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In this Supplemental Material, we first provide a brief review of non-Hermitian symmetries and nonunitary dynam-
ics. We then establish a method for constructing pseudo-Hermitian Hamiltonians and demonstrate that bound states
in the broken phase have equal weights across two subsystems. We prensent details about quantum emitters (QEs) in
the tight-binding chain, including qualitatively different two-emitter dynamics under varying coupling strengths and
a single emitter in the double-excitation sector. Additionally, we investigate the creation of third-order exceptional
points (EPs) and degenerate second-order EPs using vacancy-like dressed states within simplified models. We also
analyze the conditions for two-emitter bound states and show switchable light-mediated interactions in the topolog-
ical lattice. Finally, we discuss the experimental feasibility of the pseudo-Hermitian waveguide QED system. We
provide a method for observing level attraction through transmission spectra, propose experimental implementations
using superconducting circuits, give a detailed derivation of dissipative light-matter coupling, and discuss quantum
trajectories and post-selection.

SYMMETRIES AND NONUNITARY DYNAMICS IN NON-HERMITIAN SYSTEMS

In this section, we provide a concise overview of symmetries unique to non-Hermitian systems, along with the
nonunitary dynamics governed by non-Hermitian Hamiltonians. The most notable are PT-symmetric systems, char-
acterized by the commutation relation [Ĥ, P̂ T̂ ] = 0, where P̂ is the parity operator and T̂ is the time-reversal operator
(antiunitary). The simplest Hamiltonian describing such a system is given by

ĤPT =

(
ω0 + iγ g

g ω0 − iγ

)
, (S1)

where P̂ = σ̂x and there is a balance between gain and loss. The eigenvalues are either real or complex conjugate. In
early experimental implementations [1–3], however, this strict requirement {+γ,−γ} is often substituted with passive
PT systems that only involve loss {−γ1,−γ2}. These are equivalent apart from a global exponential decay.

On the other hand, dissipative coupling is commonly linked to anti-PT symmetry, where the Hamiltonian and P̂ T̂
have an anticommutative relationship {Ĥ, P̂ T̂} = 0. The Hamiltonian can be represented as

ĤAPT =

(
ω0 − iγ −iγ
−iγ −ω0 − iγ

)
, (S2)

with either purely imaginary or complex eigenvalues [E,−E∗]. When choosing ω0 = 0, two eigenstates describe
superradiance and subradiance [see Fig. S1]. Clearly, the system is purely dissipative. Inspired by passive PT systems,
we can apply a purely imaginary diagonal shift to the Hamiltonian. This results in a different type of symmetry,
known as pseudo-Hermitian symmetry, η̂−1ĤpH η̂ = Ĥ†

pH , with ĤpH = ĤAPT + iγÎ and η̂ = σ̂z. More importantly,
this symmetry remains valid when shifting the real energy by any amount.

Dynamical evolution governed by non-Hermitian Hamiltonians is nonunitary, for example, represented as e−iĤAPT t|ψ0⟩.
The uniform loss −iγÎ leads to an exponential energy decay over time, e−γt. Typically, by using post-selection to
select trajectories where no quantum jumps occur, trace conservation can be retrieved. Therefore, if the quantum
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jump terms are omitted from the quantum master equation, a nonlinear term

2γTr[
∑
i,j

L̂iρ̂L̂
†
j ]ρ̂ = 2γTr[

∑
i,j

ρ̂L̂†
jL̂i]ρ̂ = 2iTr[ρ̂(ĤAPT − ω0σ̂z)]ρ̂ (S3)

must be included to ensure Tr(ρ̂) = 1. At this point, the formal solution satisfies [4]

ρ̂t =
e−iĤAPT tρ̂0e

iĤ†
APT t

Tr(e−iĤAPT tρ̂0eiĤ
†
APT t)

=
e−iĤpHtρ̂0e

iĤ†
pHt

Tr(e−iĤpHtρ̂0e
iĤ†

pHt)
, (S4)

which is one of the reasons for ignoring individual decay in the main text.

PSEUDO-HERMITIAN HAMILTONIAN FROM DISSIPATIVE COUPLINGS

We consider two arbitrary Hermitian subsystems with HamiltoniansH
(M×M)
a =H†

a andH
(N×N)
b =H†

b , which are
dissipatively coupled with the help of a series of auxiliary modes. In terms of block matrices, the total non-Hermitian
(NH) Hamiltonian in the single-excitation sector is thus

H =Heff − iκI =

(
Ha −iκ
−iκ† Hb

)
+

(
−iκI 0
0 −iκI

)
, (S5)

where κ denotes the coupling matrix, and the effective Hamiltonian Heff is pseudo-Hermitian, satisfying

ηHeffη
−1 =H†

eff, η =

(
I(M×M) 0

0 −I(N×N)

)
. (S6)

Therefore, the eigenvalues of the effective Hamiltonian are either real or complex-conjugate pairs. Note that, as
discussed with passive PT symmetry, the dynamics of the total Hamiltonian may be equivalent to the effective one,
apart from a global exponential decay. When choosing two cavities as the subsystems, we obtain an anti-PT-symmetric
system upon a shift of real energy. In the main text, we choose quantum emitters (QEs) and Hermitian structured
waveguides as the subsystems.

This also suggests some possible directions for follow-up studies. One may study the effect of QEs dissipatively
coupled to structured baths with other engineered dispersions or in higher dimension. Another idea is to construct
(disordered) pseudo-Hermitian lattice models with a NH band structure, which can host different unconventional
singularities, e.g., bound states in the continuum (BIC) and exceptional points (EPs). In addition, the generalization
to the giant atoms case could be of interest.

BOUND STATES IN THE BROKEN PHASE

In the two-mode (two-spin) model, the dissipative coupling can generate steady Bell-like state in the PT broken
phase [5, 6]. While in our work, we find |ce|2 ≡ 1/2 (

∑
m |cm|2 ≡ 1/2) when the pseudo-Hermitian symmetry is broken

in the single-QE (multi-QE) case. Here, we try to derive this conclusion in a generic way. To this end, we solve the
stationary Schrödinger equation

Heffψ = EBψ, ψ =

(
Ca

Cb

)
, (S7)

with eigenvalues EB and corresponding wavefunctions Ca and Cb in subsystems a and b. For the entire system in the
broken phase, there exists at least a pair of non-real eigenvalues {EB , E

∗
B}. More conjugate pairs are possible. They

are unique bound states (BSs) outside the real axis. Then, we can obtain the following expressions

C†
a[E

∗
BIa −Ha + κ(E

∗
BIb −Hb)

−1κ†]Ca = 0, (S8)

with unit matrices Ia = I(M×M) and Ib = I
(N×N). Subtracting the two equations arrives at

(EB − E∗
B)C

†
a[Ia − κ|EBIb −Hb|−2κ†]Ca = 0. (S9)
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FIG. S1. (a) Energy band for the tight-binding chain, with dispersion relation ωk = −2J cos k. (b) Single quantum emitters
dissipatively coupled to a series of k modes. (c) For a single mode (J = 0), anti-PT symmetry can be restored by shifting the
real energy by ∆/2. The eigenvalues are purely imaginary in the anti-PT broken phase. However, when J ̸= 0, the required
real energy shifts vary between modes, preventing anti-PT symmetry across the spectrum. To solve this problem, we introduce
pseudo-Hermitian symmetry by shifting a uniform imaginary energy of −iκ.

Because EB ̸= E∗
B , the rest is zero. Also, from the normalization condition C†

aCa +C
†
bCb = 1, we have

C†
a[Ia + κ|EBIb −Hb|−2κ†]Ca = 1. (S10)

By combining Eq. (S9) and Eq. (S10), one can deduce the final result

(EB − E∗
B)(1− 2C†

aCa) = 0, (S11)

that is C†
aCa = C†

bCb = 1/2.

EMITTERS IN THE TIGHT-BINDING CHAIN

Eigenstates of the single-emitter bound states

We consider a single emitter dissipatively coupled to the n0th site of the coupled-resonator waveguide. As discussed
in the main text, the bound states are obtained by solving the Schrödinger equation Ĥeff|ψ⟩ = Eb|ψ⟩. The eigenvalues
are given by the pole equation Eb = ∆+Σe(Eb) and the photonic part of the eigenstates are calculated by

cn =
1

2π

∫ π

−π

dkeiknck = (ice/κ)Σe(Eb)y
|n|
min, (S12)

where ymin denotes the minimum of y± with respect to the absolute values |y±|, and

y± =
(−Eb ±

√
E2

b − 4J2)

2J
. (S13)

When integrating Eq. [S12], we implemented the variable substitution y ≡ eik. Accordingly, |y±| ≃ 1 represents a
propagating mode without damping, while |y±| < 1 corresponds to an exponentially localized mode. Interestingly, y±
are purely real in the unbroken phase and complex-valued in the broken phase, which leads to a phase transition in
the localization length. The atomic weight |ce|2 is obtained from the normalization condition. The localization length
of the bound state is expressed as

λ = −1/In|ymin|. (S14)

In the limit κ≫ J , the cavities (except for the one where the emitter is located) are completely decoupled and

E± ≃ (∆±
√
∆2 − 4κ2)/2. (S15)
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FIG. S2. Complex spectrum of the bound states with a single emitter coupled to the waveguide, and ∆ = (2.1− 0.1i)J .

Pseudo-Hermitian waveguide QED

As discussed in the main text, anti-PT symmetry cannot be directly extended to continuum, because the required
real energy shifts vary between modes. The uniform loss across all sites of the resonator chain is needed to achieve a
consistent transformation for all k modes. In other words, the Hamiltonian can satisfy pseudo-Hermitian symmetry
after an imaginary energy shift. We have figured out an intuitive physical picture by considering quantum emitter
dissipatively coupled to a series of k modes [see Fig. S1]. Based on this physical picture, the following general
conclusions could be intuitively understood. (i) Band regime: interaction with resonant mode ωk = ∆ breaks pseudo-
Hermitian symmetry as long as κ ̸= 0, leading to localization of the resonance mode. (ii) Bandgap regime: when
the coupling is sufficiently weak κ ≪ [∆ −max(ωk)], interaction with band-edge modes preserves pseudo-Hermitian
symmetry, resulting in level attraction between the bound states. This physical picture may also help to clarify two
other universal findings. (i) The bound states in the broken phase satisfy (Eb − E∗

b )(2 − |ce|−2) = 0, aligning with
Bell-like states in anti-PT systems [5]. (ii) The bound state [Eb, E

∗
b ] with a larger imaginary part dominates the

long-time dynamics, reminiscent of subradiance in anti-PT systems.

In this sense, dissipative coupling and individual dissipation do not need to be equal. However, the emitter dissipa-
tion must match the cavity dissipation. To understand more clearly how the results would change if these parameters
are different, we can consider the simplest scenario where the emitter has a residual imaginary energy, represented as
∆ = ∆0 − iκ0. Figure S2 illustrates the bound states under these conditions. The residual imaginary energy disrupts
the pseudo-Hermitian symmetry, causing the exceptional point to vanish. Nevertheless, the level attraction between
the bound states persists.

|c
1
,2
(t

)|
 

Jt Jt Jt

κ = 0.1J κ = 0.13J κ = 0.3J

(a) (b) (c)

|c2(t)| 

|c1(t)| 

FIG. S3. Two-emitter dynamics in the bandgap regime under different coupling strengths, with n12 = 7 and ∆ = 2.1J . The
red (blue) curve refers to the population dynamics of the initially excited (unexcited) emitter. The entire system is in the (a,b)
unbroken and (c) broken phases.
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Some details of the two-emitter dynamics

We consider two emitters dissipatively coupled to the n1th and n2th sites of the coupled-resonator waveguide. In
the broken phase, the long-time dynamics is dominated by the bound states with eigenenergy of maximal imaginary
parts. For simplicity, we assume that the coupling strength is large enough to have two pairs of complex-conjugate
solutions Eb = E±,p (p = s, a). Note that only the bound states with eigenvalues having positive imaginary parts
Eb = E+,p may contribute to the long-time dynamics. The two-emitter bound states can still be solved from the
Schrödinger equation and the pole equations are given by

Eb −∆− Σ±(Eb) = 0, Σ±(E) = −κ
2

N

∑
k

1± eikn12

E − ωk
, (S16)

corresponding to symmetric and antisymmetric combinations σ̂s,a = (σ̂1± σ̂2)/
√
2, respectively. In terms of the bound

states |ψBS⟩ and scattering eigenstates |ψSE⟩, the global wave function at any time reads

|ψ(t)⟩ =

4∑
i=1

ciBS(t)|ψi
BS⟩+

∑
j

cjSE(t)|ψ
j
SE⟩, (S17)

where ciBS(t) and c
j
SE(t) are the corresponding probability amplitude. For a general detuning ∆, the imaginary parts

of the two eigenvalues are not equal, ImE+,s ̸= ImE+,p, resulting in the formation of a steady state (i.e., the bound
state with maximal imaginary part). It takes the general form

limt→∞|ψ(t)⟩ → |ψp
BS⟩ =

1

2

[
σ̂†
1 ± σ̂†

2 + (i/κ)Σe(Eb)×
∑
n

(
y
|n−n1|
min ± y

|n−n2|
min

)
â†n

]
|gg⟩|0⟩, (S18)

where ± is + for p = s and − for p = a, depending on the separation n12. Note that the existence of two bound states
with unequal positive imaginary part may give rise to oscillatory damping in the excited-state population dynamics
[see Fig. S3(c)].

In the main text, we discuss the special zero-detuning case (∆ = 0) and show its projection towards the bound
state with eigenenergy of maximal imaginary part (inter-emitter excitation oscillations) for an even (odd) emitter
separation n12, where |c1(t)|2 + |c2(t)|2 = 1/2. Here, |cm(t)|2 = ⟨ψ(t)|σ̂†

mσ̂m|ψ(t)⟩ represents the population of the
excited state of the quantum emitter m. This even-odd effect can be explained by Eq. (S16), which is closely related
to the wave vector of the bare resonance photon. When ∆ = 0, the wave vector is k = ±π/2 and the interference term
is 1±exp[ikn12] = 1±1 (1±i) for even (odd) n12. In fact, for n12 being an even number, one of the complex-conjugate
pairs reduces to a zero-energy solution, i.e., a bound state in the continuum in the Hermitian case [7–9]. For an odd
n12, E+,s = −E∗

+,a, thus both bound states are reserved in the long-time limit. The time evolution of the wave
function can be rewritten as

limt→∞|ψ(t)⟩ → e−iE+,st|ψs
BS⟩+ e−iE+,at|ψa

BS⟩. (S19)

By examining Eq. (S18) and (S19), it becomes apparent that half of the population oscillates between the two
quantum emitters, i.e., |c1(t)|2 = 1/2 cos2[Re(E+,s)t] and |c2(t)|2 = 1/2 sin2[Re(E+,s)t]. We also point out that when
the imaginary parts of the two bound states are similar, significant oscillatory behavior can be observed.

This resembles the photon-mediated collective interactions in an array of emitters in the vacuum with emitter
spacing d = nλ0/4. We note that such an effect is also applicable to the broken phase of topological waveguide
QED. In the unbroken phase, the bound states have purely real eigenenergies, which lead to Hermitian-like excitation
oscillation between the two emitters. Thus, in the bandgap regime, we can observe either undamped (Hermitian-like)
or damped oscillations by changing the dissipative couplings, as shown in Fig. S3. The dynamics is not quite standard
near the EPs.

One-emitter-per-resonator case at zero detuning ∆ = 0

When each resonator has a quantum emitter, two hybridized energy bands are formed. The zero-detuning (∆ = 0)
Bloch Hamiltonian is expressed as

hk =

(
0 −iκ

−iκ −2J cos k

)
. (S20)
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FIG. S4. Complex energy spectrum of a single emitter in the double-excitation sector, (a,b) with ∆ = 0, (c,d) with ∆ = 2.1J .
Here, the number of the resonators N = 7.

By solving the eigen-equation, we can obtain the dispersion relation

λ± = −J cos k ±
√
J2 cos2 k − κ2, (S21)

with corresponding eigenfunctions

χ+ =

(
− cos ϕ

2

sin ϕ
2

)
, χ− =

(
sin ϕ

2

cos ϕ
2

)
. (S22)

Here, tanϕ = iκ/(J cos k), and ϕ is a complex number. The k modes are real-eigenvalued (complex-conjugate) for
κ < J cos k (κ > J cos k). In particular, when κ = J , all bulk modes enter into the broken phase and the dissipation
bands read Imλ± = ∓J sin k. Taking the background loss into account, the zero-energy bulk modes are always the
BIC, around which the dissipative band edge has a divergent density of states. For a given mode, the weights on
the emitters and the resonators depend on the modulus of tan(ϕ/2) [see Eq. (S22)]. In terms of the trigonometric

transformation formula tan(ϕ/2) = (−1±
√
1 + tan2 ϕ)/ tanϕ, we can once again show that the hybridized modes in

the broken phase (κ > J cos k) have equal weights on the emitters and the resonators (i.e., | tan(ϕ/2)| = 1).

A single emitter in the double-excitation sector

In the main text, we primarily consider the single-excitation scenario to initially demonstrate that when extended
to continuous modes, the anti-PT symmetry linked to dissipative coupling needs to be replaced by pseudo-Hermitian
symmetry. We further analyze how non-Hermitian phenomena, such as phase transitions at exceptional points, affect
waveguide continuum-specific features like band structures, bound states, and spatial localization properties. In some
sense, limiting the analysis to single excitations is not essential, as in the double-excitation space of a single emitter,
the system can further be divided into two subspaces based on whether the atom is in the ground or excited state

|ψ2⟩ =
∑
k

f1(k)â
†
k|e, 0⟩+

∑
k1,k2

f2(k1, k2)â
†
k1
â†k2

|g, 0⟩. (S23)
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For the Hamiltonian with dissipative light-matter couplings, the interaction between these two subspaces can be purely
dissipative. Therefore, the system’s Hamiltonian will naturally satisfy the pseudo-Hermitian symmetry described in
Eq. [S6], leading to non-Hermitian phenomena. The same analysis applies to higher excitation numbers. Note that, as
the number of excitations increases, quantum many-body challenges emerge [10], necessitating a variational approach.

Based on previous studies in conventional waveguide QED, the double-excitation states include: (i) two single-
photon scattering eigenstates; (ii) one single-photon bound state and one single-photon scattering eigenstate; (iii)
two-photon bound states. We expect the emergence of multiple exceptional points that correspond to the merging
of bound states in the single-excitation case, as well as distinct phenomena that could arise from two-photon bound
states. To verify it, we carry out a numerical study with a single emitter coupled to N = 7 cavities. Figure S4(a,
b) depict the scenario with ∆ = 0, while Fig. S4(c, d) show the spectra with ∆ = 2.1J . We find that, beyond the
emergence of multiple exceptional points, a unique behaviour emerges around κ ∼ 6J , likely due to the presence of
two-photon bound states. We plan to further discuss the multi-excitation scenario in our next study.

In the context of using bosonic modes as emitters in a waveguide QED setup, the system behaves linearly without
limited to just one excitation. Even in the worst cases, we could observe interesting non-Hermitian phenomena at the
classical level.

EMITTERS IN THE SSH LATTICE

Single-emitter bound states in the middle bandgap

We now discuss the SSH waveguide, where a single emitter is dissipatively coupled to sublattice A at the j0th
unit cell. We follow the same procedure and study the effective NH Hamiltonian, with ĤB replaced by ĤSSH. The
single-QE self-energy becomes

ΣSSH
e,A (E) =

−κ2Esign(|ySSH+ | − 1)√
E4 − 4J2(1 + δ2)E2 + 16J4δ2

, (S24)

where ySSH± takes the following form:

ySSH± =
E2 − 2J2(1 + δ2)±

√
E4 − 4J2(1 + δ2)E2 + 16J4δ2

2J2(1− δ2)
. (S25)

For arbitrary ∆ ∈ [−2Jδ, 2Jδ] with δ > 0, the EPs in the spectrum are determined by the equations

∆ =
−2E5

EP + 4J2(1 + δ2)E3
EP

−E4
EP + 16J4δ2

, (S26)

κ2 =
[E4

EP − 4J2(1 + δ2)E2
EP + 16J4δ2]3/2

−E4
EP + 16J4δ2

, (S27)

from which EEP = 0 and κ = 2J
√
δ for ∆ = 0. These two expressions give the phase diagram in the middle bandgap.

The third-order EP only occurs at zero energy. Note that we can still find the localization of the resonance mode in
the band regime and the pseudo-Hermitian phase transition in the upper/lower bandgap (not shown).

Enhancement of the order of the exceptional point

Previous work has demonstrated that square-root scaling of band spectra near the third-order EP is possible in the
presence of sublattice symmetry [11]. In this section, we consider the simplest model consisting of a single emitter
and two modes, and show that the order of the EP can be enhanced via a vacancy-like dressed state. The NH matrix
is written as

H3 =

 0 −ig 0
−ig ∆1 −t
0 −t 0

, (S28)
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where g denotes the dissipative coupling strength, t denotes the hopping amplitude and the detuning ∆1 is added to
break the sublattice symmetry. The three eigenvalues are E0 = 0 and

E± =
∆1 ±

√
∆2

1 + 4t2 − 4g2

2
. (S29)

The first eigenvalue is irrespective of the coupling strength and the associated eigenstate is (t, 0,−ig)T . This refers to
a vacancy-like dressed state [12]. In the case of zero detuning, there is a third-order EP at g = t, and the dispersion
shows a square-root scaling ∼ g1/2. In the case ∆1 ̸= 0 (no sublattice symmetry), the third-order EP is split into
two second-order EPs. One of them corresponds to the phase transition point at g =

√
∆2

1 + 4t2/2. The other is still
fixed at g = t, where a level crossing occurs. Note that such an EP is not typical because the surrounding eigenvalues
are purely real.

On the other hand, a general representation of the system that exhibits an EP of order N may be obtained by
a similarity transformation [13]. This representation is related to a Hatano-Nelson Hamiltonian with nonreciprocal
hoppings [14]. After doing this operation, the matrix of Eq. (S28) is transformed into

P−1H3P =

 0 −t+ g 0

−t− g
√
2∆1 −t+ g

0 −t− g 0

 , with P =

−
√
2
2 i 0

√
2
2 i

0 1 0√
2
2 0

√
2
2

 , (S30)

where the third-order EP arises naturally when g = t and ∆1 = 0. At this point, it is a Jordan canonical form.
The perturbation in (H3)i,i+1 corresponds to a 1-diagonal perturbation, implying that the two eigenvalues split as
E± ∼ g1/2 near the EP and the other one remains fixed at E0 = 0.

Generation of degenerate exceptional points via vacancy-like dressed states

The minimum model for generating degenerate EPs involves two emitters and four lattice sites. Decomposed into
symmetric and antisymmetric combinations, the effective NH Hamiltonian hosting degenerate EPs is expressed as

H6 = H3(∆1)⊕H3(−∆1), (S31)

where the detuning ∆1 comes from the hopping amplitude between the two linked lattices. Obviously, when choosing
g = t, the eigenstate of the zero-energy solution is an arbitrary linear superposition of two orthogonal singular
vectors (1, 0,−i, 0, 0, 0)T and (0, 0, 0, 1, 0,−i)T . Different from initial-state independent projection exp{−iH3(∆1)t}ψ0

towards the singular vector (1, 0,−i)T with a global phase exp{iϕ(∆1)}, the dynamics governed by Eq. (S31) evolves
towards the EPs subspace, and thus relies on the initial state. Surprisingly, we find numerically that exp{iϕ(∆1)} =
− exp{iϕ(−∆1)} for ψ0 = (0, 0, 1)T , which can be checked analytically by Taylor expansion.

Existence conditions of two-emitter bound states

We consider that two emitters are present. The self-energy for the symmetric and antisymmetric superposition of
the two emitters (σ1 ± σ2)/

√
2 are given by Σαβ

± = ΣSSH
e +Σαβ

12 , with

Σ
AA/BB
12 =

κ2E[y
|x12|
+ Θ+(y+)− y

|x12|
− Θ−(y+)]√

E4 − 4J2(1 + δ2)E2 + 16J4δ2
, (S32)

ΣAB
12 =

−κ2J [F (y+)Θ+(y+)− F (y−)Θ−(y+)]√
E4 − 4J2(1 + δ2)E2 + 16J4δ2

, (S33)

where y± are taken from Eq. (S25), x12 = x2 − x1 is the cell distance, F (z) = (1 + δ)z|x12| + (1 − δ)z|x12+1|,
Θ±(z) = Θ(±1 ∓ |z|), and Θ is Heaviside’s step function. Also, we have ΣBA

12 = ΣAB
21 . Then, the eigenenergy of the

two-emitter bound states can be calculated by the pole equation

Eb −∆− Σαβ
± (Eb) = 0. (S34)
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However, as shown in Fig. S5, some bound states only exist after a critical coupling strength because of the cancellation
of divergences at the band edges. By putting Eb = ±2Jδ into Eq. (S34), we can obtain the critical values for the
three configurations

κAB
c =

√
4δ(1− δ2)J2

(2j12 + 1)δ − 1
, (S35)

κBA
c =

√
4δ(1− δ2)J2

(2j12 − 1)δ + 1
, (S36)

κAA/BB
c =

√
2(1− δ2)J2

j12
, (S37)

where δ > 0 and the denominators under the square root need to be positive values.

Two-QE dynamics in the topological waveguide

Typically, chiral BSs can mediate chiral interactions, depending on the sublattices to which the QEs are coupled.
Here, the incorporation of pseudo-Hermiticity results in unconventional behaviours. Specifically, we consider three
configurations with two QEs coupled to (i) AA, (ii) AB and (iii) BA sublattices. It is worth mentioning that the
emitter spacing is even (odd) for the first case AA (the latter two cases, AB and BA). We plot both the real part of
the energy spectrum and the QEs dynamics in Fig. S5. For the AB configuration, we show a perfect coherent transfer
of half of the excitation between the two QEs, see Fig. S5(e). The zero-energy solutions vanish and the oscillation
frequency reaches the maximum at the spectral singularities, as shown in Fig. S5(b).

The sublattice symmetry is unbroken in the symmetric/antisymmetric subspace for the AA configuration, which
is evidenced by the existence of 3rd order EPs [see Fig. S5(a)]. The phase transition dependent on dissipative

AA AB BA

R
e 
E

 /
 J

κ / J κ / J κ / J

|c
1
,2
|!

Jt JtJt

(a) (b) (c)

(d) (e) (f)

|Ω|max

κ = 0.3J

κ = J

κ = J κ = J

FIG. S5. Emitters in a topological waveguide. Here, ∆ = 0 and δ = 0.25. (a,b,c) Real part of the energy eigenvalues and
(d,e,f) population dynamics of two QEs. In the two-QE spectra, the solid red (dash green) lines represent the BSs of symmetric
(antisymmetric) combination. (a,d) AA configuration with unit cell spacing j12 = 3; (b,e) AB configuration with j12 = 3; (c,f)
BA configuration with j12 = 4.
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1
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)|
 

Jt
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(b)

(c)

κ = 0.3J

κ = 1.1J

|c2(t)| 

|c1(t)| 

FIG. S6. (a) Two emitters dissipatively coupled to a topological SSH waveguide at different locations, with cell separation
j12 = 4. Here, A/B labels the sublattice, κ is the dissipative coupling, J1 = J(1+ δ) is the intracell hopping and J2 = J(1− δ)
is the intercell hopping, with δ = 0.25. Corresponding population dynamics with (b) κ = 0.3J and (c) κ = 1.1J , respectively.
The red (blue) curve refers to the population dynamics of the initially excited (unexcited) emitter.

couplings allows for switchable dipole-dipole interaction, as shown in Fig. S5(d). That is, with (without) light-
mediated interaction in the broken (unbroken) phase. The BA configuration also allows switchable interaction between
the two QEs. In Fig. S6, we plot the two-QE dynamics with the same parameters, except for taking different coupling
strengths. When κ = 0.3J , the interaction is prohibited. When κ = 1.1J , we show a perfect coherent transfer of
half of the excitation between the two QEs. This is a little different from the case of the AB configuration, where
the bound state with eigenenergy of maximal imaginary part is reserved in the long-time limit. Actually, it is closely
related to the even-odd effect discussed before.

The dynamics is much more peculiar for the BA configuration, as shown in Fig. S5(f). When the initially excited

emitter is coupled to the A (B) sublattice, the final state is |ψj1,B
vds ⟩ (|ψj2,A

vds ⟩). More generally, the final state will

be a linear superposition of two singular vectors |ψf ⟩ ∝ cosα|ψj2,A
vds ⟩ + eiβ sinα|ψj1,B

vds ⟩, for an arbitrary initial state
except for an eigenstate. According to the energy spectrum, we find an accidental degeneracy of two 2nd order EPs at
zero energy [see inset in Fig. S5(c)], which is responsible for the initial-state dependent projection. This is consistent
with the situation previously discussed in the simplified model. These spectral degeneracies, known as diabolically
degenerate exceptional points, have exhibited the ability to control mode switching [15–17].

EXPERIMENTAL FEASIBILITY

Detailed derivation of dissipative couplings

To obtain the required effective NH coupling between a two-level system and a single-mode cavity, one can couple
both of them to an auxiliary cavity mode or the traveling waves. For the auxiliary cavity realization, the light-matter
coupling is obtained to be

geff ≃ −igσga
κaux − i∆c

, (S38)

which is inevitably accompanied by a coherent interaction [18, 19]. Here, gσ (ga) and ∆c are the coupling and detuning
between the emitter (mode â) and the auxiliary cavity, and κaux denotes the decay rate of the auxiliary mode. A
nearly pure dissipative coupling −igσga/κaux is possible only in the limit of large dissipation κaux ≫ ∆c. In contrast,
the traveling-wave realization can induce purely dissipative interaction and thus may be preferable. In this case, an
emitter and a photonic mode are coupled with identical strength gσ = ga to a common Markovian bath at a distance
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xaσ = xa − xσ. The Hamiltonian in the interaction picture is expressed as

ĤSR(t) =
ga√
L

{
â†

∑
q

ei[(ωa−ωq)t−qxa]r̂q + σ̂†
∑
q

ei[(ωσ−ωq)t−qxσ]r̂q

}
+H.c., (S39)

where L is the length of the waveguide, r̂q and ωq = cq are the annihilation operator and angular frequency of the
photon with wave vector q. Within the Born-Markov approximation, the reduced density operator of the system
obeys the following equation [20]

˙̂ρS = −
∫ t

0

dt′ TrR
{
[ĤSR(t), [ĤSR(t

′), ρ̂S(t)R̂0]]
}
. (S40)

Here, we assume the initial reservoir R̂0 being in the vacuum with ⟨r̂†q r̂q⟩ = 0 and consider that the emitter is nearly
resonant with the cavity mode ωσ ≈ ωa. After adiabatically eliminating the reservoir degrees of freedom, we obtain
the standard Lindblad master equation

˙̂ρS = 2κ
(
D[â] +D[σ̂]

)
ρ̂S + 2κaσ

(
D[â, σ̂] +D[σ̂, â]

)
ρ̂S , (S41)

with Lindbald superoperator D[L̂1, L̂2]ρ̂ ≡ L̂1ρL̂
†
2 − {L̂†

1L̂2/2, ρ̂}, collective damping rate κaσ = κeiq(ωa)|xaσ| and
κ = c−1g2a. When the separation satisfies q(ωa)|xaσ| = 2πn, with n being the integer, we arrive at the dissipative
interaction term without redundant coherent interaction [21, 22]. However, in addition to the dissipative coupling,
there appear undesired local losses which are very detrimental to observing bound states. To circumvent these, we
should couple the remaining lattice sites to individual dissipation channels to achieve uniform on-site damping at a
rate of κ.

Transmission spectrum as an observable

A possible alternative to observing level attraction and singularity is based on the coupled anti-resonances. We
first revisit the coupled anti-resonances in anti-PT symmetric systems [23], calculating the transmission coefficient
using the input-output relations. We then extend this to scenarios involving multiple photon modes. For simplicity,
we assume bosonic modes as emitters. Given that mode â (photon) and b̂ (emitter) each possess an intrinsic damping
rate α and are dissipatively coupled via the waveguide mode, the Hamiltonian can be formulated as:

Ĥ1 = [ωb − i(α+ γ)]b̂†b̂+ [ωa − i(α+
κ2

γ
)]â†â− iκ(â†b̂+H.c.). (S42)

Here, γ and κ2/γ denote the dissipation of modes â and b̂ into the waveguide, respectively, while κ represents the
strength of the dissipative coupling. We consider the right-going traveling photons. Assuming γ ≫ {α, κ} ≫ κ2/γ,

and applying the Heisenberg equation of motion in the steady-state ( ˙̂a = 0,
˙̂
b = 0), we can derive the two coupled

equations as follows

[i(ω − ωb)− (α+ γ)]b̂− κâ− i
√
γp̂in = 0, (S43)

i(ω − ωa)â− αâ− κb̂ = 0, (S44)

where we drop the input term and the dissipation term related to κ2/γ. By considering the input-output relation

p̂in = p̂out + i
√
γb̂, we can get

S(ω) =
p̂out
p̂in

= 1 +
γ

i(ω − ωb)− (α+ γ)− κ2

i(ω−ωa)−α

, (S45)

which determines the full transmission coefficient of two coupled anti-resonances. This can be seen from the inversed
transmission coefficient

1

S(ω)
= 1− γ

i(ω − ωb)− α− κ2

i(ω−ωa)−α

, (S46)
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0

FIG. S7. Schematic electrical circuits for physically implementing the proposed pseudo-Hermitian waveguide QED systems.
The adjacent LC resonators are capacitively coupled to realize the structured waveguide. To generate on-site dissipation, each
LC resonator is capacitively coupled to a Markovian transmission line (TL), which is terminated with resistive elements to
ensure genuine dissipation. The transmon qubits corresponding to the QEs are capacitively coupled to the TLs to realize
dissipative light-matter couplings.

with the denominator corresponding to the characteristic polynomial of matrix

H =

(
ωb −iκ
−iκ ωa

)
− iαI. (S47)

This means we can extract eigenvalues of an anti-PT symmetric system through transmission spectrum.

To extend to multiple photon modes or even continuous modes, we need to rewrite the coupled equations as

[i(ω − ωb)− (α+ γ)]b̂− κ√
N

∑
k

âk − i
√
γp̂in = 0, (S48)

i(ω − ωk)âk − αâk − κ√
N
b̂ = 0, k = 1, 2, . . . , N. (S49)

Again, we assume γ ≫ {α, κ} ≫ κ2/γ and drop the terms related to κ2/γ. One can easily arrive at the inversed
transmission coefficient for a series of k modes

1

S(ω)
= 1− γ

i(ω − ωb)− α− 1
N

∑N
k=1

κ2

i(ω−ωk)−α

, (S50)

with the denominator corresponding to the characteristic polynomial of matrix

H =
1√
N


∆
√
N −iκ −iκ · · · −iκ

−iκ ω1

√
N 0 · · · 0

−iκ 0 ω2

√
N · · · 0

...
...

...
. . .

...

−iκ 0 0 · · · ωN

√
N

− iαIN+1. (S51)

In general, inspired by the anti-PT symmetric system, we find in principle that extending this approach to continuous
modes may keep the transmission spectrum as a useful observable. It is worth mentioning that by revisiting pseudo-
anti-PT symmetric systems, the quantum squeezing dynamics could be a possible physical observable [24], where the
dynamical stability of Hermitian systems is related to the non-Hermitian matrix. We plan to address this possibility
further in our subsequent work.
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Possible implementation in circuit QED platforms

The master equation in Eq. (1) of the main text may be physically implemented with superconducting circuits that
have demonstrated the ability to explore conventional waveguide QED. Building upon previous experiments [25, 26],
we propose a feasible circuit scheme to realize dissipative couplings between the QEs and the waveguide, as shown
in Fig. S7. To convert to a topological waveguide, the uniform capacitors CJ need to be replaced with alternate
capacitors CJ1 and CJ2 .

Estimation of the number of trajectories for post-selection

In our work, the quantum jump terms in the master equation are replaced by a nonlinear term that is added to
ensure Tr(ρ̂) = 1. This is justified by appropriate post-selections in the experiment [27–31]. There are several ways
to achieve this, such as building a larger Hermitian system using auxiliary modes and then measuring those modes,
continuously monitoring the environment in real time, or tracking the system’s dynamics.

In superconducting circuit experiments [32–34], post-selection can be performed by first reconstructing the complete
density matrix of the quantum state using quantum state tomography. This involves conducting a series of projection
measurements to collect data on the system’s projections in different bases. Using these data, the density matrix can
be reconstructed. During data processing, only the matrix elements within the n-excitation sector (for instance, the
single-excitation sector) are retained, while all other elements are set to zero. The resulting density matrix is then
renormalized. This process ensures that only the relevant quantum states are considered for analysis.

In our pseudo-Hermitian waveguide QED systems, the timescale of non-Hermitian dynamical process is about an
order of magnitude larger than the excitation lifetime κ−1. This means the dynamical signal of concern will dissipate
rapidly when taking quantum jumps into account. Therefore, a significant challenge for observing dissipative dynamics
is that many trajectories may be needed to make post-selection, so that there is at least one without quantum jumps.
The jump probability within a short time interval is given by Pjump(t) ∼ κδt. By choosing δt ≪ κ−1, the number of
trajectories can be simply estimated as ∼ 104. Finally, we mention that the novel non-Hermitian phenomena discussed
in the single-excitation sector could also be observed at the classical level.
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