωlr ), ∆s = ωs − ωls; and V is the interaction term that

ouples the ground states to the excited states:

V =
Ωs

2

(
σ−

0s + σ+

0s

)
+

Ωr

2

(
σ−

1r + σ+

1r

)
+ gs

(
a†σ−

1s + aσ+

1s

)
+ gr

(
a†σ−

0r + aσ+

0r

)
. (113)

Under the assumption
⏐⏐∆r/s

⏐⏐ ≫ {δc, ∆1, Ωr/s, gr/s}, the excited states can then be adiabatically eliminated. This
ssumption enables a separation between a manifold of ‘‘fast’’ degrees of freedom (involving the excited states), and
manifold of ‘‘slow’’ degrees of freedom (involving the ground states). After adiabatically eliminating the fast degrees of

reedom, an effective Hamiltonian for the slow degrees of freedom can be obtained: the states |1⟩ and |0⟩ are connected
ia the second-order processes, which involve the absorption–emission processes of a cavity photon and a laser photon.
s an intuitive example, one can see that the excitation |0⟩ → |r⟩ by the absorption of a cavity photon, followed by
he transition |r⟩ → |1⟩ via the emission of a laser photon, yields an effective dynamics described by a Hamiltonian
erm ∝ aσ+

01. In order to derive the effective Hamiltonian, one can follow the approach based on the Schrieffer–Wolff
ransformation described in Ref. [373]. Up to second order in the interaction term V that couples fast and slow degrees
f freedom, the effective Hamiltonian is expressed as

⟨i|Heff|j⟩ = Eiδij +
1
2

∑
⟨i|V |α⟩⟨α|V |j⟩

[
1

E − E
+

1
E − E

]
, (114)
α
i α j α
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here Ei are the energies of the bare Hamiltonian Ei = ⟨i|HR,0|i⟩. The indices i, j label the states in the slow manifold,
hile α labels the states in the fast manifold. We label the eigenstates of HR,0 as |k, n⟩ ≡ |k⟩ ⊗ |n⟩, where k ∈ {0, 1, s, r}

refers to the atomic state, and |n⟩ denotes the Fock state with n cavity photons. Then, we find:

⟨1, n|Heff|0, n − 1⟩ ≈ −
√
n
gsΩs

2∆s
, (115)

⟨1, n|Heff|0, n + 1⟩ ≈ −
√
n + 1

grΩr

2∆r
, (116)

⟨1, n|Heff|1, n⟩ ≈ nδc + ∆1 −
Ω2

r

4∆r
− n

g2
s

∆s
, (117)

⟨0, n|Heff|0, n⟩ ≈ nδc −
Ω2

s

4∆s
− n

g2
r

∆r
. (118)

rom these matrix elements, we can, by defining the spin operators S− = σ−

01 and Sz =
1
2 (2σ1 − 1), write the effective

amiltonian as

Heff = ∆ca†a + ∆0sz + χa†aSz + λs
(
a†S− + H.c.

)
+ λr

(
a†S+ + H.c.

)
, (119)

here

∆c = δc −
1
2

(
g2
r

∆r
+

g2
s

∆s

)
, (120)

∆0 =
∆1

2
+

1
4

(
Ω2

s

∆s
−

Ω2
r

∆r

)
, (121)

χ =
g2
r

∆r
−

g2
s

∆s
, (122)

nd the effective coupling strengths are given by

λs ≡ −
gsΩs

2∆s
, λr ≡ −

grΩr

2∆r
. (123)

While we here have presented the derivation for the one-atom case, the effective Hamiltonian for a system of N atoms
s only slightly modified by including a factor N for the Lamb shift of the cavity resonance, i.e., λA → NλA [370]. It can
e seen that one can reach χ = 0 by setting g2

r /∆r = g2
s /∆s. Similarly, we can set gsΩs/∆s = grΩr/2∆r , so that the

ffective Hamiltonian has the form of a quantum Rabi model for N = 1, and a quantum Dicke model for N > 1:

Heff = ∆ca†a + ∆0Sz + λ
(
a†

+ a
)
(S− + S+), (124)

with

λ = −
gsΩs

2∆s
= −

grΩr

2∆r
. (125)

rucially, we see that the USC regime can be easily achieved, since both the detunings ∆c and ∆0 can be made arbitrarily
mall compared to the coupling strength λ.

.1.2. Implementations in atomic condensates
The first experimental implementation of cavity-assisted Raman transitions for the simulation of the Dicke model,

nd also the observation of a superradiant transition, was realized in an atomic BEC [372]. In this approach, the spin
s defined by the atomic motional states, rather than the atomic electronic states. The underlying mechanism behind the
bservation of this superradiant transition in atomic clouds inside optical cavities is the self-organization of the atoms into
checkerboard pattern, as demonstrated theoretically in Ref. [374] and shown experimentally in Ref. [375]. The theoretical
apping of this transition to a dynamical version of the superradiance transition of the Dicke model was put forward in
efs. [376,377]. The equivalence between them is established by writing the state of an atom as |kx, kz⟩ |a⟩, where |kx, kz⟩
escribes a momentum eigenstate in the x-z plane and |a⟩ is an internal, electronic eigenstate. The energy-level structure
nd the corresponding couplings are shown in Fig. 11(b).
One can define an effective two-level spin system composed of the ground state |0, 0⟩ |g⟩ and an excited momentum

tate |±k, ±k⟩ |g⟩ =
1
2

∑
α,β=±

|αk, βk⟩ |g⟩, which is coupled to the cavity mode via the two-photon absorption and
mission processes. The JC-type term aσ † emerges from the process of the absorption of a cavity photon. Such a photon
bsorption excites the state |0, 0⟩ |g⟩ to |±k, 0⟩ |e⟩ =

1
√
2

∑
µ=±

|µk, 0⟩ |e⟩, which, in turn, generates the state |±k, ±k⟩ |g⟩

nd the simultaneous emission of a photon into the pump field. The excitation of momentum eigenstates is due to the
ecoil experienced by the atoms by the absorption or emission a photon of momentum ±k, and therefore a small energy
ifference between the two ground states is given by the photon recoil energy, which is on the order of kHz. Similarly,
28
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counter-rotating term σ †a† is obtained when the ground state is excited to |0, ±k⟩ |e⟩ by the absorption of a pump
photon (so that the recoil momentum is gained in the z axis instead), which is then brought to the state |±k, ±k⟩ |g⟩ by
emitting a photon into the cavity mode.

This idea was implemented experimentally in Ref. [372], which reported the first Dicke phase transition, using a 87Rb
BEC with N ∼ 105 atoms. The Dicke phase transition and the emergence of self-organization are manifested by an abrupt
build-up of the cavity field accompanied by the development of momentum components at (kx, kz) in the atomic cloud.
The symmetry breaking between two possible superradiant states (associated with two atomic density waves shifted by
half an optical wavelength) was further explored by the same group in Ref. [378], and the dynamical properties of this
phase transition were then interpreted in terms of a Kibble–Zurek mechanism in Ref. [379]. Several theoretical works
have studied more deeply the critical properties and phase diagrams of these models; see, e.g., Refs. [380,381].

3.1.3. Implementations in trapped thermal atoms
An implementation that followed the original proposal of Ref. [370] more closely, by using the atomic electronic states

instead of the atomic motional states to encode a two-level system, was shown for the first time in Ref. [382], where
the effective two-level system was encoded by the hyperfine ground states |F = 1,mF = 1⟩ and |F = 2,mF = 2⟩ of 87Rb
atoms, with a Zeeman splitting (on the order of MHz) induced by an external magnetic field. In Ref. [383], the same
group further explored the rich phase diagram emergent under situations of the asymmetric coupling, i.e., λs ̸= λr , and
in Ref. [384], the differences between co- and counter-propagating structures were discussed in detail.

The cavity-assisted Raman transitions have been investigated for a plethora of effects and their applications, such as
the formation of spinor self-ordering and spin textures [385,386], the generation of spin squeezing [319] and steady-
state entanglement in solid-state systems [387], the simulation of supersymmetry field theories in quantum optics [181],
the driven dissipative dynamics under strong symmetries (dissipative freezing) [388], and the engineering of spin–spin
interactions mediated by photons [389–392].

3.2. Simulated ultrastrong interactions in two-mode-driven Jaynes–Cummings systems

In addition to the protocols described in Section 3.1, there are a few more which also rely on applying two drives
to a system that is not in the USC regime, and in particular, a system in the strong coupling regime, which can be
described by the JC Hamiltonian or one of its close relatives. Thanks to the two drives, one can engineer a rotating frame
where the model parameters are renormalized to be in the USC regime. This type of proposal has already been realized
experimentally for both trapped ions and superconducting circuits.

3.2.1. Theoretical proposals
Basic implementation. The simulation scheme proposed in Ref. [182] considers a system consisting of a qubit, of frequency
ωq, coupled with a strength g to a cavity mode of frequency ωcav, such that a full description of the system is given by
the quantum Rabi Hamiltonian,

HRabi = ωcava†a +
ωq

2
σz + g

(
a + a†)σx. (126)

his Hamiltonian can be viewed as an equivalent variant of the quantum Rabi Hamiltonian in the dipole gauge, i.e.,

Hdg
Rabi = ωcava†a +

ωq

2
σz + igdg(a†

− a)σx, (127)

since the former can be directly obtained by applying a replacement a → ia to the latter. Here, gdg refers to the light–
matter coupling strength in the dipole gauge. Note that the form of the quantum Rabi Hamiltonian in the USC regime
strongly depends on the choice of gauge. In the Coulomb gauge, the standard quantum Rabi Hamiltonian is given by

Hcg
Rabi = ωcava†a +

ωq

2
σz + gcg(a + a†)σy + D(a + a†)2, (128)

here gcl = gdgωq/ωcav, and D is the diamagnetic amplitude. According to Eq. (128), it seems as though Eq. (126) was also
simpler variant in the Coulomb gauge, with a rotation σy → σx and at the same time neglecting the diamagnetic term

∝ (a + a†)2. However, in fact, such a system Hamiltonian in the Coulomb gauge in Eq. (128) is wrong in the USC regime,
since it does not produce the correct eigenvalues and, as a result, causes the breakdown of gauge invariance [73,74,393].
This gauge ambiguity has been well resolved in Ref. [74] by applying the minimal-replacement rule not only to the particle
kinetic energy but also to the particle nonlocal potential. In this case, the resulting system Hamiltonian in the Coulomb
gauge, i.e.,

Hcg
Rabi = ωcava†a +

ωq

2

{
σz cos

[
2η(a + a†)

]
+ σy sin

[
2η(a + a†)

]}
, (129)

where η = gdg/ωcav, is gauge invariant and can produce the same eigenvalues as the Hamiltonian in the dipole gauge
given in Eq. (127).
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When g ≪ {ωq, ωcav}, the RWA can be applied to Eq. (126) to yield the simplified model described by the JC
amiltonian

HJC = ωcava†a +
ωq

2
σz + g

(
aσ+ + a†σ−

)
. (130)

o use a simple system modeled by the Hamiltonian in Eq. (130) to simulate the USC between the qubit and the cavity,
wo classical drives (at frequencies ω1 and ω2, and with strengths Ω1 and Ω2, respectively) are applied to the qubit. By
choosing the drive strengths and frequencies appropriately, it turns out to be possible to recover, in a rotating frame, the
dynamics of Eq. (126) with parameters renormalized, such that the USC of light and matter is realized.

In more detail, the corresponding derivation is as follows. Making the RWA also for the two drive terms added to
Eq. (130), and then moving to a frame rotating at ω1, the Hamiltonian of the system becomes

H = (ωcav − ω1)a†a +
ωq − ω1

2
σz + g

(
aσ+ + a†σ−

)
+ Ω1σx + Ω2

[
ei(ω2−ω1)tσ− + e−i(ω2−ω1)tσ+

]
. (131)

Next, we move to the interaction picture with respect to the drive term, Ω1σx, and rewrite the qubit terms in the rotated
basis |±⟩ = (|g⟩ ± |e⟩)/

√
2. This yields the transformed Hamiltonian

Htr = (ωcav − ω1)a†a −
ωq − ω1

2

(
ei2Ω1t |+⟩⟨−| + H.c.

)
+

g
2

[(
|+⟩⟨+| − |−⟩⟨−| + ei2Ω1t |+⟩⟨−| − e−i2Ω1t |−⟩⟨+|

)
a + H.c.

]
+

Ω2

2

[(
|+⟩⟨+| − |−⟩⟨−| − ei2Ω1t |+⟩⟨−| + e−i2Ω1t |−⟩⟨+|

)
ei(ω2−ω1)t

+ H.c.
]
. (132)

Assuming that Ω1 ≫ {g/4, ωq − ω1} and that ω2 − ω1 = 2Ω1, we apply the RWA to Eq. (132), keeping only the
time-independent terms, and as a result, have

Heff = (ωcav − ω1)a†a −
Ω2

2
σz +

g
2

(
a + a†)σx. (133)

This is of the same form as Eq. (126), but with an effective cavity frequency ωcav − ω1 and an effective qubit frequency
2, both of which can be tuned by the two classical drives to values smaller than the effective coupling strength g/2.
It is important to note that the effective model in Eq. (133) is obtained in a rotating frame. Experimentally, some

uantities in this model, like the qubit population, would thus display rapid oscillations, which could make them hard
o observe. To remedy this, Ref. [182] proposes that after the two drives have been on for a time t , they are turned
ff non-adiabatically, and then the qubit and the drive at ω1 are both detuned by some amount before the drive at ω1
s turned on again for the same time t , but with an opposite phase to before. This protocol allows one to recover the
dynamics of the model in a rotating frame.

Variation for trapped ions. Single ions can be trapped using radio-frequency fields and have some of their electronic
degrees of freedom (a qubit) couple to their motion in the trap (a harmonic oscillator) through laser driving. The proposal
in Ref. [394] considers the situation when two laser drives are applied, in which case the Hamiltonian for such a setup
can be written as

H = ωmota†a +
ωq

2
σz +

∑
n=r,b

Ωnσx cos
[
η
(
a + a†)

− ωnt + φn
]
, (134)

where ωq is the transition frequency of the ionic qubit, ωmot is the frequency of the harmonic motional mode, Ωn
are the Rabi frequencies of the drives denoted by r and b, ωn are the drive frequencies, φn are the drive phases, and
η = k/

√
2 mωmot is the Lamb–Dicke parameter, with k the component of the laser wave vector in the direction of the

harmonic motion and m the mass of the ion. Transforming to the interaction picture with respect to the bare qubit and
the motional degree of freedom, the Hamiltonian becomes

Hint =

∑
n=r,b

Ωn

2

{
exp{iη

[
a(t) + a†(t)

]
} exp[i

(
ωq − ωn

)
t]σ+ + H.c.

}
, (135)

here a(t) = aeiωmott .
Next, we assume that the two drive frequencies are tuned to ωb/r = ωq ± ωmot + δb/r , such that they are close to

detuned by δb/r from) the blue (b) and red (r) sidebands, respectively. We further assume that we are in the Lamb–Dicke

egime, i.e., η
√⟨

a†a
⟩
≪ 1, and that the drives are resonant and weak enough (δr,b, Ωr,b ≪ ωmot) not to excite any other

sidebands. In this limit, also assuming equal drive strengths Ω ≡ Ωr = Ωb, Eq. (135) simplifies to

Hint =
iηΩ

σ+

(
ae−iδr t + a†e−iδbt

)
+ H.c. (136)
2
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pon inspection, we see that this is the Hamiltonian in the interaction picture that would result from starting from the
riginal Hamiltonian

H =
1
2
(δb − δr)a†a +

1
4
(δr + δb)σz +

iηΩ

2
(σ+ − σ−)

(
a + a†). (137)

The coupling form of i(σ+ − σ−)
(
a + a†

)
is an equivalent version of the light–matter coupling form of the quantum Rabi

Hamiltonian in the dipole gauge [see Eq. (127)]. Here, we can identify an effective harmonic-mode frequency (δb − δr)/2,
an effective qubit frequency (δr + δb)/2, and an effective coupling strength ηΩ/2. These effective parameters can all be
tuned by adjusting the drive frequencies and strengths, allowing the simulator to explore a wide range of parameters in
the USC regime. As is pointed out in Ref. [394], all transformations performed here commute with observables of interest
(e.g., the number of excitations in the qubit and the harmonic mode), such that these observables can be directly measured
in experiments. A later theory work [395] suggests that some additional laser drives may need to be added to explore
the particular parameter regime where a quantum phase transition can occur.

The setup of a bichromatically driven ion can be taken further to realize other versions of the quantum Rabi model. In
Ref. [396], it was shown that it also can simulate the two-photon Rabi model, i.e., by replacing a and a† in the interaction
in Eq. (126) with a2 and

(
a†

)2, respectively, such that the photonic population only can be changed in steps of two. The
key to realizing this simulation is to tune the two drives to the second sidebands instead of the first ones, i.e., to set the
drive frequencies to ωb/r = ωq ± 2ωmot + δb/r . Using the same assumptions as when going from Eq. (135) to Eq. (136),
with these drive frequencies Eq. (135) simplifies to

H (2)
int = −

η2Ω

4
σ+

[
a2e−iδr t +

(
a†)2e−iδbt

]
+ H.c., (138)

which we can recognize as being the interaction-picture version of the original Hamiltonian

H =
1
4
(δb − δr)a†a +

1
4
(δr + δb)σz −

η2Ω

4
σx

[
a2 +

(
a†)2]. (139)

In this case, we identify an effective harmonic-mode frequency (δb − δr)/4, an effective qubit frequency (δr + δb)/2, and
n effective coupling strength η2Ω/4. As before, we here have the freedom to adjust the drive frequencies and detunings
o simulate a wide range of parameters that correspond to the USC regime of the two-photon quantum Rabi model.

Further generalizations of the scheme in Ref. [394] were proposed in Ref. [397]. There, it was shown that the scheme
an be extended to the Dicke model (the generalization of the quantum Rabi model to multiple qubits), as well as
ariations on that, like the biased Dicke model (which includes a term proportional to σx for each qubit) and the anisotropic
icke model (where the rotating and counter-rotating parts of the interaction have different strengths).

.2.2. Experimental implementations
uperconducting circuits. The first implementation of the proposal in Ref. [182] came in 2017 [184], using superconducting
ircuits [10,11,14]. The experimental setup, shown in Fig. 12, consisted of an LC oscillator (the harmonic mode) and a
ransmon qubit [398] (an anharmonic LC oscillator, made anharmonic by the nonlinear inductance of Josephson junctions).
sing the notation from Eq. (130), this setup had a harmonic-mode frequency ωcav/2π = 5.948GHz, a qubit frequency

ωq tuned close to ωcav, and a bare coupling strength g/2π = 4.3MHz, i.e., g/ωcav ≲ 0.001.
Applying two drives to the qubits as explained in Section 3.2.1 and illustrated in Fig. 12(c,d), the experimental

simulation could reach deep into the USC regime with a ratio geff/ωeff ≈ 0.6 between the effective coupling strength
geff and the effective resonance frequency ωeff. In these conditions, the quantum revival characteristics of the USC regime
were observed (they are due to a different mechanism, compared to the revivals that can occur in the JC model [399]).

The maximum drive strength of the stronger of the applied drives is limited by the anharmonicity of the qubit,
α/2π = (ω21 − ω10)/2π = 0.36GHZ, where ω10 and ω21 are the transition frequencies for the first and second transitions
of the qubit, respectively. This is because a too strong drive would excite higher levels of the qubit. However, this did
not preclude simulating a higher geff or a lower ωeff; the actual limitation to observing dynamics for higher ratios geff/ωeff
was the decay rates of the qubit and the harmonic mode.

Trapped ions. The proposal of Ref. [394], discussed in Section 3.2.1, was first implemented in an experiment with a
trapped ion in 2018 [183]. In that experiment, an 171Yb+ ion was trapped and cooled down to its motional ground state.
Using the notation from Eq. (134), the qubit transition frequency was ωq/2π = 12.642812GHz (using a transition in
the S1/2 hyperfine manifold) and the harmonic motional mode had a resonance frequency of ωmot/2π = 2.498MHz. The
drive strength Ω of the bichromatic laser drive was chosen such that the effective coupling strength was held fixed at
geff = ηΩ/2 = 2π ×12.5MHz and the detuning from the red sideband was set to zero, i.e., δr = 0. The effective resonance
frequency of both the qubit and the harmonic mode then became ωeff = δb/2, and the detuning δb from the blue sideband
was varied to achieve different ratios geff/ωeff between 0.04 and 1.2, with the latter simulating the DSC regime.

In simulations starting from a state with the qubit excited and the harmonic mode in its ground state, the experiment
showed how the dynamics qualitatively differ between the regime where the JC model holds, the regime of USC but not
31
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Fig. 12. Experimental setup used in Ref. [184] for simulation of USC with superconducting circuits. (a) Optical micrograph of the chip used, with
he transmon qubit highlighted in red and the λ/2 microstrip resonator constituting the harmonic mode highlighted in blue. The resonator next to
he harmonic mode is not used in the experiment; it is detuned from the other components in frequency. The scale bar in the bottom left corner is
mm. (b) Circuit diagram of the setup on the chip. The qubit and the resonator are capacitively coupled, and the qubit also couples capacitively to
nother resonator, which is probed through a transmission line (TL) to read out the qubit state. (c) Pulse sequence used to simulate the quantum
abi Hamiltonian. (d) Illustration of the frequencies for the harmonic mode and the applied drives.
ource: Figures, with some modifications, from Ref. [184], J. Braumüller et al. Nat. Commun. 8, 779 (2017), with permission.

DSC, and the regime of DSC. In the DSC case, the effect of the counter-rotating terms is especially clear, with the number
of phonons climbing above six. Additional experiments simulating the DSC regime demonstrated phonon-number wave
packets bouncing back and forth, adiabatically prepared the ground state of the quantum Rabi Hamiltonian in the DSC
regime (starting from the JC regime and slowly increasing the effective coupling strength), and studied the low-energy
spectrum of the quantum Rabi Hamiltonian.

In 2021, another experimental group used the same setup with a trapped 171Yb+ ion to study a quantum phase
ransition in the quantum Rabi model [400], demonstrating a theoretical prediction from Ref. [401]. By making the red and
lue sideband detunings δr and δb almost the same, the regime with ωq ≫ ωmot was simulated. Here, the drive strength
was then swept to simulate sweeping geff across a quantum critical point. The behaviors predicted from the quantum

hase transition for both qubit and phonon populations were observed, with both populations increasing significantly
hen geff exceeded the critical value.
The next year, the same group took this setup further by simulating the Rabi–Hubbard model [402]. In that model,

everal sites, each governed by a quantum Rabi Hamiltonian, are coupled together through hopping between the bosonic
odes of the respective sites. The quantum Rabi Hamiltonian was simulated as above, while the hopping interaction was
iven by the Coulomb interaction between ions. In the experiment, which used up to 16 ions, a quantum phase transition
as observed and various dynamics of the system were studied at a scale beyond what a classical computer can simulate.

.3. Simulated ultrastrong interactions in single-mode-driven Jaynes–Cummings systems

One of the most important hallmarks of the ultrastrong regime of light–matter coupling is the existence of nonlinear
rocesses that do not conserve the total number of excitations in the system. In Ref. [163], a complete description of
any such processes is provided, which includes, for instance, the conversion of a single photon into multiple atomic
xcitations [67,171,174] or multiple photons [165], multiphoton oscillations [166], converting an atomic superposition
tate into an entangled photonic state [170], frequency conversion [162], and nonlinear photon-mediated interactions [85].
In order to implement the majority of these nonlinear processes, a crucial requirement is that the Hamiltonian should

either conserve the total number of excitations nor its parity. The quantum Rabi model, with a light–matter coupling
erm of the form g(a + a†)(σ−

+ σ+), does not conserve the total number of excitations due to the terms gaσ− and
a†σ+. However, these terms still keep the total parity constant, since they add or remove excitations by an even number.
herefore, most of the aforementioned processes, such as the simultaneous absorption of a single photon by several
toms [171,174], require the implementation of a generalized Rabi model with the addition of another coupling term
f the form σz(a + a†), which allows to increase or decrease excitations by an odd number. As a result, one can engineer
on-linear processes characterized by the coherent oscillation between an initial state |i⟩ and a final state |f ⟩ with a
ifferent total number of excitations, such as the simultaneous absorption of a single photon by two atoms, that would
e represented by the two states |i⟩ = |1, g, g⟩ and |f ⟩ = |0, e, e⟩. This can be achieved if the system parameters are tuned
uch that |i⟩ and |f ⟩ are eigenstates of the bare Hamiltonian with the same energy, allowing one to obtain an effective
amiltonian that generates the coherent conversion between the two states,

Heff = geff(|f ⟩⟨i| + H.c.). (140)
32
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From the point of view of simulations, a recent proposal [186] showed that all the nonlinear processes emerging from
the generalized quantum Rabi model — including those breaking parity conservation — can be simulated in JC systems
well below the USC regime, using only a single coherent drive. This result is achieved by working in the dressed basis of
the atoms driven by the classical field. Let us consider the Hamiltonian of a single driven atom coupled to a cavity mode
in the weak-driving regime described by the JC model, and written in the rotating frame of the drive:

H = ∆aa†a + ∆σ σ+σ + g
(
a†σ−

+ aσ+
)
+ Ω

(
σ+

+ σ−
)
, (141)

here Ω is the drive amplitude. The part that describes the driven atom can be exactly diagonalized. Denoting the ground
nd excited eigenstates of the undriven atom |g⟩ and |e⟩, respectively, the eigenstates of the driven atom, |±⟩, can be

obtained as a rotation of the original eigenstates around the y axis:

|+⟩ = cos θ |g⟩ + sin θ |e⟩ = exp(iσy2θ ) |g⟩ ,

|−⟩ = sin θ |g⟩ − cos θ |e⟩ = − exp[iσy(2θ + π )] |g⟩ , (142)

where cos θ = 1/
√
1 + ξ−2, sin θ = 1/

√
1 + ξ 2, θ ∈ [0, π/2], ξ = Ω/(∆σ /2 + R), and R is the Rabi frequency given by

R =

√
Ω2 + (∆σ /2)2. (143)

ne can then define a new atomic lowering operator in the dressed basis, σ̃−
= |−⟩⟨+|, related to σ− by

σ−
= sin2 θσ̃−

− cos2 θσ̃+
+ cos θ sin θσ̃z, (144)

ith σ̃z = 2σ̃+σ̃−
−I. This allows one to obtain a new light–matter Hamiltonian between the cavity mode and the dressed

tom, of the form

H = ∆aa†a + Rσ̃z + g
[(
sin2 θσ̃−

− cos2 θσ̃+
+ sin θ cos θσ̃z

)
a†

+ H.c.
]
. (145)

rucially, this light–matter Hamiltonian has terms of the types ∝ aσ̃− and ∝ a†σ̃+, which violate the conservation of
he total number of excitations, and ∝ aσ̃z and ∝ a†σ̃z , which violate the conservation of parity. Therefore, a light–
atter interaction of the form in Eq. (145) has all the necessary ingredients to simulate the nonlinear processes that can
e achieved with a generalized quantum Rabi model, described by effective Hamiltonians of the form of Eq. (140). The
atrix elements of the effective Hamiltonian can be obtained, for instance, using the method described in the previous
ection, based on Eq. (114). An alternative technique to obtain this type of effective Hamiltonians, which is particularly
onvenient when processes higher than second order are involved, is described in Appendix B, with details on how to
chieve a second-quantized form of the effective Hamiltonians in Appendix C.

.3.1. Example: Two atoms simultaneously excited by a single photon
We now briefly discuss a particular example of the simulation of a particular nonlinear process by which two atoms

re simultaneously excited by a single photon. This process is a characteristic of ultrastrongly coupled light–matter
ystems [171,174,175]. We consider two atoms coupled to a single cavity mode. The states of the bare basis, working
n the dressed-qubit picture, are {|±, ±, n⟩}. For the nonlinear process where a single photon is simultaneously absorbed
y two atoms, the initial and final states are

|i⟩ = |−, −, n + 1⟩ ; |f ⟩ = |+, +, n⟩ . (146)

The Hamiltonian, in the rotating frame of the driving, reads

H = ∆aa†a + ∆σ

(
σ

†
1 σ1 + σ

†
2 σ2

)
+ Ω(σ1 + σ2 + H.c.) + g

[
a
(
σ

†
1 + σ

†
2

)
+ H.c.

]
, (147)

here a is the bosonic annihilation operator of the cavity and ∆a = ωa−ωL (∆σ = ωσ −ωL) is the cavity (qubit) detuning
rom the drive frequency. In the dressed qubit basis, it then becomes

H = ∆aa†a + R
(
σ̃

†
1 σ̃1 + σ̃

†
2 σ̃2

)
+g

{
a
[
sin2 θ(σ̃1 + σ̃2) − cos2 θ

(
σ̃

†
1 + σ̃

†
2

)
+ sin θ cos θ

(
σ̃1,z + σ̃2,z

)]
+ H.c.

}
. (148)

hen the resonance condition ∆a ≈ 4R is satisfied, the nonlinear process |−, −, n + 1⟩ ↔ |+, +, n⟩ is enabled, which
an be described by an effective Hamiltonian

Heff = ∆aa†a +

∑
i

(R + λ)σ̃z,i + χa†aσ̃z,i + geff
(
a†σ̃1σ̃2 + aσ̃ †

1 σ̃
†
2

)
. (149)

Here, λ and ξ are, respectively, a Lamb shift and a dispersive coupling rate. Their expressions can be found in Appendix D,
where we elaborate on three examples of different nonlinear processes in further detail, including the one discussed here.
Moreover, using perturbation theory, the effective rate of this process is computed to be

geff =
g3 (

cos3 θ sin3 θ + 3 cos θ sin5 θ
)
. (150)
3R2
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.4. Digital simulation

The simulation protocols described so far in this section all fall into the category of analog quantum simulation,
here a system is arranged (in the cases we have seen, by the use of external drives) to behave like the system we
ant to simulate. The other approach to simulating quantum systems is digital quantum simulation [176,178], where
uantum gates or other means are used to turn different Hamiltonian interactions on and off in a sequence (a Trotter
ecomposition [403]). This yields the same time evolution as the total Hamiltonian we wish to simulate. In examples in
his subsection, the proposed and implemented schemes could also be called digital–analog quantum simulations [404],
here the Hamiltonians available in the simulator are interleaved with quantum gates on parts of the system.

.4.1. Theoretical proposal
A proposal for a digital–analog quantum simulation of the quantum Rabi model was first presented in 2014 in

ef. [405]. Similar to the proposal of Ref. [182], discussed in Section 3.2.1, the starting point is a system with a qubit
oupled to a resonator, which is well described by the JC Hamiltonian in Eq. (130). The key insight used is that the
uantum Rabi Hamiltonian

HRabi = ωRca†a +
ωRq

2
σz + gR

(
a + a†)σx (151)

an be divided up into HRabi = H1 + H2, where

H1 =
ωRc

2
a†a +

ωq1

2
σz + gR

(
aσ+ + a†σ−

)
, (152)

H2 =
ωRc

2
a†a −

ωq2

2
σz + gR

(
aσ− + a†σ+

)
, (153)

ith ωq1 − ωq2 = ωRq.
In a frame rotating with frequency ωRF , the standard JC Hamiltonian in Eq. (130) becomes

H̃JC = ∆ca†a +
∆q

2
σz + g

(
aσ+ + a†σ−

)
, (154)

with ∆c/q = ωc/q −ωRF . This has the same form as H1 in Eq. (152). Applying a qubit rotation (a bit flip) to Eq. (154) yields

e−iπσx/2H̃JCeiπσx/2 = ∆ca†a −
∆q

2
σz + g

(
aσ− + a†σ+

)
, (155)

which has the same form as H2 in Eq. (153). By changing the qubit frequency before performing the bit flip, we can set
the effective simulated qubit frequency ωRq. The effective simulated resonator frequency becomes ωRc = 2∆c and the
effective simulated coupling is unchanged, gR = g .

The simulation then consists of short Trotter steps, where the system is switched between evolving in time with the
Hamiltonian in Eq. (154) and the Hamiltonian in Eq. (155), by detuning and flipping the qubit. To lowest order in t/s,
where t is the total evolution time and s is the number of Trotter steps, this approximates the time evolution of the full
quantum Rabi Hamiltonian as [403]

exp(−itHRabi) ≈ [exp(−itH2/s) exp(−itH1/s)]s + O
(
t2

s

)
. (156)

However, a better Trotter approximation is to let each step consist of first applying H1 for a quarter of the time, then H2
or half the time, and finally H1 again for a quarter of the time. This ensures a smaller Trotter error.

As is also pointed out in Ref. [405], this scheme is readily extended to simulating the Dicke Hamiltonian [30]

HD = ωDca†a +

N∑
j=1

ωDq

2
σ (j)
z +

N∑
j=1

gD
(
a + a†)σ (j)

x (157)

or N qubits interacting with a single harmonic mode, by using a system well described by the Tavis–Cummings
amiltonian [31]

HTC = ωcava†a +

N∑
j=1

ωq

2
σ (j)
z +

N∑
j=1

g
(
aσ (j)

+ + a†σ
(j)
−

)
. (158)

ll that is required is to flip and detune all the qubits in parallel in exactly the same way as one qubit is flipped and detuned
n the simulation of the quantum Rabi model. Note that in order to satisfy the gauge principle, the Dicke Hamiltonian in
he dipole gauge is (see Ref. [406] for the case in the Coulomb gauge)

Hdg
= ω a†a + ω S + 2ig (a†

− a)S + 4ηg S2, (159)
D cav q z dg x dg x
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f
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(

Fig. 13. Digital quantum-simulation protocol implemented in Ref. [410]. The qubit (green line) starts at its sweet spot, detuned from the resonator
requency (red line). At the beginning of a Trotter step, the qubit frequency is tuned close to the resonator frequency. Next, the qubit is detuned
gain and flipped by a π pulse (an additional phase φ1 is introduced by the choice of the rotation axis for the pulse), tuned back close to resonance
to a different frequency than the preceding time), detuned again and flipped back by a second π pulse (introducing a second additional phase φ2),
tuned close to resonance again (with the same frequency as the first time), and finally detuned back to the sweet spot. The first and last tuning
close to resonance implements an effective JC Hamiltonian [(154)]; the middle tuning close to resonance (with the qubit flipped) implements an
effective anti-JC Hamiltonian [(155)]. The phase difference φ1 − φ2 sets the rotating frame in which the simulation takes place.
Source: Figure from Ref. [49], A. F. Kockum et al. Nat. Rev. Phys. 1, 19–40 (2019) [adapted from Ref. [410], N. K. Langford et al. Nat. Commun. 8,
1715 (2017)], with permission.

where Sx =
1
2

∑N
j=1 σ

(j)
x . It is seen that the Dicke Hamiltonian in Eq. (157) can be viewed as a simpler variant of Eq. (159)

in the dipole gauge, with neglecting the diamagnetic term ∝ S2x . Note that, however, although this diamagnetic term is
safely negligible below the USC regime, it can become important in the USC regime [74,393,406].

The ideas from Ref. [405] were further developed and generalized in Ref. [407], which considered simulating some
variations of the Dicke model, and also provided more detailed expressions for the error in the Trotter expansion shown in
Eq. (156). For example, the Hamiltonian of a Fermi–Bose condensate can be mapped onto a generalized Dicke model with
inhomogeneous qubit frequencies [408], which can be simulated just like the standard Dicke Hamiltonian by tuning the
qubit frequencies individually. A biased Dicke model, where a term

∑N
j=1 ∆σ

(j)
x is added to Eq. (157), appears somewhat

more complicated to simulate, requiring more gates applied to the qubits. For a pulsed Dicke model [409], where the
coupling strength gD in Eq. (157) is time-dependent, the simulation scheme of Ref. [405] can be modified to include
tunable couplings g (provided that the experimental setup allows that).

3.4.2. Experimental implementation
The proposal of Ref. [405] for digital quantum simulation of the quantum Rabi model was implemented experimentally

in 2017 [410], using superconducting circuits. The main components of the setup were a resonator with a resonance
frequency ωcav/2π = 6.381GHz and a transmon qubit with a tunable frequency (sweet spot for protection from
decoherence at ωq/2π = 5.452GHz). The two were coupled capacitively with a strength g/2π = 1.95MHz, so
g/ωcav = 3 × 10−4, far from the USC regime. In the simulation, an effective coupling strength up to gR/ωRc ≈ 1.8 was
realized.

The experimental protocol is sketched in Fig. 13. To reduce Trotterization error, a second-order Trotter step as described
below Eq. (156) was used. Each Trotter step took 122ns; one simulation run consisted of up to 90 Trotter steps. An
improvement on the original protocol in Ref. [405] was that the rotation axes used to flip the qubit were chosen to yield
phases that defined the frequency of the rotating frame in which the simulation takes place.

In the experiment, the simulation was used to observe the time evolution of both qubit and photon population from an
initial state with the qubit excited and the resonator in its ground state. The phase-space dynamics of the resonator state
were also mapped out through Wigner tomography of the resonator for different initial states and conditioned on the
results of qubit measurements, demonstrating qubit-resonator entanglement. These insights into USC and DSC photonic
states were helped by the fact that the resonator photons in this simulation setup always are real, not virtual. However,
this feature of the simulator also meant that decoherence from the photon decay was a major limitation for the simulator
performance.

3.5. Other simulation methods

There are several approaches to simulating USC, which do not cleanly fall into the categories above of digital quantum
simulation or analog quantum simulation through additional drives defining renormalized parameters, or which target
other ultrastrongly coupled systems rather than those described by the quantum Rabi or Dicke models. In this subsection,
we give an overview of these other approaches, starting from VQS to find the ground state of the multimode Dicke model
in Section 3.5.1, and continuing with schemes for analog simulation of the quantum Rabi model: using coupled waveguides

in Section 3.5.2 and using two variations on setups with cold atoms in Sections 3.5.3 and 3.5.4. We then conclude with a

35
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ethod for simulating USC between two resonators in Section 3.5.5 and schemes for the simulation of USC optomechanics
n Section 3.5.6.

.5.1. Variational quantum simulation
The broad class of quantum algorithms known as variational quantum algorithms (VQAs) [411] have been widely

xplored over the past few years, in the hope that they will be able to provide advantages when run on near-term
uantum computers still subject to noise. In a VQA, the aim is to solve some problems encoded as minimizing a cost
unction. To find a solution, an ansatz in the form of a parameterized quantum circuit, applied to some initial quantum
tates, is chosen. By measuring properties of the output state after the circuit has been applied, information is gathered
hat lets a classical optimization algorithm update the parameters of the circuit to approach an optimum encoding the
olution to the problem. In particular, VQAs can be applied to finding the ground or excited states of a given Hamiltonian
n this manner, or even simulating the time evolution; this class of VQAs are known as VQS [411,412].

In 2020, Di Paolo et al. [413] proposed the use of VQS to find the ground state of a system with USC. The proposal
onsidered a generalization of the quantum Rabi model [(126)] to N qubits and M harmonic modes, i.e., a multimode
icke model, which is described by the Hamiltonian

H =

N∑
i=1

ωqi

2
σ z
i +

M∑
k=1

ωka
†
kak +

N∑
i=1

M∑
k=1

gikσ x
i

(
ak + a†

k

)
, (160)

where ωqi is the transition frequency of qubit i, ωk is the resonance frequency of mode k, and gik is the strength of the
coupling between qubit i and mode k.

To treat the problem with VQS, the first step is to encode the bosonic modes in the qubits used in the VQS. The encoding
chosen in Ref. [413] truncated the Fock space of mode k to have at most nmax

k photons and then encoded this state using
nmax
k + 1 qubits as |nk⟩ →

⏐⏐⏐00 . . . 0nk−11nk0nk+1 . . . 0nmax
k

⟩
. The annihilation operator of mode k then maps to the qubit

operators, such that

ak →

nmax−1
k∑
nk=0

√
nk + 1σ+

nkσ
−

nk+1, (161)

hich facilitates simulation by only containing nearest-neighbor interactions between pairs of qubits.
The simulator is initialized in the state |vac⟩ = ⊗

N
i=1

⏐⏐0qi
⟩
⊗

M
i=1 |0k⟩, where |0k⟩ is encoded in the qubits as shown

above. To find the ground state |G⟩ of the system, one applies an ansatz, a parameterized unitary operator U(θ), to |vac⟩
and searches for an optimal set of parameters θ∗, such that

|G⟩ ≃ U(θ∗) |vac⟩ (162)

and θ∗ minimizes the energy of the system [set by the Hamiltonian in Eq. (160)]. In Ref. [413], the choice of U(θ) is based
on the polaron transformation [414], which approximately disentangles Eq. (160). For one qubit, this transformation is
given by

P =

M∏
k=1

exp
[

gk
ωk + ω′

q
σx

(
ak + a†

k

)]
, (163)

where ω′
q is a renormalized qubit frequency. The transformation, applied as P†HP , displaces the modes depending on the

qubit state.
The final form of the variational ansatz is

N∏
i=1

M∏
k=1

dik∏
s=1

exp
(

f sik
dik

σ x
i X

e
k

)
exp

(
f sik
dik

σ x
i X

o
k

)
, (164)

here X e
k and Xo

k act on the even and odd sites, respectively, in the qubit register encoding mode k, so as to form
e
k + Xo

k = ak + a†
k . The variational parameters f sik are to be optimized in the VQS. They stem from the terms gk

ωk+ω′
q

in Eq. (163). For the case of multiple qubits, an additional term is added before this ansatz to initialize the qubits in an
entangled state instead of ⊗

N
i=1

⏐⏐0qi
⟩
.

In Ref. [413], the ability of this variational ansatz to find the ground-state energy of small instances of Eq. (160)
was tested both in numerical simulations and in an experiment using three superconducting qubits on an IBM quantum
processor. In the numerical simulations, the VQS came within a few percent (relative error) of the ground-state energy
for the single- and two-mode quantum Rabi and Dicke models with a Fock-space truncation of 3–5 photons per mode.
Interestingly, the energy estimate from the VQS was better than the value given by doing the exact polaron transformation
in (163). In the experiment using superconducting qubits, the errors were larger, but there was qualitative agreement in
how the ground-state energy changed as a function of g/ωq when simulating the resonant quantum Rabi model [(126)]
using two qubits to encode the mode. The errors were attributed to both the noise in the quantum processor and the
performance of the classical optimization algorithm used in the VQS.
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.5.2. Coupled waveguides
A scheme for analog simulation of the dynamics of the quantum Rabi model [(126)] proposed in 2011 [415] takes as

ts starting point the observation that the state of the system can be written as

|Ψ (t)⟩ =

∞∑
n=0

An(t) |g, n⟩ + Bn(t) |e, n⟩ , (165)

here the first entry in the kets denotes the qubit state and n denotes the photon number. Since the quantum Rabi
amiltonian preserves the parity of the total number of excitations, the evolution of the coefficients in Eq. (165) decouples
nto two parity chains. If we define cn(t) to be An(t) for even n and Bn(t) for odd n, its evolution is determined by

i
dcn(t)
dt

= κncn+1 + κn−1cn−1 +
(−1)n

2
ωqcn + nωcavcn, (166)

here κn = g
√
n + 1. The other parity chain has coefficients fn(t), which are Bn(t) for even n and An(t) for odd n. The

oefficients fn(t) obey the same evolution as in Eq. (166), but with cn(t) replaced by fn(t) everywhere.
The proposal of Ref. [415], implemented experimentally in 2012 [416], is to construct an array of coupled photonic

aveguides where the amplitudes of the propagating light in the waveguides evolve according to Eq. (166). In that setup,
he propagation distance in the waveguide corresponds to the time, the coupling g is set by the coupling between adjacent
aveguides (which has to increase as

√
n + 1 to make g constant; this is achieved by setting the spacing between the

aveguides), the qubit transition frequency is set by a modulation of the effective refractive index in the waveguides,
nd the resonator frequency is determined by the gradient of the refractive index.
In the experiment of Ref. [416], this proposal was implemented in 15 waveguides written with a femtosecond laser on

fused silica substrate. The relevant parameters were set such that g/ωcav = 0.65, well in the USC regime, was realized.
By measuring the light distribution in the waveguides, it was possible to observe the time evolution of the qubit and
resonator populations in the simulation. To simulate a different set of parameter values, it was necessary to manufacture
a new set of waveguides; no parameters were tunable in situ for this simulator.

3.5.3. Ultracold atoms in optical lattices
Another proposed method for simulating the physics of the quantum Rabi model uses ultracold atoms in an optical

lattice [417]. In the limit of few atoms, the interactions between atoms are negligible and the Hamiltonian of a single
atom in the lattice can be written as

H =
p2

2m
+

V
2
cos(4k0x) +

mω2
0

2
x2, (167)

here m is the mass of the atom, p = −ih̄ ∂
∂x is the momentum of the atom, x is the position of the atom, ω0 is the

frequency of the atomic motion in a harmonic trap induced by laser driving in the setup, V is the depth of a periodic
potential induced by laser driving, and 4k0 is the wave vector of that potential (stemming from a four-photon interaction
with a driving field having a wave vector k0 [418]).

Assuming that the harmonic trap varies slowly on the scale of the periodic potential, a suitable basis for the system is
the Bloch functions

⟨
x|φnb (q)

⟩
= φnb (q, x) = exp(iqx/h̄)unb (x), where q is the quasimomentum, nb is the band index, and

unb (x) is a periodic function with the same periodicity as the periodic potential. Taking unb (x) = exp(−2ik0x) exp(4inbk0x),
which yields a first Brillouin zone q ∈ (−2h̄k0, 2h̄k0], in the Bloch basis the Hamiltonian in Eq. (167) becomes, for the two
lowest-energy bands (i.e., nb = 0, 1),

H =
1
2m

(
q2 + 4h̄k0q 0

0 q2 − 4h̄k0q

)
+

V
4

(
0 1
1 0

)
−

mh̄2ω2
0

2
∂2

∂q2

(
1 0
0 1

)
, (168)

assuming that the system state is fully contained in the first Brillouin zone.
Rotating the qubit basis appropriately, the Hamiltonian in Eq. (168) corresponds to the quantum Rabi Hamiltonian

n Eq. (126) with a cavity frequency ωcav = ω0, a qubit frequency ωq =
V
2h̄ , and a coupling strength g = 2k0

√
h̄ω0
2m . In

Ref. [417], it is shown that with typical parameters of ultracold rubidium atoms in an optical lattice, these values would
correspond to g/ωcav ≈ 10, well into the regime of DSC, without much tunability possible, while the effective qubit
frequency could be widely tuned in the range ωq/ωcav ∈ [0, 30].

The experimental implementation of the proposal from Ref. [417] was published in 2023 [419]. The experiment
employed rubidium atoms in a setup with a trap frequency ω0/2π in the range [350, 750] Hz and an effective coupling
strength g/2π ∈ [2290, 3090] Hz, achieving g/ωcav up to 6.6. The effective qubit frequency ωq/2π could be tuned
widely, from 0Hz to 5850Hz. These settings enabled the observation of the time evolution of both the bosonic and qubit
excitations in simulations of the DSC regime. In a follow-up experiment with the same setup, collapse and revival of the
excitation number in the DSC regime was observed [420].
37



W. Qin, A.F. Kockum, C.S. Muñoz et al. Physics Reports 1078 (2024) 1–59

3

o
t
B
m
s
t
m
t

w
c
e

.5.4. Atomic quantum dots coupled to superfluid Bose–Einstein condensates
An alternative way, compared to the proposal of Ref. [417] in Section 3.5.3, to use cold-atom systems for the simulation

f the quantum Rabi model was put forward in Ref. [421]. In that proposal, a superfluid BEC in a shallow confining
rap is made to interact with an atomic quantum dot [422], i.e., a single atom (of the same species as the atoms in the
EC, but in a different hyperfine state) in a tight trap. The system is assumed to be in the collisional-blockade regime,
eaning that the interaction gdd between atoms in the dot is much larger than interaction gcc between atoms in the BEC,
uch that the dot is never occupied by more than one atom, making it a two-level system. The BEC is assumed to be in
he low-temperature superfluid regime, such that its quantum fluctuations can be described by a continuum of bosonic
odes (phononic excitations). The coupling between the atomic quantum dot and the BEC is introduced through a Raman

ransition (effective Rabi frequency Ω , detuning δ) from external lasers.
The setup outlined above can be described by the Hamiltonian

H =

∑
k

ωka
†
kak +

Ωd

2
σz +

[
−δ′

+

∑
k

g
(
ak + a†

k

)]
σx

2
, (169)

where the effective qubit frequency Ωd is set by Ω and the number of atoms in the BEC, ωk are the BEC mode frequencies
with the corresponding annihilation operators ak, and the coupling between the atomic quantum dot and these phononic
modes is given by

g =

√
ωk

2h̄Vgcc
(gcd − gcc), (170)

here V is the volume of the BEC and gcd is the coupling between the atomic quantum dot and the atoms in the
ondensate. The parameter δ′ depends on gcd, gcc , Ω , and δ [422]. Since the couplings gcd, gcc , and gdd can be tuned by
xternal magnetic fields close to Feshbach resonances, it is possible to set δ′

= 0. By further having suitable boundary
conditions for the BEC trap, the phononic modes can be spaced widely enough in frequency that only one of them
effectively couples to the two-level system of the atomic quantum dot. We then recover the quantum Rabi Hamiltonian
from Eq. (126).

In Ref. [421], it is shown that for standard parameters of a setup with a rubidium BEC and a potassium atomic quantum
dot, one can achieve an effective cavity frequency of a few hundred Hz (clearly lower than in most other simulation
proposals discussed in this review) and an effective coupling g that ranges from much less than that to much more than
that, i.e., spanning from much less than USC all the way to DSC. It is also possible to add more atomic quantum dots to
simulate the Dicke model instead of the quantum Rabi model.

3.5.5. Ultrastrong coupling of two resonators via three-wave mixing
A close relative of the quantum Rabi and Dicke models is the Hopfield model [32], which describes the interaction

between two harmonic modes (not a harmonic mode and a qubit; however, the second harmonic mode can be an effective
model for a collection of atoms) without having made the RWA. Omitting the diamagnetic term, the Hopfield Hamiltonian
reads

Hhpd = ωaa†a + ωbb†b + G
(
a + a†)(b + b†), (171)

where ωa and ωb are the resonance frequencies of the modes a and b, respectively, and G is the strength of the coupling
between them. Note that here, in order to satisfy the gauge principle, the Hopfield Hamiltonian in the dipole gauge is
given by [406]

Hdg
hpd = ωaa†a + ωbb†b + iGdg(a†

− a)(b + b†) + G′

dg(b + b†)2, (172)

and in the Coulomb gauge, by

Hdg
hpd = ωaa†a + ωbb†b − iGcg(b†

− b)(a + a†) + G′

cg(a + a†)2, (173)

where Gdg and Gcg are the coupling strengths in the dipole and Coulomb gauges, respectively. Moreover, G′

dg and G′
cg are

the corresponding diamagnetic amplitudes, which are related to the strengths Gdg and Gcg, respectively. The Hopfield
Hamiltonian in Eq. (171) can be viewed as a simper variant in the dipole or Coulomb gauge, neglecting the diamagnetic
term ∝ (b+b†)2 or (a+a†)2. However, note that although these diamagnetic terms can be safely removed below the USC
regime, they can become important in the USC regime [74,393,406].

In 2017, Ref. [423] put forward a proposal for simulating Eq. (171) in a setup with two superconducting resonators
connected through a three-wave-mixing process generated by a Josephson mixer [424]. By pumping the Josephson mixer
with two tones, at frequencies ωB = ωa + ωb + 2δ and ωR = ωa − ωb, respectively, where δ is a small detuning, the
Hamiltonian for the setup (shown in Fig. 14) becomes

H3w = ωaa†a + ωbb†b +

∑
j=B,R

[
ωjc

†
j cj + χ

(
cj + c†

j

)(
a + a†)(b + b†)], (174)

where c and c are the annihilation operators for the two drive tones.
R B

38



W. Qin, A.F. Kockum, C.S. Muñoz et al. Physics Reports 1078 (2024) 1–59

b
s
S

a
H

r
a

ω
w
o
s
g

3

c
c
s
b

o

s
U
i

r
r
s

b
q

Fig. 14. Setup of Ref. [423] for simulating USC between two resonator modes, a (orange) and b (blue). The ring of four Josephson junctions shorted
y inductors in the middle of the two resonators realizes three-wave mixing between a, b, and a mode c that can be driven from the left in the
etup. The box on the left is a hybrid coupler which serves to couple modes a and c to different transmission lines.
ource: Figure from Ref. [423], S. Fedortchenko et al. Phys. Rev. A 95, 042313 (2017), with permission.

If the two drives are off resonance from the mixer, the stiff-pump approximation lets us treat cR and cB as two complex
mplitudes. In the regime where |δ| ≪ ωa, ωb, |ωa − ωb| and

⏐⏐χcB,R
⏐⏐ ≲ |δ|, applying the RWA results in an effective

amiltonian

Heff = −δa†a − δb†b + GB
(
a†b†

+ ab
)
+ GR

(
a†b + ab†), (175)

where GB/R = χcB/R, describing the system in a frame where the mode a rotates at a frequency ωa + δ, and the mode b
otates at a frequency ωb + δ. Choosing drive amplitudes such that GB = GR = G, this is of the same form as Eq. (171)
nd allows tuning the ratio G/|δ| into the USC regime by selecting the detuning δ of the drive frequencies.
The proposal of Ref. [423] was implemented in an experiment in 2018 [425]. There, the mode frequencies were

a/2π = 8.477GHz and ωb/2π = 6.476GHz, much larger than the achievable interaction strength χcB,R from the three-
ave mixing. However, the simulated effective frequency and coupling were of comparable size, with both a few tens
f MHz. In this regime, Ref. [425] demonstrated how the modes hybridize in the USC ground state, and measured both
ingle- and two-mode squeezing of the emitted fields from the two resonators, as a result of the entanglement in the
round state.

.5.6. Simulation of ultrastrong optomechanics
The USC regime in cavity optomechanics refers to the case where the single-photon optomechanical coupling g0 is

omparable to the mechanical frequency ωm, i.e., g0 ∼ ωm. However, as mentioned in Section 2.1, the single-photon
oupling g0 is typically extremely weak, and reaching ultrastrong optomechanical interaction has remained challenging
o far, despite considerable theoretical [283–287] and experimental [426] effort aimed at this goal. Therefore, there have
een several methods proposed to simulate ultrastrong optomechanical interaction with current technologies [427–429].
Among these possible simulation methods, it was suggested in Ref. [429] that two bosonic modes, with annihilation

perators a and b, are coupled with a cross-Kerr interaction of strength χ , i.e.,

HKerr = χa†ab†b, (176)

imilar to Eqs. (80) and (90), and one of these bosonic modes, say b, is driven by a detuned, strong driving of frequency ωd.
pon introducing a displacement transformation, b = δb + βb, with βb being the field amplitude induced by the driving,
t follows that

HKerr → −βbχa†a
(
δb†

+ δb
)
. (177)

Here, βb has been assumed to be real for simplicity and the residual cross-Kerr interaction has been neglected.
The right-hand side of Eq. (177) is of the same form as the optomechanical interaction Hamiltonian given in Eq. (5).

The effective optomechanical coupling strength is now βbχ and the effective frequency of the mode δb, which plays the
ole of the mechanical resonator, is the detuning ∆b = ωb−ωd, where ωb is the bare frequency of the mode b. Clearly, the
atio βbχ/∆b can be made comparable to (or even much larger than) unity by tuning the drive amplitude and frequency,
uch that an ultrastrong optomechanical interaction can be well simulated.
In an analogous way, it has been theoretically shown that a Fredkin-type interaction of three bosonic modes can also

e used to simulate ultrastrong optomechanical interaction [430], and that with the squeezing of the mode b, even a
uadratic optomechanical coupling in the USC regime can be simulated [431].
39
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. Summary and perspectives

In this review, we have described theoretical and experimental quantum simulation and amplification methods
eveloped in the past decade or so for increasing the coupling between light and matter, from strong to ultrastrong
nd deep strong, i.e., when the coupling strength becomes comparable to the frequencies of photons and characteristic
tomic transitions.
It should be stressed that the methods described here are not limited to photon-mediated interactions, but have also

een applied to amplify interactions mediated by phonons or magnons. In fact, the first experimental demonstrations
f quantum amplified boson-mediated interactions were reported for phonons [206], and only later for photons [209].
e believe that these described methods can also be generalized and applied to amplify the interactions mediated by

xciton–polaritons, plasmons, magneto-plasmons, rotons, or other types of collective bosonic interactions.
In the past two decades, we have witnessed impressive theoretical and experimental progress demonstrating how

he ultrastrong coupling of light and matter facilitates the generation or emulation of complex quantum phenomena
hat were hitherto beyond reach. Multiple experimental platforms, which comprise superconducting circuits, quantum
ells, molecules, organic light-emitting diodes, two-dimensional electron gases, plasmonic nanoparticle crystals, or
IG (yttrium-iron-garnet) crystals, have been developed for probing a wide array of physical phenomena. From non-
erturbative light–matter interactions to the emergence of novel quantum phases, such platforms have unraveled a host
f intriguing phenomena with far-reaching fundamental and practical implications.
Despite this impressive progress, both theoretical and experimental, we hold the perspective that the exploration of

he ultrastrong and deep-strong coupling regimes remains in its nascent stages, with a vast realm of novel effects and
otential applications for quantum technologies awaiting their emergence. It should be stressed that such applications are
ot limited to quantum information processing, quantummetrology and sensing, advanced materials (like cavity-mediated
lectron–photon superconductors) and nanotechnology, but also include possible applications for quantum chemistry [25],
uantum biology [26], or for testing supersymmetric (SUSY) theories. We believe that, by applying the described or other
ethods for amplifying light–matter interactions, such fundamental and practical objectives can be accomplished with
reater ease and speed.
Let us conclude this review with the following opinion of Carlo Rubbia about the progress in quantum physics in

eneral: ‘‘I think Nature is smarter than physicists. We should have the courage to say: ‘Let Nature tell us what is going
n.’ Our experience of the past has demonstrated that in the world of the infinitely small, it is extremely silly to make
redictions as to where the next physics discovery will come from and what it will be. In a variety of ways, this world will
lways surprise us all. We have to leave all this spectrum of possibilities open and just enjoy this extremely fascinating
cience’’. This opinion is not limited to elementary-particle physics, but it is also very relevant for the emerging field of the
ltrastrong light–matter quantum interactions. Our perspective is that, with quantum amplified light–matter interactions,
ature can reveal a great deal about what is going on and how to make use of it.
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ppendix A. Eliminating squeezing-induced noise

For simplicity, we consider a two-photon-driven cavity coupled to a squeezed vacuum bath with a squeezing parameter
e and a reference phase θe. To begin, we work within a frame rotating at Hrot = ω2pha†a/2+HB, where a is the annihilation
operator for the cavity mode, ω2ph is the frequency of the parametric driving of the cavity mode, and HB =

∑
l νlt†(νl)t(νl)

is the free Hamiltonian of the bath, with t(νl) being the annihilation operator for the bath mode of frequency νl. In this
frame, the full Hamiltonian is

HF = HDPA + HI , (A.1)

where HDPA is the Hamiltonian responsible for the parameter driving, which is given in Eq. (35), and

HI =

∑
l

λ(νl)
[
t(νl)a†

+ H.c.
]

(A.2)

represents the coupling of the cavity mode to the bath, with the frequency-dependent coupling strength λ(νl).
To proceed, we introduce the squeezed cavity mode asq of frequency ωsq using the Bogoliubov transformation given

in Eq. (38). Then, we again switch into the frame rotating at ωsqa
†
sqasq; in this frame, the coupling of the cavity mode to

the bath is transformed to

HI(t) = a(t)T †(t) + H.c. (A.3)

Here, we have defined

a(t) = exp
(
−iω2pht/2

)
exp

(
iωsqa†

sqasq
)
a exp

(
−iωsqa†

sqasq
)
, (A.4)

T (t) =

∑
l

λ(νl)t(νl) exp(−iνlt). (A.5)

Following the standard procedure in Ref. [1] and then returning to the frame rotating at Hrot, we obtain the master
equation expressed, in terms of the as mode, as

ρ̇c = − i
[
ωsqa†

sqasq, ρc
]

+ κ
(
Nsq + 1

)
L
(
asq

)
ρc + κNsqL

(
a†
sq

)
ρc

− κMsqL′
(
asq

)
ρc − κM∗

sqL
′
(
a†
sq

)
ρc, (A.6)

where

Nsq = cosh2(r) sinh2(re) + sinh2(r) cosh2(re) +
1
2
sinh(2r) sinh(2re) cos

(
θe − θ2ph

)
, (A.7)

Msq = exp
(
−iθ2ph

)[
sinh(r) cosh(re) + exp

[
−i

(
θe − θ2ph

)]
cosh(r) sinh(re)

]
×

[
cosh(r) cosh(re) + exp

[
i
(
θe − θ2ph

)]
sinh(re) sinh(r)

]
, (A.8)

and the Lindblad superoperators are defined by

L(o)ρ = oρo†
−

1
2
o†oρ −

1
2
ρo†o, (A.9)

L′(o)ρ = oρo −
1
2
ooρ −

1
2
ρoo. (A.10)

The decay rate κ of the cavity mode in Eq. (A.6) is expressed as

κ = 2πd
(
ω2ph/2

)
λ2(ω2ph/2

)
, (A.11)

where d
(
ω2ph/2

)
is the density of states for the squeezed vacuum bath at frequency ω2ph/2. Here, we have assumed that

the central frequency of the squeezed vacuum bath is equal to half the two-photon driving frequency (i.e., ω2ph/2). In
ddition, we have also made the approximation

d
(
ω2ph/2 ± ωs

)
≈ d

(
ω2ph/2

)
. (A.12)

his is justified as the frequency ωs of the squeezed cavity mode is typically much smaller than the frequency ω2ph of the
arametric driving.
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Fig. B.1. Requirements for applying adiabatic elimination. The energy levels, EA,i and EB,i , of the subsystems A and B need to be distributed in
ell-separated manifolds. At the same time, the elements of coupling A and B also need to be much smaller than this difference.

From Eqs. (A.7) and (A.8), we can, by setting re = 0, see the effects of the thermal noise and the two-photon correlation
oise caused by the detuned parametric driving. However, when choosing re = r and θe − θ = ±nπ (n = 1, 3, 5, . . .), we
ave

Nsq = Msq = 0, (A.13)

uch that the master equation in Eq. (A.6) is simplified to

ρ̇c = −i
[
ωsqa†

sqasq, ρc
]
+ κL(as)ρc . (A.14)

t is seen that the squeezing-induced noises, arising both from the parametric driving and the squeezed vacuum reservoir,
re completely suppressed as desired, and as a result, that the squeezed cavity mode is equivalently coupled to a vacuum
eservoir.

ppendix B. Effective Hamiltonians from perturbation theory

In this appendix, we describe a perturbative method that allows one to obtain the effective Hamiltonian in a relatively
traightforward manner. The main advantage of this method is that it can be cast in a very simple form, very similar to
econd-order perturbation theory, but can encapsulate effects beyond the second-order theory.
Let us start by considering the following Hamiltonian in a matrix form:

H =

(
HA λHAB

λH†
AB HB

)
. (B.1)

ritten in this form, the separation between the two sectors of the Hilbert space, A and B, is made explicit. Here, A is
he subspace of the Hilbert space consisting of NA states {|a1⟩ , |a2⟩ , . . .

⏐⏐aNA

⟩
}, and B is another subspace, consisting of NB

tates {|b1⟩ , |b2⟩ , . . .
⏐⏐bNB

⟩
}. The Hamiltonians within A and B are HA and HB, respectively, with matrix elements given by

HA,ij = ⟨ai|H|aj⟩ and HB,ij = ⟨bi|H|bj⟩. These two subspaces do not have independent dynamics; they are coupled by the
‘‘interaction’’ Hamiltonian λĤAB, where λHAB,ij = ⟨ai|H|bj⟩. The parameter λ has been included in this definition to act as
a perturbation parameter that is considered small in the following. Defining the projectors

PA =

NA∑
i=1

|ai⟩⟨ai| , (B.2)

PB =

NB∑
i=1

|bi⟩⟨bi| , (B.3)

e can write

HA = PAHPA, (B.4)

HB = PBHPB, (B.5)

λHAB = PAHPB. (B.6)

The Hamiltonian HA is thus an NA × NA matrix, HB is an NB × NB matrix, and HAB is an NA × NB matrix.
Our main goal is to obtain an effective Hamiltonian that describes the evolution of subsystem A under the influence of

subsystem B, without the need of explicitly describing subsystem B. This is only possible if the timescales of the intrinsic
dynamics of the two subspaces are very different—this is why it is called adiabatic elimination—and still remain different
even after considering the coupling between them. In energetic terms, this requires a ‘‘clustering’’ of energy levels, so
that these energy levels can be split into some well-separated manifolds, as discussed, e.g., in Ref. [373] and illustrated
in Fig. B.1. In particular, by denoting the eigenvalues of HA and HB as {EA,i} and {EB,i}, respectively, we require⏐⏐E − E

⏐⏐ ≪
⏐⏐E − E

⏐⏐ (B.7)
A,i A,j A,i B,j

42



W. Qin, A.F. Kockum, C.S. Muñoz et al. Physics Reports 1078 (2024) 1–59

a

f

w
e

S

S
c
s

a
e
t
a
E
t

nd

λ
⏐⏐⟨ai|HAB|bj⟩

⏐⏐ ≪
⏐⏐EA,i − EB,j

⏐⏐. (B.8)

Let us now discuss how this elimination can be performed in a simple way. For this, we write the eigenvalue equation
or the Hamiltonian in Eq. (B.1) as(

HA λHAB

λH†
AB HB

)(
ϕA
ϕB

)
= E

(
ϕA
ϕB

)
, (B.9)

here ϕA is an NA × 1 vector and ϕB an NB × 1 vector. Explicitly performing the matrix multiplication yields two coupled
quations for ϕA and ϕB:

(E − HA)ϕA = λHAB ϕB, (B.10a)

(E − HB)ϕB = λH†
AB ϕA. (B.10b)

olving Eq. (B.10b), we obtain

ϕB =
1

E − HB
λH†

AB ϕA. (B.11)

Substituting this result into Eq. (B.10a), we obtain an eigenvalue equation for ϕA, equivalent to Eq. (B.9), but in terms of
an NA × NA Hamiltonian Heff, which only acts on elements of the subspace A:

(E − Heff)ϕA = 0, (B.12)

where

Heff = HA + λ2HAB
1

E − HB
H†

AB. (B.13)

o far, this is an exact result, and one can see that the apparent simplicity of Eq. (B.12) is hiding a considerable degree of
omplexity residing in the denominator of Heff in the presence of E. This equation is therefore not so straightforward to
olve.
The key to obtain a truly effective Hamiltonian for the dynamics in the subspace A is to apply our previous assumptions

bout the clustering of energy levels, which allows us to treat the Hamiltonian λHAB as a perturbation. The unperturbed
nergy levels of the subspace A, i.e., the eigenvalues of HA, are all clustered around an energy level that we call E0, and
hey are well separated from unperturbed energy levels of the subspace B. All the terms of the coupling Hamiltonian λHAB
re small in comparison to this separation. Therefore, the corresponding perturbed energy levels of A can have the energy
= E0 + O(λ). Considering that Eq. (B.12) is an eigenvalue equation for one of those perturbed energy levels, we can, up

o lowest order in the interaction parameter λ, write Heff as

Heff ≡ HA + λ2HAB
1

E0 − HB
H†

AB. (B.14)

This can now be understood as en effective Hamiltonian for the subspace A. This method of computing Heff, which has
the appealing form of second-order perturbation theory, has the significant property of being able to encapsulate any
higher-order process that occurs within the eliminated subspace B. This aspect is discussed in more detail in the main
text.

Appendix C. Effective Hamiltonians in second-quantized form

The effective Hamiltonian of Eq. (B.14) is defined in the subspace A. In most instances, this result can be generalized
and written in terms of the general bosonic and atomic annihilation and creation operators, giving a clearer understanding
of nonlinear processes. To show how this can be done, let us consider a general situation in which we have Ncav cavities
and Na atoms (or qubits), and the initial and final states are some tensor products in the dressed-qubit basis:

|i⟩ =

Ncav⨂
k=1

|nk⟩

Na⨂
j=1

⏐⏐sj⟩ , (C.1)

|f ⟩ =

Ncav⨂
k=1

⏐⏐n′

k

⟩ Na⨂
j=1

⏐⏐s′j⟩ , (C.2)

where nk, n′

k ∈ N denote the photon numbers and sj, s′j ∈ {+, −}. We assume nk ̸= n′

k and sj ̸= s′j — otherwise, the
corresponding cavity or atom does not change during the whole process, and then it can be factored out. Let us also
43
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Fig. D.1. Cavity-QED setups used to simulate ultrastrong light–matter interactions with the addition of a single atomic drive. In system 1, a single
qubit (or atom) is assumed to be coupled to two cavity modes; in system 2, two qubits are assumed to be coupled to a single cavity mode.

define the change of the photon number in cavity k as ∆nk = n′

k − nk (which characterizes the process), a transition
perator Ck for cavity k as

Ck ≡

{
ak if ∆nk < 0,
a†
k if ∆nk > 0,

(C.3)

nd a transition operator Aj for atom j as

Aj ≡

{
σ+

j if s′j = +,

σ−

j if s′j = −,
(C.4)

o that |f ⟩ ∝
∏

k,j C
|∆nk|
k Aj |i⟩.

As a result, we can obtain a general expression for the effective Hamiltonian in terms of the creation and annihilation
perators, provided we can find a set of parameters χi,j, λj, and geff, which allows one to rewrite the matrix Heff in the
orm

Heff = HA +

( ∑
k,j(χk,jnksj + sjλj) + α g∗

eff
∏

k

√
(max[nk, n′

k])|∆nk|

geff
∏

k

√
(max[nk, n′

k])|∆nk|
∑

k,j(χk,jn′

ks
′

j + s′jλj) + α

)
. (C.5)

ere, note that α is an overall energy shift that can be ignored. We can then rewrite Eq. (C.5) as

Heff = HA +

∑
k,j

⎡⎣χk,j a
†
kakσ̃j,z + λjσ̃j,z + geff

⎛⎝∏
k,j

C |∆nk|
k Aj + H.c

⎞⎠⎤⎦. (C.6)

rom this expression, it is clear that χk,j describes an effective dispersive coupling between cavity k and atom j, λj is a
amb shift of the natural frequency of atom j, and geff is the rate of the coherent exchange between |i⟩ and |f ⟩.

ppendix D. Examples of simulating ultrastrong light–matter interactions in single-mode-driven Jaynes–Cummings
ystems

In this section, we provide details of the derivation of the effective Hamiltonians, which describe the nonlinear
haracteristic of ultrastrong light–matter interactions simulated in JC-type systems with the addition of a single drive,
s discussed in Section 3.3 of the main text. The three cases that we consider here are based on two examples of the
avity-QED systems depicted in Fig. D.1: a single qubit coupled to two cavities, and two qubits coupled to a single cavity.
he three nonlinear processes that we discuss are: (i) two photons simultaneously emitted by a single atom; (ii) frequency
onversion of photons; and (iii) two atoms simultaneously excited by a single photon. These three cases are examples
f nonlinear processes that have been discussed in the context of ultrastrongly coupled light–matter systems, e.g., in
efs. [85,162,171].

.1. Example I: Two photons simultaneously emitted by a single atom

ystem. The setup considered is system 1 displayed in Fig. D.1: a single atom—described as a qubit—is coupled to two
avity modes. The states of the bare basis in the dressed-qubit picture are {|±, n,m⟩}, where − and + stand for the
ressed-qubit states of Eq. (142), and n,m = 0, 1, . . ., are the numbers of photons in the two cavity modes, respectively.
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Fig. D.2. Intermediate transition processes that mediate the effective interactions (a) between the two states |+, n,m⟩ and |−, n + 1,m + 1⟩ in
example I, (b) between the two states |+, n,m + 1⟩ and |−, n + 1,m⟩ in example II, and (c) between the two states |−, −, n + 1⟩ and |+, +, n⟩
n example III. Blue solid arrows denote transitions that conserve the number of excitations, red dashed arrows denote transitions that change the
umber of excitations by one, and blue dashed arrows denote transitions that change the number of excitations by two. Transitions marked by blue
rrows conserve parity; transitions denoted by red arrows do not. See also Refs. [162,163,171].

onlinear process. We consider the nonlinear process where a single dressed atom simultaneously emits two photons,
nd vice versa. The initial and final states are thus

|i⟩ = |+, n,m⟩ ; |f ⟩ = |−, n + 1,m + 1⟩ . (D.1)

ntermediate states. For any choice of |i⟩ and |f ⟩—i.e., any value of m and n—the subspace of intermediate states involved
n the process (to lowest order) consists of the following 12 states:

{|±, n + 1,m⟩ , |±, n,m + 1⟩ , |±, n + 2,m + 1⟩ ,

|±, n + 1,m + 2⟩ , |±, n,m − 1⟩ , |±, n − 1,m⟩}. (D.2)

mong these 12 states, there are four that contribute, as intermediate states, to the interaction between |i⟩ and |f ⟩, as
hown in Fig. D.2(a). The other eight states, which are not plotted in Fig. D.2(a), contribute to the Lamb shifts and the
ispersive couplings, which need to be accounted for since these are of the same order in g as the effective coupling.

ystem Hamiltonian. The Hamiltonian, in the rotating frame of the drive, is given by

H = ∆1a
†
1a1 + ∆2a

†
2a2 + ∆σ σ †σ + Ω

(
σ + σ †)

+ g
[
σ

(
a†
1 + a†

2

)
+ H.c.

]
, (D.3)

ith a1,2 the bosonic annihilation operators of the cavity modes, ∆1, ∆2, and ∆σ the frequency detunings of the cavities
nd qubit with the drive (i.e., ∆x = ωx − ωL), Ω the amplitude of the driving field, and g the coupling rate between the
avities and the qubit (considered to be equal for simplicity). In the dressed-qubit basis, we obtain

H = ∆1a
†
1a1 + ∆2a

†
2a2 + Rσ̃z + g

[(
sin2 θσ̃ − cos2 θσ̃ †

+ sin θ cos θσ̃z
)(

a†
1 + a†

2

)
+ H.c.

]
. (D.4)

pproximate resonance conditions. The nonlinear process |+,m, n⟩ ↔ |−, n + 1,m + 1⟩ is enabled when the following
esonance conditions are met:

∆1 + ∆2 ≈ 2R, ∆1 ̸= ∆2 ̸= (±R, ±2R). (D.5)

he second condition is imposed in order to detune the first-order processes (e.g., σ̃a†
1 + H.c. if ∆1 = 2R), and the

ompeting second-order processes [e.g.,
(
σ̃a†

1
2
+ H.c.

)
for ∆1 = R] that can excite degenerate photon pairs within a

ingle cavity [432–434].
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ffective Hamiltonian. The resulting effective Hamiltonian, using Eq. (B.14), takes the form

H I
eff = HA +

(
χ1n + χ2 m + λ + α g I

eff
√
(n + 1)(m + 1)

g I
eff

√
(n + 1)(m + 1) −χ1(n + 1) − χ2(m + 1) − λ + α

)
, (D.6)

hich, following the procedure outlined above, can be written as

H I
eff = ∆1a

†
1a1 + ∆2a

†
2a2 + (R + λ)σ̃z +

(
χ1a

†
1a1 + χ2a

†
2a2

)
σ̃z + g I

eff

(
a†
1a

†
2σ̃ + H.c.

)
. (D.7)

Here, g I
eff refers to the effective two-photon coupling rate; it is given by

g I
eff = g2 cos θ sin3 θ [Rf (1 − f )]−1, (D.8)

where we have introduced a parameter f ∈ (0, 1) such that

∆1 = 2fR, ∆2 = 2(1 − f )R, (D.9)

nsuring that the resonance condition is automatically fulfilled. Moreover, the Lamb shift of the qubit is

λ =
g2

2

[
cos4 θ

(
∆−1

1,+ + ∆−1
2,+

)
− sin4 θ

(
∆−1

1,− + ∆−1
2,−

)]
, (D.10)

nd the dispersive coupling rates are

χi = g2
(
cos4 θ

∆i,+
−

sin4 θ

∆i,−

)
, i ∈ {1, 2}, (D.11)

with ∆i,± ≡ ∆i ± 2R.

Exact resonance conditions. In order to obtain the full Rabi oscillations between the states |i⟩ and |f ⟩, the diagonal elements
of H I

eff should be equal. While the approximate resonance condition, given in Eq. (D.5), allows us to justify the derivation
of H I

eff, it does not exactly meet the condition for the equal diagonal elements of H I
eff. Thus, it needs to be fine-tuned. In

order to do this, we introduce a small correction δ ≪ R to the value of ∆1, such that

∆1 = 2fR + δ = 2R − ∆2 + δ, (D.12)

and then find the δ that makes the diagonal elements of H I
eff equal. The resulting δ is

δ = 2λ + χ1(2n + 1) + χ2(2m + 1). (D.13)

The lowest energy levels and the avoided level crossing arising under the exact resonance condition are plotted in
Figs. D.3(a) and D.3(b), respectively.

D.2. Example II: Frequency conversion of photons

System. The setup considered here is again system 1 in Fig. D.1 as in example I: a single atom—described as a qubit—is
coupled to two cavity modes. The states of the bare basis, working in the dressed-qubit picture, are again {|±, n,m⟩}.

Nonlinear process. We consider the nonlinear process where a photon is converted into a photon of different energy. The
initial and final states are, thus, given by:

|i⟩ = |+, n,m + 1⟩ ; |f ⟩ = |−, n + 1,m⟩ . (D.14)

Intermediate states. For any choice of |i⟩ and |f ⟩—i.e., any value of m and n—the subspace of intermediate states involved
in the process (to lowest order) consists of the following 12 states:

{|±, n + 1,m + 1⟩ , |±, n,m⟩ , |±, n + 2,m⟩ ,

|±, n + 1,m − 1⟩ , |±, n,m + 2⟩ , |±, n − 1,m⟩} (D.15)

As in the previous example, there are four states that contribute, as intermediate states, to the interaction between |i⟩
and |f ⟩, as shown in Fig. D.2(b). The other eight states, which are not shown, yield the Lamb and dispersive shifts.

System Hamiltonian. The Hamiltonian is the same as Eq. (D.3) in example I.

Approximate resonance conditions. The nonlinear process |+, n,m + 1⟩ ↔ |−, n + 1,m⟩ is enabled when the following
resonance conditions are met:

∆1 ≈ 2R + ∆2, ∆1 ̸= ∆2 ̸= ±R. (D.16)

As in example I, the second condition guarantees that the second-order processes, introducing photon pairs into the
cavities, are out of resonance.
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Fig. D.3. (a), (c), (e) Lowest energy levels of the system Hamiltonians in examples I, II, and III, respectively, of simulating ultrastrong light–matter
nteractions. Here, En refers to the eigenenergy of the nth eigenstate; ∆∗

1 and ∆∗
a denote the values of the detunings ∆1 and ∆a , respectively, at

hich the exact resonance conditions are fulfilled. (b), (d), (f) Enlarged view of the boxed regions in (a), (c), (e), respectively, each showing an
voided level crossing around their bare eigenenergy E0 . These avoided level crossings originate from the state hybridization due to the high-order

nonlinear interactions shown in Fig. D.2.

Effective Hamiltonian. The resulting effective Hamiltonian, using Eq. (B.14), takes the form

H II
eff = HA +

(
χ1n + χ2(m + 1) + λ + α g II

eff
√
(n + 1)(m + 1)

g II
eff

√
(n + 1)(m + 1) −χ1(n + 1) − χ2 − λ + α

)
, (D.17)

hich, following the procedure outlined above, can be written as

H II
eff = ∆1a

†
1a1 + ∆2a

†
2a2 + (R + λ)σ̃z +

(
χ1a

†
1a1 + χ2a

†
2a2

)
σ̃z + g II

eff

(
a†
1a2σ̃ + H.c.

)
. (D.18)

ere, g II
eff refers to the effective rate of the nonlinear process; it is given by

g II
eff = g2 (f − 1) cos3 θ sin θ + f cos θ sin3 θ

. (D.19)

Rf (f − 1)
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n Eq. (D.18), we have defined

∆1 = 2fR, ∆2 = 2(f − 1)R, (D.20)

or f ∈ (0, 1), such that the resonance conditions are automatically fulfilled. Moreover, the Lamb shift of the qubit is

λ =
g2

2
cos4 θ (4R + ∆1 + ∆2)
(2R + ∆1)(2R + ∆2)

+
g2

2
sin4 θ (4R − ∆1 − ∆2)
(2R − ∆1)(2R − ∆2)

(D.21)

and the dispersive coupling rates are

χi = g2
(

cos4 θ

2R + ∆i
+

sin4 θ

2R − ∆i

)
, i ∈ {1, 2}. (D.22)

xact resonance conditions. Following the same discussion as in example I, and setting

∆1 = 2fR + δ = 2R + ∆2 + δ, (D.23)

ne can see that the δ for the exact resonance condition has the same form as given in Eq. (D.13). The lowest energy
evels and the avoided level crossing arising under the exact resonance condition are plotted in Figs. D.3(c) and D.3(d),
espectively.

.3. Example III: Two atoms simultaneously excited by a single photon

Here we discuss the nonlinear effect originally described in the USC regime in Ref. [171] and recently experimentally
ealized in Ref. [174]; that is, two atoms can be simultaneously excited by a single photon, and vice versa.

ystem. The setup corresponds to system 2 in Fig. D.1: two atoms are coupled to a single cavity mode. The states of the
are basis, working in the dressed-qubit picture, are again {|±, ±, n⟩}.

onlinear process. We consider the nonlinear process where a single photon is simultaneously absorbed by two atoms.
he initial and final states are, thus, given by:

|i⟩ = |−, −, n + 1⟩ ; |f ⟩ = |+, +, n⟩ . (D.24)

ntermediate states. For any choice of |i⟩ and |f ⟩—i.e., any value of n—the subspace of intermediate states involved in the
rocess (to lowest order) consists of the following 12 states:

{|+, −, n + 1⟩ , |−, +, n + 1⟩ , |+, +, n + 1⟩ , |+, −, n⟩ , |−, +, n⟩ , |−, −, n⟩ ,

|+, −, n + 2⟩ , |−, +, n + 2⟩ , |−, −, n + 2⟩ , |−, +, n − 1⟩ , |+, −, n − 1⟩ , |+, +, n − 1⟩}. (D.25)

hese states mediate the interaction between |i⟩ and |f ⟩, up to third order, as shown in Fig. D.2(c). Note that there is no
econd-order process coupling |i⟩ and |f ⟩.

ystem Hamiltonian. The Hamiltonian, in the rotating frame of the driving, reads

H = ∆aa†a + ∆σ

(
σ

†
1 σ1 + σ

†
2 σ2

)
+ Ω(σ1 + σ2 + H.c.) + g

[
a
(
σ

†
1 + σ

†
2

)
+ H.c.

]
, (D.26)

here a is the bosonic annihilation operator of the cavity and ∆a = ωa−ωL (∆σ = ωσ −ωL) is the cavity (qubit) detuning
rom the drive frequency. In the dressed qubit basis, it reads:

H = ∆aa†a + R
(
σ̃

†
1 σ̃1 + σ̃

†
2 σ̃2

)
+g

{
a
[
sin2 θ(σ̃1 + σ̃2) − cos2 θ

(
σ̃

†
1 + σ̃

†
2

)
+ sin θ cos θ

(
σ̃1,z + σ̃2,z

)]
+ H.c.

}
. (D.27)

Approximate resonance condition. The nonlinear process |−, −, n + 1⟩ ↔ |+, +, n⟩ is enabled when the following
esonance condition is satisfied:

∆a ≈ 4R. (D.28)

ffective Hamiltonian. The resulting effective Hamiltonian, using Eq. (B.14), takes the form

H III
eff = HA +

(
−χ1(n + 1) − χ2 − λ + α g III

eff

√
n + 1

g III
eff

√
n + 1 2χn + 2λ + α

)
, (D.29)

hich, following the procedure outlined above, can be written as

H III
eff = ∆aa†a +

∑
(R + λ)σ̃z,i + χa†aσ̃z,i + g III

eff

(
a†σ̃1σ̃2 + aσ̃ †

1 σ̃
†
2

)
. (D.30)
i
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H
ere, g III
eff is the effective rate of the nonlinear process; it is computed to be

g III
eff =

g3

3R2

(
cos3 θ sin3 θ + 3 cos θ sin5 θ

)
. (D.31)

It is clear from the cubic dependence on g that, in contrast to the two previous examples, this is a third-order process; the
intermediate transitions are shown in Fig. D.2(c). On the other hand, both the Lamb shifts of the atoms and the dispersive
coupling between the atoms and the cavity are dominated by the second-order processes and, thus, exhibit a quadratic
dependence on g:

λ =
g2

2
(2R − ∆a) cos4 θ + (2R + ∆a) sin4 θ

4R2 − ∆2
a

, (D.32)

χ = 2λ. (D.33)

Exact resonance conditions. Following the same approach as in the previous examples, the fine-tuning of the resonance
condition is done by defining a small energy detuning δ ≪ R, such that

∆a = 4R + δ. (D.34)

The detuning is then found to be

δ = 4(n + 1)χ. (D.35)

The lowest energy levels and the avoided level crossing arising under the exact resonance condition are plotted in
Figs. D.3(e) and D.3(f), respectively.
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