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Abstract

This supplementary material provides detailed derivations for obtaining the general solution of the time-

dependent wave function of a molecule subjected to a pulse sequence composed of multiple sub-pulses,

starting from its rotational and vibrational ground state within the ground electronic state. It explores the

theoretical maximum degrees of orientation by varying the number of rotational states. It also investigates

the impact of pulse duration on molecular orientation. Furthermore, it showcases a further application of

this analytical approach to polyatomic nonlinear molecules.

I. AN ANALYTICAL SOLUTION FOR THE TIME-DEPENDENT WAVE PACKET

In this section, we delve into a more detailed explanation of the derivation process for the

time-dependent wave function. As illustrated in Figure 1 in the main text, each subpulse En(t)

independently excites two adjacent states, denoted as |J − 1⟩ and |J⟩ (n = J). Expanding the

unitary time-evolution operator to include the first-order Magnus term in the interaction picture,

we can express the wave function of the two-level subsystem as

|ψn(t)⟩ =
{

cos θn(t) |J − 1⟩ ⟨J − 1| + i sin θn(t) exp
[
−i(ϕn − ωn,n−1τn)

]
|J⟩ ⟨J − 1|

} ∣∣∣ψn−1(t)
〉
, (S1)

where
∣∣∣ψ0(t)

〉
= |0⟩ is the initial wave function of the molecule without pulse driving. After a

single pulse (N = 1) excitation, the time-dependent wave function of the molecule reads

|ψ(t)⟩1 = cos θ1(t) |0⟩ + i sin θ1(t) exp
[
−i(ϕ1 − ω1,0τ1)

]
|1⟩ . (S2)

In the case of N = 2, we have

|ψ(t)⟩2 = cos θ1(t) |0⟩ +
{

cos θ2(t) |1⟩ + i sin θ2(t) exp
[
−i(ϕ2 − ω2,1τ2)

]
|2⟩
}
×

i sin θ1(t) exp
[
−i(ϕ1 − ω1,0τ1)

]
.

(S3)

For a pulse sequence comprising three subpulses (N = 3), the time-dependent wave function can

be represented as

|ψ(t)⟩3 = cos θ1(t) |0⟩ + cos θ2(t)i sin θ1(t) exp
[
−i(ϕ1 − ω1,0τ1)

]
|1⟩

+
{

cos θ3(t) |2⟩ + i sin θ3(t) exp
[
−i(ϕ3 − ω3,2τ3)

]
|3⟩
}
×

i sin θ1(t) exp
[
−i(ϕ1 − ω1,0τ1)

]
i sin θ2(t) exp

[
−i(ϕ2 − ω2,1τ2)

]
.

(S4)
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Considering that the molecule is driven by four subpulses (N = 4), we can express the wave

function as

|ψ(t)⟩4 = cos θ1(t) |0⟩ + cos θ2(t)i sin θ1(t) exp
[
−i(ϕ1 − ω1,0τ1)

]
|1⟩

+ cos θ3(t)i sin θ1(t) exp
[
−i(ϕ1 − ω1,0τ1)

]
i sin θ2(t) exp

[
−i(ϕ2 − ω2,1τ2)

]
|2⟩

+
[

cos θ4(t) |3⟩ + i sin θ4(t) exp
[
−i(ϕ4 − ω4,3τ4)

]
|4⟩
]
i sin θ1(t) exp

[
−i(ϕ1 − ω1,0τ1)

]
× i sin θ2(t) exp

[
−i(ϕ2 − ω2,1τ2)

]
i sin θ3(t) exp

[
−i(ϕ3 − ω3,2τ3)

]
.

(S5)

As a result, the general solution of the time-dependent wave function after a pulse sequence con-

sisting of N subpulses can be expressed as

|ψ(t)⟩N = cos θ1(t) |0⟩ +
N−1∑
J=1

cos θJ+1(t)
J∏

n=1

i sin θn(t) exp
[
−i(ϕn − ωn,n−1τn)

]
|J⟩

+

N∏
n=1

i sin θn(t) exp
[
−i(ϕn − ωn,n−1τn)

]
|Jmax⟩ .

(S6)

II. MAXIMUM DEGREE OF ORIENTATION

We now provide further details regarding the theoretical maximum orientation. By utilizing the

method of Lagrange multipliers, we can determine the maximum degree of orientation

L(c0, c1, · · ·, cJmax , λ) = f − λg, (S7)

where Jmax represents the highest rotational state within the given subspace, the term

f = 2
Jmax−1∑

J=0

cJ+1cJMJ+1,J (S8)

corresponds to the amplitude of the orientation at the full revivals, taking into account the relative

phases in Eq. (6) in the main text to satisfy the relation φJ+1,J = (J + 1)φ1,0 + 2kπ, and λ is the

Lagrange multiplier subject to a constraint of

g =
Jmax∑
J=0

c2
J − 1 = 0 (S9)
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To find the extremum of f subject to g, we can solve for the condition ∇L = 0, which leads to the

following relations

M1,0c1 − λc0 = 0,

M1,0c0 +M2,1c2 − λc1 = 0,

M2,1c1 +M3,2c3 − λc2 = 0,

· · ·

MJmax,Jmax−1cJmax−1 − λcJmax = 0.

(S10)

By multiplying each equation in (S10) by the corresponding coefficients cJ of λ, we have

f − λ

Jmax∑
J=0

c2
J

 = f − λ = 0. (S11)

The maximum degree of orientation, denoted by f , corresponds to the maximum value of λ deter-

mined by equation (S10). By examining the equations provided in Eq. (S10), we can derive the

expansion coefficients

c1 =
λ

M1,0
c0,

c2 =
λ2 −M2

1,0

M2,1M1,0
c0,

c3 =
λ3 − (M2

1,0 +M
2
2,1)λ

M3,2M2,1M1,0
c0,

· · ·

cJmax =
λJmax +

∑[Jmax/2]
k=1 (−1)k

{∏k
n=1
∑Jmax−2k+2(n−1)

l1=0;ln=ln−1+2 M
2
ln+1,ln

}
λJmax−2k∏Jmax−1

l=0 M2
l+1,l

c0,

(S12)

where [Jmax/2] equals to the greatest integer less than Jmax/2. Combining the last equation in Eq.

(S10) with Eq. (S12), we have

λJmax+1 +

[ Jmax+1
2 ]∑

k=1

(−1)k


k∏

n=1

Jmax−1−2k+2n∑
l1=0;

ln=ln−1+2

M2
ln+1,ln

 λJmax+1−2k = 0. (S13)

To obtain the maximum degree of orientation, we can solve Eq. (S13). Subsequently, the real

positive amplitudes (cJ) of the rotational states can be found by substituting the obtained λ into

Eq. (S12) and combining it with the condition g =
∑Jmax

J=0 |cJ |
2
− 1 = 0. By following this process,

we can generate the desired rotational wave packet in the interaction picture

|ψ⟩ =

Jmax∑
J=0

cJ exp (iφJ) |J⟩ , (S14)
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where the optimal phases φJ satisfy the relation φJ+1 − φJ = (J + 1) (φ1 − φ0) + 2kπ.

Note that eigenvalue equations of the operator ⟨cos θ⟩ can only be solved analytically for simple

two-level and three-level systems. As the complexity of the system increases, analytically finding

eigenvalues and eigenvectors becomes challenging due to the intricacies involved in matrix diago-

nalization. Consequently, numerical methods such as Power Iteration, QR Algorithm, and Jacobi

Method are commonly employed to determine eigenvalues and eigenvectors. This is the key reason

why we solve Eq. (S13) instead of the eigenvalue equation to obtain the target wave packets. Table

S1 lists the optimal population distributions of rotational states and the corresponding maximum

degree of orientation for different Jmax.

III. AMPLITUDE AND PHASE CONDITIONS

Based on the above analysis, the maximum degree of orientation solved by Eq. (S13) requires

that θ j(t f ) satisfy the following relations: ∣∣∣cos θ1(t f )
∣∣∣ = c0,∣∣∣i sin θ1(t f ) exp

[
−i(ϕ1 − ω1,0τ1)

]
cos θ2(t f )

∣∣∣ = c1,

· · ·∣∣∣∣∣∣∣
N∏

n=1

i sin θn(t f ) exp
[
−i(ϕn − ωn,n−1τn)

]∣∣∣∣∣∣∣ = cJmax ,

(S15)

and
φJ+1,J = φJ+1 − φJ =

π

2
− ϕJ+1 + ωJ+1,JτJ+1,

φ1,0 = φ1 − φ0 =
π

2
− ϕ1 + ω1,0τ1.

(S16)

By solving the equations in (S15), we can obtain the amplitude conditions for generating the

maximum degree of orientation, i.e., θ1(t f ) = arccos c0,

θn(t f ) = arccos cn−1

|
∏n−1

k=1 i sin θk(t f ) exp[−i(ϕk−ωk,k−1τk)]| , (1 < n ≤ N).
(S17)

Furthermore, according to Eq. (S16) and the relation φJ+1 − φJ = (J + 1) (φ1 − φ0) + 2kπ, the

complex pulse areas θn(t f ) are also required to meet the phase condition

ϕn = ωn,n−1τn − n
(
−ϕ1 + ω1,0τ1

)
−

(n − 1)π
2

+ 2kπ, (n > 1). (S18)
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IV. ADDITIONAL SIMULATIONS

The control scheme proposed in this scenario involves implementing a pure rotational ladder-

climbing excitation to achieve the desired superposition of rotational states and maximize the

degree of orientation. To investigate the suitable bandwidth regime for the pulse sequence, we

consider the case where Jmax = 15 and assume that all sub-pulses have the same bandwidth,

denoted as ∆ωn = ∆ω. The amplitude of the sub-pulses follows Eq. (S17), and the center time of

the nth sub-pulse is fixed at τn = 5(n − 1)Tn to satisfy the phase condition stated in Eq. (S18).
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FIG. S1. Numerical simulations by utilizing the pulse sequence in Eq. (5) with N = 15. The (a) fidelity and

(b) maximum orientation values |⟨cos θ⟩|max are shown vs the bandwidth of the pulses, where Tn = 1/∆ω.

Figure S1 displays the dependence of the fidelity F =
〈
ψ(t f )|ψ

〉 〈
ψ|ψ(t f )

〉
and the corresponding

maximum orientation values on the bandwidth ∆ω. We can observe that the fidelity consistently

remains high over 0.99 for durations of Tn > Trot, indicating that each excitation period can be as

short as the rotational period. In the narrow-bandwidth regime, the fidelity can reach high values of

F > 0.997, resulting in theoretical maximum orientation values. In the broad bandwidth regimes,

however, the fidelity decreases and the corresponding orientation value decreases. To this end, we

perform all simulations by considering the pulse sequences in the narrow bandwidth regime with

the duration of Tn = 3Trot.

As can be seen from our derivation, the fidelity and maximum orientation depend on the area

of each sub-pulse, a product of the dipole moment and the electric field strength. Therefore, it is

not necessary to accurately determine the value of the dipole moment, as the pulse area condition
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FIG. S2. The application of the analytical method to the polyatomic molecule (CH3I). (a) Schematic repre-

sentation of an ultracold symmetric-top molecule subjected to a pulse sequence, and (b) the corresponding

energy level diagram. θ denotes the angle between the molecular symmetry axis and the field polarization

direction.

can be met by controlling the field strength of the sub-pulse. It is indicated that fluctuations in

the field strength affect the experimental precision. For the pulse with Tn = 6.6 ps used in the

simulations, if the field strength fluctuation can be controlled to less than 3%, the fidelity can still

be maintained at a high value over 0.99. This requirement is not strict for the current precision

spectroscopy techniques.

It is well known that the stability of the carrier wave frequency and phase directly affects the

performance and accuracy of microwave pulses in various applications, especially in precision

spectroscopy, quantum computing, and communication systems. Our proposed theoretical scheme

does necessitate precise terahertz and microwave shaping techniques. For our utilized pulses with

a duration of Tn = 6.6 ps, in order to maintain fidelity above 0.99, frequency-detuning fluctuations

should be controlled to less than 1‰, and pulse phase fluctuations should be kept below 6%.
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V. APPLICATIONS TO POLYATOMIC MOLECULES

We now demonstrate the generalization of applying our analytical method to polyatomic

molecules. By considering pure rotational excitation in its absolute ground state, the field-free

Hamiltonian of the polyatomic nonlinear molecule can be given by

Ĥ0 = AĴ2
a + BĴ2

b +CĴ2
c , (S19)

where Ĵa, Ĵb, and Ĵc represent the angular momentum operators concerning the principal molecular

axes, and A > B > C are the rotational constants. Based on the relations of rotational constants,

polyatomic molecules can be classified as asymmetric-top (A > B > C), symmetric-top (oblate

A = B > C or prolate A > B = C), spherical-top (A = B = C), or linear-top (A = B,C = 0) [1].

Our analytical approach can be directly applied to all symmetric types of polyatomic molecules,

except for asymmetric top molecules, which require suitable adjustments in the amplitudes and

center frequencies of subpulses.

As an example, we examine how to apply the present analytical method to prolate symmetric-

top molecules (A > B = C) in Fig. S2(a). The corresponding Hamiltonian can be written as

Ĥs = CĴ2 + (A −C)Ĵ2
z , (S20)

where we assign the axes as a → z, b → x, and c → y in the molecular fixed frame. The

eigenfunctions |JKM⟩ satisfy

Ĥs |JKM⟩ = EJK |JKM⟩ , (S21)

where the eigenenergies EJK = CJ(J + 1) + (A − C)K2 are associated with the quantum numbers

J (J = 0, 1, 2, ...), and M and K (M,K = −J,−J + 1, ..., J). The latter describes rotation relative to

a space-fixed axis and a molecule-fixed axis, respectively. The interaction between the molecule

and linearly polarized pulses is given by

Ĥµ(t) = −µ0D1
00E(t) = −µ0 cos θE(t), (S22)

where θ denotes the angle between the molecular symmetry axis and the field polarization direc-

tion, and µ0 represents the permanent dipole moment. By using Wigner 3j-symbols or Clebsch-

Gordan coefficients, the dipole transition matrix elements between rotational states can be ex-
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pressed as follows [2, 3]

⟨J′′K′′M′′|DJ
MK |J

′K′M′⟩ =
√

2J′′ + 1
√

2J′ + 1(−1)M′′+K′′

 J′ J J′′

M′ M −M′′


 J′ J J′′

K′ K −K′′


=
√

2J′ + 1/
√

2J′′ + 1 ⟨J′M′JM|J′′M′′⟩ ⟨J′K′JK|J′′K′′⟩ ,

(S23)

which govern the selection rules ∆J = ±1, ∆K = 0, and ∆M = 0, as shown in Fig. S2(b).

By considering the molecule initially in a pure rotational state |J0K0M0⟩, the time-dependent

FIG. S3. Simulations for the application of the analytical method to the polyatomic molecule (CH3I). (a)

The time-dependent electric field of the pulse sequence consisting of four optimal sub-pulses, (b) the corre-

sponding time-dependent populations of the rotational states, and (c) the corresponding field-free molecular

orientation evolution. The time is measured in units of the full revival period π/C = 66.5 ps of the molecule.
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wave function after rotational excitation can be expanded as

∣∣∣ψJ0K0 M0(t)
〉
=

Jmax∑
J=Ji

cJK0 M0(t)e
iφJK0 M0 e−iEJK0 t |JK0M0⟩ , (S24)

where Ji = max {|K0|, |M0|}. cJK0 M(t) and φJK0 M represent the real positive amplitude and phase of

the rotational state |JK0M⟩, determined by cJK0 M(t)eiφJK0 M = ⟨JK0M| Û(t, t0) |J0K0M0⟩. The degree

of orientation for the symmetric-top molecules can be given by

⟨cos θ⟩ (t) =
〈
ψJ0K0 M0(t)

∣∣∣ cos θ
∣∣∣ψJ0K0 M0(t)

〉
=

Jmax∑
J=Ji

cJK0 M0(t)
2NJ,J + 2

Jmax−1∑
J=Ji

cJK0 M0(t)cJ+1K0 M0(t)

× NJ+1,J cos(ω′J+1,Jt − φ′J+1,J).

(S25)

where
NJ,J = ⟨JK0M0| cos θ |JK0M0⟩ =

K0M0

J(J + 1)
,

NJ+1,J = ⟨J + 1K0M0| cos θ |JK0M0⟩ =

√
(J + 1)2 − K2

0

√
(J + 1)2 − M2

0

(J + 1)
√

(2J + 1)(2J + 3)
,

(S26)

where the transition frequencies are defined by ω′J+1,J = EJ+1K0 − EJK0 , and the relative phases are

φ′J+1,J = φ
′
J+1K0 M0

− φ′JK0 M0
. For the absolute ground state |J0 = 0,K0 = 0,M0 = 0⟩, the degree of

orientation described by Eq. (S25) is exactly the same as for the diatomic molecule in Eq. (6) of

the main text. This indicates that the maximum orientation of the symmetric-top molecules and

the corresponding population distributions align with those listed in Table S1. Furthermore, it is

clear that the optimal pulse sequence obtained in Eq. (5) in the main text can generate the desired

orientation values for the symmetric top molecules.

To confirm this point and to visualize the time-dependent population evolutions clearly, we

apply an optimal pulse sequence consisting of four sub-pulses to a polyatomic molecule (CH3I)

with A = 5.173949cm−1, C = 0.25098cm−1, and µ0 = 1.6406D [4]. Figure S3 displays the op-

timal pulse sequence, the corresponding field-free orientation evolution, and the time-dependent

populations of rotational states. As expected, the optimal pulse sequence in Fig. S3(a) results in a

maximum orientation value of 0.906 in Fig. S3(b). It also leads to optimal population distributions

across the five desired rotational states while keeping other unwanted rotational states unpopulated

in Fig. S3(c). Interestingly, the optimal pulse sequence is obtained by scaling only the center fre-

quencies and amplitudes of the pulses utilized for LiH molecules with the rotational constant C

and the dipole moment µ0 of CH3I. This means that the electric field strengths of all sub-pulses in

11



Fig. S3(a) are reduced by a constant of 8.4 in comparison to the pulses applied for LiH molecules

in Fig. 2(c) of the main text. By applying more optimal sub-pulses to the system, we can attain

enhanced molecular orientations.

Further analysis of the asymmetric top molecule indicates that by using three rotational con-

stants (A, B and C) and three dipole moments (µa, µb and µc) to determine the central frequencies

and amplitudes of sub-pulses, this analytical method can be extended to asymmetric top molecules

starting from the absolute ground state (ν = 0 and J = 0), leading to desired three-dimensional

molecular orientations.
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