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Abstract

Here we summarize results from our study of the critical depinning current Jc versus the applied magnetic flux U, for: (i) quasiperiodic
(QP) one-dimensional (1D) chains and (ii) 2D arrays of pinning centers placed on the nodes of a five-fold Penrose lattice. In 1D QP
chains, the peaks in Jc(U) are determined by a sequence of harmonics of the long and short segments of the chain. The critical current
Jc(U) has a remarkable self-similarity. In 2D QP pinning arrays, we predict analytically and numerically the main features of Jc(U), and
demonstrate that the Penrose lattice of pinning sites provides an enormous enhancement of Jc(U), even compared to triangular and
random pinning site arrays. This huge increase in Jc(U) could be useful for applications.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Recent progress in the fabrication of nanostructures has
provided a wide variety of well-controlled vortex-confine-
ment topologies, including different regular pinning arrays
[1–5]. A main fundamental question in this field is how to
drastically increase vortex pinning, and thus the critical
current Jc, using artificially-produced periodic arrays of
pinning sites (APS). The increase and, more generally, con-
trol of the critical current Jc in superconductors by its pat-
terning (perforation) can be of practical importance for
applications in microelectronic devices. A peak in the crit-
ical current Jc(U), for a given value of the magnetic flux per
unit cell, say U1, can be engineered using a superconducting
sample with a periodic APS with a matching field H1 = U1/
A (where A is the area of the pinning cell), corresponding to
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one trapped vortex per pinning site. However, this peak in
Jc(U), while useful to obtain, decreases very quickly for

fluxes away from U1. Thus, the desired peak in Jc(U) is
too narrow and not very robust against changes in U. It
would be greatly desirable to have samples with APS with
many periods. This multiple-period APS sample would pro-
vide either very many peaks or an extremely broad peak in
Jc(U), as opposed to just one (narrow) main peak (and its
harmonics). We achieve this goal (a very broad Jc(U)) here
by studying samples with many built-in periods. Here, we
study vortex pinning by 1D quasiperiodic (QP) chains
and by 2D APS located on the nodes of QP lattices (e.g.,
a five-fold Penrose lattice) [6]. We show that the use of
the 2D QP (Penrose) lattice of pinning sites results in a

remarkable enhancement of Jc(U), as compared to other
APS, including triangular and random APS. In contrast
to superconducting networks, for which only the areas of
the network plaquettes play a role [7], for vortex pinning
by QP pinning arrays, the specific geometry of the elements
which form the QP lattice and their arrangement are
important, making the problem far more complex.
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Fig. 1. (a) The critical depinning current Jc, versus the number of vortices,
Nv � U, for 1D QP chains, Np = 21 (red bottom line), Np = 34 (blue line),
Np = 55 (green line), and Np = 89 (dark blue top line), for c = aS/aL = 1/s.
Here we use: fp/f0 = 1.0 and rp = 0.1k. Independently of the length of the
chain, the peaks include the sequence of successive Fibonacci numbers and
their subharmonics. (b) Jc(Nv) for a long chain, Np = 144, and the same
c = 1/s. (c) The function Jc(U/U1) for the same 1D chains (using same
colors). The curves for different chains display the same set of peaks,
namely, at U/U1 = 1 (first matching field) and U/U1 = 0.5, as well as at the
golden-mean-related values: U/U1 = s, s/2, (s + 1)/2 = s2/2, (s2 + s)/
2 = s3/2, s2 = s + 1, s2 + 1. This behavior demonstrates the self-similarity
of Jc(U). (For interpretation of the references in color in this figure legend,
the reader is referred to the web version of this article.)
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2. Simulation

We model a three-dimensional (3D) slab, infinitely long
in the z-direction, by a 2D (in the xy-plane) simulation cell
with periodic boundary conditions. The external magnetic
field is applied along the z-direction. We perform simulated
annealing simulations by numerically integrating the over-
damped equations of motion (see, e.g., [8,9]):

gvi ¼ f i ¼ fvv
i þ fvp

i þ fT
i þ fd

i . ð1Þ
Here fi is the total force per unit length acting on vortex i,
fvv

i and fvp
i are the forces due to vortex–vortex and vortex–

pin interactions, respectively, fT
i is the thermal stochastic

force, and fd
i is the driving force; g is the viscosity, which

is set to unity. The force due to the vortex–vortex interac-
tion is fvv

i ¼ RNv
j f0K1ðjri � rjj=kÞrij, where Nv is the number

of vortices, K1 a modified Bessel function, k the penetration
depth, rij = (ri � rj)/jri � rjj, and f0 ¼ U2

0=8p2k3. Here U0 =
hc/2e. The pinning force is fvp

i ¼ RNp

k fp � ðjri � r
ðpÞ
k j=rpÞH�

½ðrp � jri � r
ðpÞ
k jÞ=k�r

ðpÞ
ik , where Np is the number of pinning

sites, fp the maximum pinning force of each short-range
parabolic potential well located at r

ðpÞ
k , rp is the range of

the pinning potential, H is the Heaviside step function,
and r

ðpÞ
ik ¼ ðri � r

ðpÞ
k Þ=jri � r

ðpÞ
k j. All the lengths (fields) are

expressed in units of k (U0/k2). The ground state of a
system of moving vortices is obtained by simulating the
field-cooled experiments. For deep short-range (d-like)
potential wells, the energy required to depin vortices
trapped by pinning sites is proportional to the number of
pinned vortices, N ðpÞv . Therefore, in this approximation,
we can define the critical current as follows: jcðUÞ ¼
j0N ðpÞv ðUÞ=N vðUÞ, where j0 is a constant, and study the
dimensionless value Jc = jc/j0. We use narrow potential
wells as pinning sites, with rp = 0.04–0.1k.

3. Critical current in quasiperiodic arrays of pinning sites

3.1. 1D quasicrystal

A 1D QP chain [6] can be constructed by iteratively
applying the Fibonacci rule (L! LS, S! L), which gener-
ates an infinite sequence of two line segments, long L and
short S. For an infinite QP sequence, the ratio of the num-
bers of long to short elements is the golden mean
s = (1 +

p
5)/2 [6]. The position of the nth point where a

new segment, either L or S, begins is determined (e.g.,
for aS = 1 and aL = s) by: xn = n + [n/s]/s, where [x]
denotes the integer part of x. To study the critical depin-
ning current Jc in 1D QP pinning chains, we place pinning
sites to the points where the L or S elements of the QP
sequence link to each other. The results of calculating
Jc(Nv) for different chains and the same c = 1/s (c = aS/
aL is the ratio of the length of the short segment, aS, to
the length of the long segment, aL) are shown in Fig. 1.
For sufficiently long chains, the positions of the main peaks
in Jc, to a significant extent, do not depend on the length of
the chain. The set of peaks in Jc includes a Fibonacci
sequence: Nv = 13, 21, 34, 55, 89, 144, as well as the peaks
at first matching field (different for each chain) and other
‘‘harmonics’’. Being rescaled, normalized by the numbers



V.R. Misko et al. / Physica C 437–438 (2006) 213–216 215
of pins in each chain, the Jc curves reproduce each other
and have many pronounced peaks for golden-mean-related
values of U/U1 (U1 is the flux corresponding to the first
matching field, H1, when Nv = Np). The same peaks of
Jc(U), for different chains, are revealed before and after
rescaling because of the self-similarity of Jc(U). The
self-similarity of Jc(U) has also been studied in reciprocal
k-space and will be presented elsewhere [10].

3.2. 2D quasiperiodic array of pinning sites: Penrose lattice

Consider now a 2D QP APS, namely, an APS located at
the nodes of a five-fold Penrose lattice. This lattice is a 2D
QP structure, or quasicrystal, also referred to as Penrose
tiling [6]. These structures possess a perfect local rotational
(five- or ten-fold) symmetry, but do not have translational
long-range order. Being constructed of a series of building
blocks of certain simple shapes combined according to
specific local rules, these structures can extend to infinity
without any defects [6]. The unusual self-similar diffraction
pattern of a Penrose lattice exhibits a dense set of ‘‘Bragg’’
peaks because the lattice contains an infinite number of peri-
ods in it [6]. It is precisely this unusual property that is

responsible for the striking Jc(U)’s obtained here.
The structure of a five-fold Penrose lattice is presented

in the inset to Fig. 2. As an illustration only, a small five-
fold symmetric fragment with 46 points is shown. The ele-
mental building blocks are rhombuses with equal sides, a,
and angles which are multiples of h = 36�. There are two
kinds of rhombuses: (i) those having angles 2h and 3h
(‘‘thick’’), and (ii) rhombuses with angles h and 4h (‘‘thin’’).
Fig. 2. The critical current Jc(U) for a triangular (blue dashed line),
random (green open circles) and QP (301-sites Penrose-lattice) APS (red
solid line). The Penrose lattice provides a remarkable enhancement of
Jc(U) over a very wide range of values of U because it contains many
periods in it. The inset shows an example (a 46-sites sample) of a five-fold
Penrose lattice, consisting of ‘‘thick’’ (empty) and ‘‘thin’’ (orange-filled)
rhombuses. The pinning parameters are: fp/f0 = 2.0 and rp = 0.1k. (For
interpretation of the references in color in this figure legend, the reader is
referred to the web version of this article.)
Let us analyze whether any specific matching effects can
exist between the Penrose pinning lattice and the interact-
ing vortices, which affect the magnetic-field dependence
of the critical depinning current Jc(U). Quasicrystalline pat-
terns are intrinsically incommensurate with the flux lattice
for any value of the magnetic field [7], therefore, in contrast
to periodic APS, one might a priori assume a lack of sharp
peaks in Jc(U) for QP APS. However, the existence of many
periods in the Penrose lattice can lead to a hierarchy of
matching effects for certain values of the applied magnetic
field, resulting in strikingly-broad shapes for Jc(U). These
could be valuable for applications demanding unusually
broad Jc(U)’s.

First, there is a ‘‘first matching field’’ (the corresponding
flux is denoted as U1) when each pinning site is occupied by
a vortex. This matching effect is accompanied by a broad
maximum involving three kinds of local ‘‘commensurabil-
ity’’ effects of the flux lattice: with the rhombus side a; with
the short diagonal of a thick rhombus, 1.176a, which is
close to a; and with the short diagonal of a thin rhombus,
which is a/s � 0.618a.

Another matching is related with the filling of all the pin-
ning sites on the vertices of the thick rhombuses and only
three out of four of the pinning sites on the vertices of thin
rhombuses. For this value of the flux, matching conditions
are fulfilled for two close distances, a (the side of a rhom-
bus) and 1.176a (the short diagonal of a thick rhombus),
but are not fulfilled for the short diagonal, a/s, of the thin
rhombus. Therefore, this 2D QP feature is related to s,
although not in such a direct way as in the case of a 1D
QP pinning array. This 2D QP matching results in a very
wide maximum of the function Jc(U) at U = Uvacancy/thin �
Uv/t = 0.757U1 (Fig. 2).

For higher vortex densities (U = Uinterstitial/thick � Ui/T =
1.482U1) a single interstitial vortex is inside each thick
rhombus. These interstitial vortices can easily move; thus
Jc has no peak at Ui/T. The position of this feature is deter-
mined by the number of vortices at U = U1, which is
Nv(U) = Np, plus the number of thick rhombuses,
N thick

rh ¼ N rh=s.
In order to better understand the structure of Jc(U) for

the Penrose pinning lattice, we compare the elastic Eel

and pinning Epin energies of the vortex lattice at H1 and
at (the lower field) Hv/t, corresponding to the two maxima
of Jc. Vortices can be pinned if the gain Epin = Upinbnpin of
the pinning energy is larger than the increase of the elas-
tic energy [11] related to local compressions: Eel =
C11[(aeq � b)/aeq]2. Here, Upin � fprp, npin is the density of
pinning centers, b(H 6 H1) = H/H1 = B/(U0npin), and
b(H > H1) = 1 is the fraction of occupied pinning sites
(b = 1 for H = H1, and b = 0.757 for H = Hv/t), aeq =
[2/31/2bnpin]1/2 is the equilibrium distance between vortices
in the triangular lattice, b is the minimum distance between
vortices in the distorted pinned vortex lattice (b = a/s
for H = H1 and b = a for H = Hv/t), and C11 = B2/
[4p(1 + k2k2)] is the compressibility modulus for short-
range deformations [8] with characteristic spatial scale
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k � (npin)1/2. The dimensionless difference of the pinning
and elastic energies is Epin � Eel ¼ bfdiff npinU

2
0=ð4pk2Þ,

where

fdiff ¼ 4pk2U pin=U
2
0 � b� ½1� bð31=2bnpin=2Þ1=2�2: ð2Þ

Near matching fields, Jc has a peak only if fdiff > 0. Since
only two matching fields provide fdiff > 0, then our analysis
explains the two-peak structure observed in Jc shown in
Fig. 2. Note that for weaker pinning, the two-peak struc-
ture gradually turns into one very broad peak, and eventu-
ally zero peaks for weak enough pinning [10].

For comparison, we show the Jc(U) for Penrose–lattice,
triangular and random pinning arrays (Fig. 2). The latter is
an average over five realizations of disorder. Notice that
the QP lattice leads to a very broad and potentially useful
enhancement of the critical current Jc(U), even compared
to the triangular or random APS. The remarkably broad
maximum in Jc(U) is due to the fact that the Penrose lattice
has many (infinite, in the thermodynamic limit) periodici-
ties built in it [6]. In principle, each one of these periods
provides a peak in Jc(U). In practice, like in quasicrystalline
difraction patterns, only few peaks are strong. This is also
consistent with our study.

4. Conclusions

The critical depinning current Jc(U) was studied in 1D
QP chains and in 2D QP arrays (the five-fold Penrose lat-
tice) of pinning sites. A hierarchical and self-similar Jc(U)
was obtained. We physically analyzed all the main features
of Jc(U). Our analysis shows that the QP lattice provides an
unusually broad critical current Jc(U), that could be useful
for practical applications demanding high Jc’s over a wide
range of fields.
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