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Non-Hermitian sensing from the perspective of postselected measurements
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By employing the Naimark dilation, we establish a fundamental connection between non-Hermitian quantum
sensing and postselected measurements. The sensitivity of non-Hermitian quantum sensors is determined by the
effective quantum Fisher information (QFI), which incorporates the success probability of postselection. We
demonstrate that non-Hermitian sensors, regardless of the specific form of decoherence or the choice of probe
states, cannot outperform their Hermitian counterpart when all information is harnessed, since the total QFI
for the extended system constrains the effective QFI of the non-Hermitian subsystem. Moreover, we quantify
the efficiency of non-Hermitian sensors with the ratio of the effective QFI to the total QFI, which can be
optimized within the framework of postselected measurements with minimal experimental trials. In addition,
the performances of non-Hermitian sensors versus different types of technical noises can be judged using our
framework. Our work provides a distinctive theoretical framework for investigating non-Hermitian quantum
sensing and designing noise-resilient quantum metrological protocols.

DOI: 10.1103/g3n3-gh49

I. INTRODUCTION

Quantum metrology leverages quantum coherence and
entanglement to enhance sensitivity and accuracy in mea-
suring physical quantities [1–3], with promising applications
in various fields of modern science and technology [4–6].
The achievements of modern quantum physics have also in-
troduced frameworks and protocols for quantum-enhanced
metrology [7–12]. Recently, several metrological schemes
based on non-Hermitian physics have been theoretically
proposed and experimentally demonstrated, e.g., enhanced
sensing near exceptional points (EPs) [13–25]. Due to the di-
vergence of the susceptibility in the vicinity of EPs, EP-based
sensors have been theoretically predicted to realize enhanced
sensing [20]. The EP-based sensors can be realized in PT -
symmetric systems with two EPs at the phase transition points
of PT -symmetry breaking, which have been demonstrated
in open systems with loss and gain [26–29]. Several experi-
ments have implemented EP-based sensing with an enhanced
signal-to-noise ratio (SNR) [30–33]. However, some works
doubt whether EP-based sensors can improve the fundamen-
tal sensitivity limits in the presence of noise [34–38]. In
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addition, another non-Hermitian sensing scheme independent
of EPs has been proposed, which is predicted to be ro-
bust against some specific forms of noise [39,40]. Whether
non-Hermitian sensors can offer an advantage in estimation
sensitivity over conventional Hermitian sensors is still a con-
troversial topic [41], despite studies on the metrological limits
of non-Hermitian sensing [42–44].

Non-Hermitian sensing involves projection-value mea-
surements (PVMs) merely on the quantum subsystem that
exchanges energy with its environment. The quantum open
system dynamics are more rigorously described with ap-
proaches, such as the Kraus representation and Lindblad
formalism [45–47]. For noisy quantum parameter estimation
(QPE), the minimum achievable statistical uncertainty is de-
termined by the quantum Fisher information (QFI) and the
Cramér-Rao bound (CRB) [48,49]. It relates to the minimal
QFI corresponding to a unitary evolution of the enlarged
system [50,51]. Thus, from the perspective of quantum in-
formation science [52], the metrological resources from both
the open system and its environment should be considered
when comparing the performances of non-Hermitian sen-
sors and their Hermitian counterparts [44]. This problem
is in analogous with the measurement sensitivity of weak-
value-amplification (WVA) technique [53–57], which greatly
improves the SNR by discarding most detection trials. WVA
can be described as POVMs on the sensor subsystem, inter-
acting with an ancillary system. With the Naimark extension
theorem and its inference [58,59], a non-Hermitian system can
be dilated to a larger Hermitian system followed by posts-
electing the ancilla state [60–63]. Therefore, non-Hermitian
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sensing can be understood in the framework of the QPE
with postselected measurements, of which the measurement
sensitivity in the presence of technical noise has been widely
discussed [64–79].

Here, we investigate the sensitivity of non-Hermitian
sensors by establishing a fundamental connection between
non-Hermitian sensing and QPE with postselected measure-
ments. Analogous to WVA, we show the enhancement of
QFI corresponding to non-Hermitian sensors and prove that
the effective QFI, when considering the success probability,
is not larger than the total QFI of the Naimark-dilated Her-
mitian system. Therefore, when amounting for the neglected
resources from the environment, non-Hermitian sensor cannot
outperform their Hermitian counterparts, regardless of the
specific form of decoherence or the choice of probe states.
Our framework is applicable to various non-Hermitian sensors
[13–25,34–40]. We illustrate this by analyzing three common
sensing proposals, including a pseudo-Hermitian (PH) sensor
and two EP-based sensors. Moreover, we show that the ef-
ficiency of non-Hermitian sensing, evaluated by the ratio of
the effective QFI to the total QFI, can be optimized through
postselection protocols requiring minimal experimental tri-
als. In addition, the performance of non-Hermitian sensors
versus different types of technical noises can be assessed
using our framework, in accordance with previous results of
postselection protocols. Our work provides a comprehensive
understanding of non-Hermitian quantum sensing and is use-
ful for exploring practical and efficient quantum metrology
schemes against technical noise.

II. QUANTUM PARAMETER ESTIMATION

QPE aims to estimate an unknown parameter θ , imprinted
on a quantum state ρθ . Measurements in terms of POVMs
{Ê (x)} are performed on ρθ , yielding outcomes {x} with prob-
abilities P(x|θ ) = tr[ρθ Ê (x)]. For an unbiased estimator θ̂est,
the sensitivity of QPE is evaluated with its variance: (δθ )2 ≡
〈θ̂2

est〉 − 〈θ̂est〉2, which is lower bounded by the CRB:

(δθ )2 � 1/νF (θ ), (1)

with ν being the repetition number of measurements [80,81].
Here,

F (θ ) ≡
∫

dx [∂θP(x|θ )]2/P(x|θ ) (2)

denotes the Fisher information (FI), and the CRB can
be approximately saturated for ν → ∞. The QFI denotes
the maximum FI over all possible POVMs, i.e., FQ(θ ) ≡
max{Ê (x)} F (θ ), which can be expressed with the symmetric
logarithmic derivative as FQ(θ ) = tr(ρθ L̂2

θ ), with L̂ satisfy-
ing ∂θρθ = (ρθ L̂θ + L̂θρθ )/2 [48]. For a pure state ρθ =
|ψθ 〉 〈ψθ |, the QFI can be simplified as [1,2]

FQ(θ ) = 4(〈∂θψθ |∂θψθ 〉 + |〈ψθ |∂θψθ 〉|2). (3)

III. POSTSELECTED MEASUREMENTS
AND WEAK-VALUE AMPLIFICATION

Postselected measurements, different from ideal PVMs,
have been attracting growing interest [54]. The most notable
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FIG. 1. (a) Non-Hermitian sensor S detects an unknown param-
eter θ , by coupling to an environment E with gain and/or loss.
(b) Schematic of WVA, as a representative postselected measure-
ment strategy for estimating θ . The pre- and post-selected states
are |ψi〉E and |ψ f 〉E, respectively, with success and rejection prob-
abilities Pd and (1 − Pd ), respectively. (c) Quantum circuits for the
non-Hermitian sensing protocol and its Hermitian counterpart. The
non-Hermitian Hamiltonian HS(θ ) and the extended Hamiltonian
HSE(θ ) are interconnected through the Naimark dilation theorem.

postselected detection strategy is WVA, involving a complex
weak value of the observable and a small number of measure-
ment trials [53,55]. For a simple WVA model [75] as shown
in Fig. 1(b), the ancillary state is initially preselected as |ψi〉E,
and the sensor state is |+〉S, where |±〉S are the eigenstates of
σ̂ x, with σ̂ x,y,z being Pauli matrices. The interaction Hamilto-
nian reads

ĤSE = −θδ(t − t0)σ̂ z
S ⊗ ÂE, (4)

where θ is the interaction strength to be estimated, and h̄ ≡ 1.
For θ → 0, the evolved joint state is approximately calculated
as

|	〉SE � |+〉S ⊗ |ϕi〉E + iθ ÂE |−〉S ⊗ |ϕi〉E . (5)

By postselecting the ancilla in the state |ϕ f 〉E, the detected
sensor state becomes

|ψd〉S ∝ E〈ϕ f |	〉SE � |+〉S + exp(iθAw) |−〉S , (6)

with a success probability of Pd = |E〈ϕ f |ϕi〉E|2. Here, the
weak value

Aw ≡ E〈ϕ f | ÂE |ϕi〉E /E〈ϕ f |ϕi〉E (7)

denotes the amplification factor of the signal and grows
very large when Pd → 0. Although WVA seems an effective
method for improving the SNR in the QPE, whether the post-
selected measurements provide estimation precision superior
to conventional strategies remains controversial [64–74].

Generally, a postselection process can be expressed as a
PVM on the joint state |	〉SE:

{Êd , Êr} = {|ϕ f 〉E〈ϕ f | ⊗ IS, (IE − |ϕ f 〉E〈ϕ f |) ⊗ IS}, (8)
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where Pd = SE〈	|Êd |	〉SE, |	d〉S = E〈ϕ f |	〉SE/
√

Pd , and
ρr,S ∝ TrE[Êr |	〉SE〈	|] denote the success probability, de-
tected state, and rejected state, respectively. The total FI for
the postselection strategy, Ftot, can be divided into three parts
as [66]

Ftot[|	〉SE] = Pd Qd [|ψd〉S] + PrQr[ρr,S] + Fpost, (9)

with Pr ≡ 1 − Pd being the rejection probability. Here, Qd

(Qr) denotes the QFI with respect to |ψd〉S (ρr,S), and Pd Qd

(PrQr) denotes the effective QFI when considering the suc-
cess (rejection) probability Pd (Pr). The last term Fpost ≡
(∂θPd )2/Pd Pr denotes the FI for the postselection process it-
self. Since the POVMs of postselected measurements may not
be optimal for achieving the QFI of the joint state |	〉SE, we
have

Ftot[|	〉SE] � FQ[|	〉SE], (10)

indicating that the post-selected measurement strategy (in-
cluding WVA) cannot outperform the optimal conventional
strategy [66,82]. Nevertheless, the postselected strategy can
be highly efficient, as Pd Qd approaches to the total QFI, even
when most of the outcomes are discarded [66,70,73].

IV. CONNECTING NON-HERMITIAN SENSING
TO POSTSELECTED MEASUREMENTS

WITH NAIMARK DILATION

Non-Hermitian systems have been attracting growing in-
terest in many fields of frontier physics [46,83], among which
non-Hermitian sensors are expected to have potential advan-
tages in high-precision sensing [13–25]. Usually, quantum
sensing with a non-Hermitian Hamiltonian is implemented
in the open quantum system with gain and/or loss [84], and
thus, the environment as a metrological resource cannot be
simply neglected [see Fig. 1(a)]. Here, we apply the Naimark
dilation technique [59] to extend the non-Hermitian system
into a larger Hermitian one, which is widely used in quantum
information theory [85,86] and feasible in experiments for
simulating a non-Hermitian system [62,87].

According to the Naimark dilation theorem [61], the
nonunitary evolution governed by a non-Hermitian Hamil-
tonian can be represented by a unitary dynamics of an
enlarged system followed by a PVM, i.e., a postselection
process [60,61]. For a non-Hermitian Hamiltonian HS(θ ),
the evolved state |ψ (t )〉S is decided by the Schrödinger
equation i∂t |ψ (t )〉S = HS(θ ) |ψ (t )〉S. The dilated Hermi-
tian Hamiltonian HSE(t ) should satisfy [60]: i∂t |	(t )〉SE =
HSE(t ) |	(t )〉SE, where

|	(t )〉SE ∝ |ψ (t )〉S ⊗ |0〉E + m̂(t ) |ψ (t )〉S ⊗ |1〉E , (11)

m̂(t ) ≡ [η̂(t ) − I]1/2 is a linear operator,

η̂(t ) ≡ T exp[−i
∫ t

0
dτ H†

S (τ )]η̂0T exp[i
∫ t

0
dτ HS(τ )], (12)

with T and T being the time-ordering and anti-time-ordering
operators, respectively, and |0, 1〉 are eigenstates of σ̂ z. The
dilated Hamiltonian is written as

HSE(t ) = H (1)
S (t ) ⊗ IE + iH (2)

S (t ) ⊗ σ̂
y
E, (13)

where

H (1)
S ≡ {HS + m̂HSm̂ + i(∂t m̂)m̂}η̂−1 (14)

and

H (2)
S ≡ {[HS, m̂] − i∂t m̂}η̂−1. (15)

The evolved state of the non-Hermitian system can be ob-
tained from the evolution of the large Hermitian system,
followed by postselecting the environment state in |0〉E, writ-
ten as |ψ (t )〉S ∝ E〈0|	(t )〉SE.

Since |0〉E and |ψ (t )〉S correspond to the postselected state
|ϕ f 〉E and the resulting sensor state |ψd〉S in WVA, respec-
tively, it is reasonable that the QFI, F nH

Q , for a non-Hermitian
(nH) sensor can be very large or even tends to infinity, im-
plying an improvement of SNR. However, the environment,
interacting with the non-Hermitian sensor, should be consid-
ered as an additional metrological resource, and the effective
QFI, Pd F nH

Q , should be considered when analyzing the sensi-
tivity of non-Hermitian sensors. This approach is similar to
neglecting some detection trials in the postselected detection
strategy. Using Eqs. (9) and (10), we conclude that the effec-
tive QFI for non-Hermitian sensors does not exceed the QFI
of their dilated Hermitian counterparts as

Pd F nH
Q [|ψ (t )〉S] � FQ[|	(t )〉SE], (16)

with Pd = TrS[E〈0|	〉SE〈	|0〉E]. Note that our results also
hold for non-Hermitian sensors with experimental imperfec-
tions on the detectors that can be expressed as quantum
channels, by considering of the noisy QFI [50,51].

In addition to the ultimate sensitivity limits, mapping non-
Hermitian sensing to a postselection QPE strategy offers a
perspective for comparing the efficiencies of different types
of non-Hermitian sensors. Similar to WVA, the efficiency can
be evaluated by comparing the effective QFI, Pd F nH

Q , with the
total QFI, FQ, for the dilated Hermitian system. When the ratio
Pd F nH

Q /FQ → 1 with a small value of Pd , it indicates a highly
efficient non-Hermitian sensing scheme, in analog with the
advantage of “when less is more” in WVA [71]. Next, we
investigate different types of non-Hermitian sensors from the
perspective of postselected measurements.

V. PSEUDO-HERMITIAN SENSOR

We first consider a pH sensor with a Hamiltonian for λ ∈
(0, 1]:

HpH
S = θ

(
0 λ−1

λ 0

)
, (17)

which was believed to enable non-Hermiticity-enhanced sens-
ing [39,40]. Here, θ is the unknown parameter to be estimated,
and HpH

S is non-Hermitian when λ �= 1. By setting |0〉S as the
initial state, the time-evolved state under HpH

S is

|ψ (t )〉S = [cos(θt ) |0〉S − iλ sin(θt ) |1〉S]/C, (18)

with C ≡ [cos2(θt ) + λ2 sin2(θt )]1/2, and the QFI with re-
spect to |ψ (t )〉S is calculated as

F pH
Q [|ψ (t )〉S] = 4λ2t2/C4. (19)

The QFI under the non-Hermitian condition (λ �= 1) is larger
than that for the Hermitian case (λ = 1), when choosing a
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FIG. 2. Pseudo-Hermitian sensor with the Hamiltonian (17).
(a) QFI, F pH

Q , for the sensor state |ψ (t )〉S for λ = 1, 0.5, 0.2, when

t = 2. (b) The maximum F pH
Q over θ diverges as λ → 0. However,

the maximum effective QFI, Pd F pH
Q , becomes finite for any value of

λ, with the success probability Pd . (c) Ratio of the pseudo-Hermitian
QFI over the total QFI for the dilated system F pH

Q /FQ (blue dash-
dotted curve) is shown with the success probability Pd (red solid
curve) for λ = 0.5. (d) The total QFI of the extended system, FQ,
the effective QFI, Pd Qd , and the FI of the postselection process, Fpost,
for λ = 0.5. Here, the effective QFI for the rejected state vanishes
PrQr = 0, since ∂θ |ψr (t )〉S = 0.

proper parameter range of θ , e.g., see Fig. 2(a) for t = 2.
Moreover, the maximum QFI, maxθ {F pH

Q }, diverges as λ → 0;
see Fig. 2(b), since it is proportional to λ−2, implying superior
performance to the conventional Hermitian case.

The Naimark-dilated Hermitian Hamiltonian with respect
to the pseudo-Hermitian system (17) can be obtained as

HSE = θλ
(
σ̂ x

S ⊗ IE −
√

λ−2 − 1σ̂
y
S ⊗ σ̂

y
E

)
. (20)

The time-evolved state of the extended system is

|	(t )〉SE = |ψ (t )〉S ⊗ |0〉E + i(1 − λ2)1/2 sin(θt ) |1〉S ⊗ |1〉E ,

(21)

which is initialized at |	(0)〉SE = |0〉S ⊗ |0〉E. After post-
selecting, the environment in |0〉E with a success prob-
ability of Pd = [(1 − λ2) sin2(θt ) + 1]−1, the time-evolved
sensor state |ψ (t )〉S is obtained. For some values of θ ,
F pH

Q [|ψ〉S]/FQ[|	〉SE] > 1 [see Fig. 2(c)], where Pd becomes

relatively small. Here, the effective QFI, Pd F pH
Q , should be

considered, which does not diverge [see Fig. 2(b)]. Using
Eq. (9), we have FQ � Ftot � Pd F pH

Q , as shown in Fig. 2(d), in-
dicating that the pseudo-Hermitian sensor is suboptimal when
compared to its dilated Hermitian counterpart.

Furthermore, Fig. 2(d) shows that Pd F pH
Q ≈ FQ, as θ �

0.785, indicating that the pseudo-Hermitian sensor can be
efficient. It is because that most information about θ can be
obtained with very few measurement trials on the detected
state, which, similar to WVA, could help to overcome some
technical noise [40,67,71]. In addition, since the rejected state
does not contain information about θ , it is straightforward that
Qr = 0.
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FIG. 3. Two EP-based sensors with Hamiltonians in Eqs. (22)
and (24), respectively. (a1) QFI, F EP

Q , for the EP-based sensor (22) for
evolution times t = 8, 15, 20, when choosing �EP = ωccw. (a2) QFI,
FPT

Q , for the EP-based sensor (24) for t = 3, 5, 8, with φ = π/4.
(b1) and (b2) Ratios of the QFI for the EP-based sensors F EP

Q and
FPT

Q to the total QFI FQ and F ′
Q for the extended systems (blue

dashed-dotted curves) are shown with the corresponding success
probabilities Pd and P′

d , respectively. (c1) and (c2) The total effective
QFI, the effective QFI of EP-based sensors Pd F EP

Q and P′
d FPT

Q , the
effective QFI for the rejected states P′

rQ′
r and P′

rQ′
r , and the FI

for postselection process Fpost and F ′
post are shown for t = 8 and 3,

respectively.

VI. TWO TYPES OF EP-BASED
NON-HERMITIAN SENSORS

In non-Hermitian systems with EPs, where gain and loss
can be perfectly balanced, exotic behaviors are predicted to
occur [47,83,88] with promising applications, e.g., EP-based
sensing [14,15,31,41]. Here, we consider two types of EP-
based sensors without and with PT symmetry, respectively.

The first model has a non-Hermitian Hamiltonian:

ĤEP
S =

(
ωcw i�EP/2

i�EP/2 ωccw

)
, (22)

which has been experimentally realized in a Brillouin ring
laser gyroscope [15,31]. This EP-based sensor estimates
the frequency difference θ ≡ ωcw − ωccw by measuring the
eigenenergy difference �E of the Hamiltonian in Eq. (22).
The eigenenergies of ĤEP

S are E± ≡ [ωcw + ωccw ± (θ2 −
�2

EP)1/2]/2, with �E = (θ2 − �2
EP)1/2, which vanishes at two

EPs (θ = ±�EP). The estimation sensitivity δθ is proportional
to the inverse differential (∂�E/∂θ )−1, and the differen-
tial diverges at EPs, implying highly sensitive estimation in
absence of noise [15]. For the initial state |0〉S, as time be-
comes sufficiently long, the QFI diverges near the EPs [see
Fig. 3(a)]. Then, we consider the dilated Hamiltonian ĤEP

SE (t )
using Eq. (13) (see Appendix B for more details). For the
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initial state

|	(0)〉SE = |0〉S ⊗ |0〉E + [η̂(0) − I]1/2 |0〉S ⊗ |1〉E , (23)

the time-evolved state satisfies i∂t |	(t )〉EP
SE =

ĤEP
SE (t ) |	(t )〉SE. Without loss of generality, we set

η̂0 = 100 · Î for t � 15 and calculate the QFI for the EP-based
and the extended Hermitian sensors, respectively, which are
compared to the success probability Pd in Fig. 3(b1).
Figure 3(c1) shows that the effective QFI for this EP-based
sensor is much smaller than the QFI for the dilated Hermitian
system as Pd F EP

Q � FQ, which complies with Eq. (16). It
demonstrates that the EP-based sensor (22) cannot outperform
the conventional Hermitian sensor.

Next, we consider a two-level PT -symmetric system [14]
with a Hamiltonian:

ĤPT
S =

(
reiφ θ

θ re−iφ

)
, (24)

where θ is the unknown parameter to be estimated. Its
eigenvalues are E± = r cos φ ± (θ2 − r2 sin2 φ)1/2, and this
PT -symmetric system has two EPs (θ = ±r sin φ). When
|θ | > |r sin φ|, the eigenvalues are real; otherwise, the eigen-
values are complex since the PT symmetry is broken
[29,47,89]. Similarly, a highly sensitive sensor is theoretically
predicted near the EPs, due to the divergence of the inverse
differential (∂�E/∂θ )−1, where the QFI can be arbitrary large
for t → ∞ {see Fig. 3(a2)]. Considering the postselection
on the dilated Hermitian system, the effective QFI of the
PT -symmetric sensor is also smaller than the total QFI as
P′

d FPT
Q � F ′

Q [see Fig. 3(c2)].
Therefore, by relating EP-based sensing to postselected

measurements, both EP-based sensors cannot outperform
their extended Hermitian counterparts even with divergent
QFI near EPs. Moreover, the maximum effective QFI ap-
pear when the success probabilities Pd and P′

d achieve their
local maxima [see Figs. 3(b1) and 3(b2)]. In the context of
postselected measurements, it corresponds to an inefficient
postselection strategy, since “when more is less.” In com-
parison, the effective QFI for the pseudo-Hermitian sensor
achieves the maximum when the success probability achieves
its local minimum [Fig. 3(c2)], i.e., “when less is more.”
Another EP-based sensing scheme [25], where the dynamics
of a loss-loss system is mathematically equivalent to that of
a gain-loss system apart from a global exponential decay, is
discussed in Appendix F.

VII. CONCLUSIONS AND DISCUSSIONS

In summary, by employing the Naimark dilation method,
we establish a connection between non-Hermitian quan-
tum sensing and a postselection process implemented on an
extended Hermitian system. Through analyzing the effec-
tive QFI of the non-Hermitian sensing from the perspective
of postselected measurements, we demonstrate that non-
Hermitian sensors exhibit suboptimal performance compared
to their extended Hermitian counterparts, when all infor-
mation is harnessed. Analogous to WVA, the efficiency of
non-Hermitian quantum sensing, quantified by the ratio of the
effective QFI to the total QFI, can be optimized under post-
selected measurement protocols with minimal experimental

trials. Our work establishes an alternative framework for un-
derstanding non-Hermitian sensing from the perspective of
postselected measurements and facilitates the design of robust
quantum metrological protocols against technical noise.

Note that our results based on the conservation of total QFI
do not mean that non-Hermitian sensing is completely inef-
fective. Several implementations exhibit enhanced parameter
sensitivity under specific conditions [25,40]. First, since full
control of the sensor-environment system and the extraction of
all information from the environment space is experimentally
infeasible, non-Hermitian sensing provides a practical method
to harness useful quantum metrological resources from the
interaction with the environment. In addition, the Naimark di-
lation method may not be the minimal extension of the system
[90], but fortunately, in most experiments, the environmental
dimension is much larger than the Naimark-dilated ancillary
system dimension. Then, the efficiency of non-Hermitian sen-
sors can be evaluated using our framework. For instance,
the pseudo-Hermitian sensor (17) relates to the postselection
protocol that requires very few trials of measurements and has
an effective QFI that equals the total QFI, showing potential
advantages when the control of the environment is limited.
Since postselection detection protocols can suppress some
forms of technical noise [65,67,91], our theoretical framework
will further motivate the design of practical noise-resilient
quantum metrology that leverages the interaction with the
environment as a resource rather than a limitation. Further
research on this topic would include the use of the quantum
correlation measurement [92,93] to remove the classical noise
and practical QPE with different statistical methods, e.g., the
maximum likelihood analysis [94] and Bayesian analysis [95].
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APPENDIX A: TOTAL FISHER INFORMATION
FOR THE POSTSELECTION PROCESS

Here, we analyze the total Fisher information for the post-
selection process. For the postselected measurement on the
joint state |	〉SE, the success probabilities of obtaining the
detected state |ψd〉S and the rejected state ρr

S are Pd and
Pr ≡ 1 − Pd , respectively. Subsequent measurements on the
sensor state yield outcomes x with probabilities p(x|d ) and
p(x|r) for the detected and rejected states, respectively. The
total Fisher information for the postselection process can be
calculated as

Ftot =
∫

dx
[∂θPd p(x|d )]2

Pd p(x|d )
+

∫
dx

[∂θPr p(x|r)]2

Pr p(x|r)

= Pd

∫
dx

[∂θ p(x|d )]2

p(x|d )
+ Pr

∫
dx

[∂θ p(x|r)]2

p(x|r)
+

∑
i=d,r

(∂θPi )2

Pi

= Pd Fd + PrFr + Fpost. (A1)

Here, Fd and Fr represent the Fisher information for |ψd〉S and
ρr

S , respectively, and Fpost denotes the Fisher information for
the postselection process itself.

In the ideal case, where the POVMs {Êd} and {Êr} per-
formed on thedetected and rejected states, respectively, are
assumed to be optimal, the total Fisher information Ftot for
the postselection process can be optimized as [66]

F opt
tot [|	〉SE] ≡ max

{Êd }
max
{Êr}

Ftot (A2)

= Pd Qd [|ψd〉S] + PrQr[ρr,S] + Fp, (A3)

where Qd and Qr denote the quantum Fisher information of
|ψd〉S and ρr,S, respectively.

APPENDIX B: NAIMARK DILATION
OF NON-HERMITIAN HAMILTONIANS

Under the impact of a non-Hermitian Hamiltonian HS(t ),
the time-evolved state |ψ (t )〉S is governed by the Schrödinger
equation with h̄ ≡ 1 as

i∂t |ψ (t )〉S = HS(t ) |ψ (t )〉S . (B1)

According to the Naimark dilation theorem [58,59], this
nonunitary dynamics can be equivalently represented as the
dynamics of an extended system-environment Hermitian sys-
tem followed by postselection. The time evolution with the
dilated Hermitian Hamiltonian HSE(t ) satisfies

i∂t |	(t )〉SE = HSE(t ) |	(t )〉SE . (B2)

The joint state |	(t )〉SE evolves as

|	(t )〉SE ∝ |ψ (t )〉S ⊗ |0〉E + m̂(t ) |ψ (t )〉S ⊗ |1〉E , (B3)

where m̂(t ) is a linear time-dependent operator, |0〉 and |1〉 are
eigenstates of σ z, with σ̂ x,y,z being Pauli matrices.

Without loss of generality, HSE(t ) can be written as

HSE(t ) =
(

H (1)
S (t ) H (2)

S (t )

H (2)†
S (t ) H (4)

S (t )

)
, (B4)

where H (1)
S (t ) and H (4)

S (t ) are Hermitian. By substituting
Eqs. (B1) and (B4) into Eq. (B2), we have

H (1)
S (t ) + H (2)

S (t )m̂(t ) − HS(t ) = 0, (B5)

H (2)†
S (t ) + H (4)

S (t )m̂(t ) − m̂(t )HS(t ) − i∂t m̂(t ) = 0. (B6)

The Hermitian conjugate of these equations gives

H (1)
S (t ) + m̂(t )†H (2)

S (t )† − HS(t )† = 0, (B7)

H (2)
S (t ) + m̂(t )†H (4)

S (t ) − HS(t )†m̂(t )† + i∂t m̂(t )† = 0.

(B8)

The unitary time evolution of the extended Hermitian system
requires

∂t SE〈	(t )|	(t )〉SE = 0, (B9)

which can be calculated as

0 = ∂

∂t
S〈ψ (t )|[m̂(t )†m̂(t ) + I] |ψ (t )〉S

= S〈ψ (t )|i[HS(t )†η̂(t ) − η̂(t )HS(t ) − i∂t η̂(t )] |ψ (t )〉S ,

where we have defined η̂(t ) ≡ m̂†(t )m̂(t ) + Î. We further
have

H†
S (t )η̂(t ) − η̂(t )HS(t ) − i∂t η̂(t ) = 0 (B10)

and the solution takes the form

η̂(t ) = T e−i
∫ t

0 dτHS(τ )†
η̂(0)T ei

∫ t
0 dτ HS(τ ), (B11)

with T and T being time-ordering operator and anti-time-
ordering operator, respectively. Note that the form of η̂(0) is
indeterminate. The operator m̂(t ) is given by

m̂(t ) = Û [η̂(t ) − I]
1
2 , (B12)

where Û is an arbitrary unitary operator. For simplicity, we set
Û = I, and Eq. (B12) becomes

m̂(t ) = [η̂(t ) − I]
1
2 . (B13)

In addition, it is required to choose an appropriate Hermitian
η̂(0) to keep [η̂(t ) − I] a positive operator (see Appendix C
for details) such that m̂(t ) is Hermitian. By using Eqs. (B5)–
(B8), one possible solution for Eq. (B4) can be obtained as
[62]

H (1)
S (t ) = H (4)

S (t ) = {HS + m̂HSm̂ + i(∂t m̂)m̂}η̂−1,

H (2)
S (t ) = −H (2)

S (t )† = {[HS, m̂] − i∂t m̂}η̂−1. (B14)

After some calculations, the extended Hamiltonian can be
written as

HSE(t ) = H (1)
S (t ) ⊗ IE + iH (2)

S (t ) ⊗ σ̂
y
E. (B15)
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Next, H called as a ζ -pseudo-Hermitian Hamiltonian iff
there exists a Hermitian operator ζ̂ , satisfying

ζ̂H† = H ζ̂ . (B16)

Assuming that HS is a time-independent ζ -pseudo-Hermitian
Hamiltonian, we can simplify the Naimark dilation by choos-
ing a positive ζ̂ . We let η̂(0) = ζ̂ /νζ , where νζ is the minimum
eigenvalue of ζ̂ . Here, η̂ can be obtained with Eq. (B11) as

η̂(t ) = e−iH†
S t η̂(0)eiHSt = η̂(0). (B17)

Here, η̂ = ζ̂ /νζ and m̂ = [η̂ − I]1/2 are both time-
independent in this case. Thus, Eq. (B14) can be simplified
as

H (1)
S = H (4)

S = (HS + m̂HSm̂)η̂−1,

H (2)
S = −H (2)†

S = [HS, m̂]η̂−1, (B18)

where the extended Hamiltonian HSE expressed in Eq. (B15)
is also time independent.

APPENDIX C: UNIVERSALITY OF NAIMARK
DILATION METHOD

To ensure m̂(t ) = [η̂(t ) − I]
1
2 to be Hermitian, we need to

choose appropriate η̂(0) to keep η̂(t ) − I positive. First, we
choose an arbitrary positive operator

η̂′(0) = γ̂ †γ̂ . (C1)

By using Eq. (B11), we have

η̂′(t ) = [
γ̂T ei

∫ t
0 dτ HS(τ )

]†[
γ̂T ei

∫ t
0 dτ HS(τ )

]
, (C2)

which is still positive. By supposing the minimal eigenvalue
of η̂′(t ) is ν ′ and defining

η̂(0) ≡ η̂′(0)

ν ′ , (C3)

we ensure that

η̂(t ) − I = T e−i
∫ t

0 dτ HS(τ )†
η̂(0)T ei

∫ t
0 dτ HS(τ ) − I (C4)

is positive, for the saturation of a Hermitian m̂(t ).

APPENDIX D: DILATION OF PSEUDO-HERMITIAN
HAMILTONIAN

The pseudo-Hermitian Hamiltonian is written as

HpH
S = θ

(
0 λ−1

λ 0

)
, (D1)

where λ ∈ (0, 1], and θ is the unknown parameter to be esti-
mated. The Hamiltonian HpH

S is non-Hermitian when λ �= 1.
By setting |0〉S as the initial state, the time-evolved state under
the impact of HpH

S is calculated as

|ψ (t )〉S = exp
( − iHpH

S t
) |0〉S

tr
[ 〈ψ (0)| exp

(
iHpH†

S t
)

exp
( − iHpH

S t
) |ψ (0)〉 ]1/2

= [cos(θt ) |0〉S − iλ sin(θt ) |1〉S]/C, (D2)

with C ≡ [cos2(θt ) + λ2 sin2(θt )]1/2 is the normalization co-
efficient. The quantum Fisher information for a pure state |ψθ 〉

can be expressed as FQ(θ ) = 4(〈∂θψθ |∂θψθ 〉 + |〈ψθ |∂θψθ 〉|2)
[1,2]. We calculate the quantum Fisher information for
|ψ (t )〉S as

FQ[|ψ (t )〉S] = 4λ2t2

C4
. (D3)

With the Naimark dilation method as discussed in
Appendix B, a unitary dynamics of an enlarged system
can be used to equivalently represent the dynamics of this
pseudo-Hermitian system. Thus, we can construct an appro-
priate extended system by using the time-independent dilation
method (see Appendix B for more details). Here, HpH

S is a
η-pseudo-Hermitian Hamiltonian, satisfying

HpH†
S η̂ = η̂HpH

S . (D4)

The Hermitian operator η̂ is calculated as

η̂ =
(

1 a
a λ−2

)
, (D5)

with a being an arbitrary real number. Without loss of gener-
ality, we set a = 0, and the operator η̂ is given by

η̂ =
(

1 0
0 λ−2

)
. (D6)

Here, (η̂ − I) is positive. With Eq. (B12), m̂ can be written as

m̂ =
(

0 0
0

√
λ−2 − 1

)
. (D7)

With Eq. (B18), H (1)
S and H (2)

S are calculated as

H (1)
S = θλσ̂ x

S ,

H (2)
S = iθλ

√
λ−2 − 1σ̂

y
S . (D8)

Taking Eq. (D8) into Eq. (B15), the dilated Hamiltonian reads

HSE = θλ
(
σ̂ x

S ⊗ ÎE −
√

λ−2 − 1σ̂
y
S ⊗ σ̂

y
E

)
. (D9)

The initial extended state is chosen as

|	(0)〉SE ∝ |0〉S ⊗ |0〉E + m̂ |0〉S ⊗ |1〉E

= |0〉S ⊗ |0〉E , (D10)

and the time evolution of the extended system is governed by
ĤSE as

|	(t )〉SE = e−iĤSEt |	(0)〉SE (D11)

= |ψ (t )〉S ⊗ |0〉E + m̂ |ψ (t )〉S ⊗ |1〉E (D12)

= |ψ (t )〉S ⊗ |0〉E + i
√

1 − λ2 sin(θt ) |1〉S ⊗ |1〉E .

(D13)

Therefore, by postselecting the corresponding environment
state in |0〉E, the evolved state of the pseudo-Hermitian system
can be equivalently obtained as

|ψ (t )〉S ∝ E〈0|	(t )〉SE. (D14)
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APPENDIX E: DILATION OF HAMILTONIANS OF TWO
EXCEPTIONAL-POINT-BASED SENSORS

Here, we show more details for two examples of
exceptional-point-based sensors. One model involves a non-
Hermitian Hamiltonian that is written as

HEP
S =

(
ωcw i�EP/2

i�EP/2 ωccw

)
, (E1)

where θ ≡ ωcw − ωccw is the parameter to be estimated. Two
eigenenergies of HEP

S are

E± ≡ [
ωcw + ωccw ± (

θ2 − �2
EP

)1/2]
/2, (E2)

with �E = (θ2 − �2
EP)1/2. Setting |0〉S as the initial state, the

evolved state reads

|ψ (t )〉S =
[(

�E cos
�Et

2
− iθ sin

�Et

2

)
|0〉S

+ sin
�Et

2
|1〉S

]/
C1, (E3)

where C1 = (θ2 − cos �Et )1/2 is the normalization coeffi-
cient. The quantum Fisher information for the state |ψ (t )〉S
diverges near two exceptional points for t → ∞ [see
Fig. 4(a1)].

Then, we use the dilation method to extend the above non-
Hermitian system to a large Hermitian one. With Eq. (B15),
we can obtain the extended Hermitian Hamiltonian HSE, and
the extended system is initialized at

|	(0)〉SE = |ψ (t )〉S ⊗ |0〉E + m̂(t ) |ψ (t )〉S ⊗ |1〉E . (E4)

From a perspective of postselected measurements, the evolved
state of the non-Hermitian system |ψ (t )〉S is the detected state
|ψd〉S ≡ |ψ (t )〉S ∝ E〈0|	(t )〉SE, with |	(t )〉SE and |0〉E being
the joint state and the postselection state, respectively. The
rejected state is |ψr〉S ∝ E〈1|	(t )〉SE. Then, we calculate the
total quantum Fisher information FQ[|	〉SE] for the extended
state, the effective quantum Fisher information Pd F EP

Q and
PrQr for the detected and rejected states, respectively, and the
Fisher information Fpost for postselection process itself [see
Fig. 4(b1)].

The other model describes a two-level PT -symmetric sys-
tem with a Hamiltonian [14]:

HPT
S =

(
reiφ θ

θ re−iφ

)
, (E5)

where θ is the parameter to be estimated. Setting |0〉S as the
initial state and φ = π/4, the evoluted state reads

|ψ (t )〉S =
[(

�E

2
cos

�Et

2
−

√
2

2
r sin

�Et

2

)
|0〉S

−i sin
�Et

2
|1〉S

]/
C2, (E6)

with �E = (θ2 − r2/2)1/2. We calculate the quantum Fisher
information FPT

Q [|ψ〉S] as shown in Fig. 4(a2), and then
consider the dilation of the PT -symmetric system. Similarly,
we calculate the total quantum Fisher information F ′

Q[|	〉SE],
the effective quantum Fisher information for the detected
state P′

d FPT
Q , the effective quantum Fisher information for the

0 1 2
0

0.5

1

100

10
4

(a1)

100

10
4

(a2)

E
P

I
F

post

(b1)

Ω

0 1 2

Eq. (E5)Eq. (E1)

post

0

100

50

0.5 1 1.5 2

(b2)
0 1 2

FIG. 4. Two exceptional-point-based sensors with Hamiltonians
in Eqs. (E1) and (E5). (a1) The quantum Fisher information F EP

Q for
the sensor state (E1) for evolution times t = 8, 15, 20, with �EP =
ωccw. (a2) QFI FPT

Q for the sensor state (E5) for evolution times
t = 3, 5, 8, with φ = π/4. (b1), (b2) The total effective QFI Fpost and
F ′

post, the effective QFI of EP-based sensors Pd F EP
Q and Pd FPT

Q , the
effective QFI for the rejected states PrQr and P′

rQ′
r , and the Fisher

information (FI) for postselection process Fpost and F ′
post are shown

for t = 8 and t = 3, respectively.

rejected states P′
rQ′

r , and the Fisher information for postselec-
tion process itself F ′

post, as shown in Fig. 4(b2). In addition,
we also investigate the eigenvalues of η̂′(t ) versus θ , as shown
in Fig. 5.
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FIG. 5. Eigenvalues E1 and E2 of η̂′(t ) for the model with a
Hamiltonian in Eq. (E1), for t = 8, 16 and η̂′(0) = I.
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Ω

FIG. 6. Two exceptional-points-based sensors with Hamiltonians
in Eqs. (E1) and (E5). (a1), (a2) QFI for two exceptional-points-
based sensors for t = 8 and 3, respectively. (b1), (b2) Ratios of
the QFI for the exceptional-points-based sensors F EP

Q and FPT
Q to

the total QFI FQ and F ′
Q for the dilated Hermitian systems (blue

dashed-dotted curves) are compared with the success probabilities Pd

and P′
d , respectively. (c1), (c2) The total QFI FQ and F ′

Q, the effective
QFI for exceptional-points-based sensor states Pd F EP

Q and Pd FPT
Q ,

the effective QFI for the rejected states PrQr and P′
rQ′

r , and the FI for
postselection process Fpost and F ′

post are shown for t = 8 and t = 3,
respectively.

The exceptional point (θ = 1) separates the phase diagram
for a positive θ into two phases: the PT -symmetry-broken
phase (0 < θ < 1) and the PT -symmetric phase (θ > 1). In
the PT -symmetry-broken phase (0 < θ < 1), for any choice
of η̂′(0), one eigenvalue of η̂′(t ) will go infinity and the
other approximates zero for t → ∞. Therefore, a very large
amplification factor 1/ν ′ is required to multiply the η̂′(0) to
ensure [η̂(t ) − I] as positive for a fixed evolution time, where
ν ′ is the minimal eigenvalue of η̂′(t ). Under this condition,
the success probability Pd becomes extremely small; Fpost

and PrQr account for the vast majority of Ftot. Since most
of the measurement resources are discarded, the EP-based
sensor in the PT -symmetry-broken phase is very inefficient
as: FQ � Pd F nH

Q . Here, we only consider the EP-based sensor
in the PT -symmetric phase.

Moreover, we use the time-independent dilation method to
extend these two non-Hermitian systems, since this dilation
method is simple, and the amplification factor 1/νζ is much
smaller than that in the time-dependent dilation method. The

results of both examples (as shown in Fig. 6) verify our theory
FQ[|	〉SE] � Pd F nH

Q [|ψ〉S], summarized as Eq. (4) in the main
text.

APPENDIX F: MODEL OF LOSS-LOSS
PT -SYMMETRY SENSOR

Finally, we consider a loss-loss PT -symmetry sensor with
a Hamiltonian as experimentally implemented in Ref. [25]:

HLL =
(

v − ikH igθ
−igθ v − ikV

)
, (F1)

where θ is the unknown parameter to be estimated. Choosing
|ψ (0)〉 as the initial state, the time-evolved state is

|ψLL(t )〉 = e−iHLLt |ψ (0)〉 . (F2)

The Hamiltonian HLL can be divided into two terms

HLL =
(

v − i�k igθ
−igθ v + i�k

)
−

(
ik 0
0 ik

)

= HGL − ikI, (F3)
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(c)

post

ll

FIG. 7. Loss-loss PT -symmetry sensor with a Hamiltonian (F1)
and v = g = 1. (a) QFI for the loss-loss sensor state for t = 6 and
10. (b) Ratio of the QFI for the loss-loss sensor F LL

Q to the total
QFI FQ for the Naimark dilated system (blue dashed-dotted curve) is
compared with the success probabilities Pd (red solid curve). (c) Total
QFI, FQ, the effective QFI for the sensor state Pd F LL

Q , the effective
QFI for the rejected state, and PrQr , and the FI for postselection
process, Fpost.
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where k = (kV − kH)/2, �k = (kV − kH)/2, and HGL de-
notes the Hamiltonian of a gain-loss (GL) non-Hermitian
system. After a gauge transformation, the evolution can be
represented as

|ψLL(t )〉S = e−iHLLt |ψ (0)〉S , (F4)

with |ψLL(t )〉S = exp(−kt ) |ψGL(t )〉S. That is, the dynamics
of a loss-loss system is mathematically equivalent to that of
a gain-loss system under the impact of a global exponential
decay. Nevertheless, the loss-loss system can avoid the gain-
induced noise.

Since the global exponential decay is independent of θ ,
we only focus on the HGL. The eigenenergies of HGL are
E± ≡ v ± (θ2 − �k2)1/2, with the energy difference as �E =
2(θ2 − �k2)1/2, which vanishes as two exceptional points
(θ = ±�k). By setting |0〉S as the initial state, the time-
evolved state under HGL is

|ψGL(t )〉S = [(a cos at − �k sin at ) |0〉S − θ sin at |1〉S]/CGL,

(F5)

with CGL = θ2 − �k2 cos 2at − a�k sin 2at , and a = �E/2.
The quantum Fisher information for the evolved state

F LL
Q [|ψLL(t )〉S] can be arbitrary large for t → ∞ near the

exceptional points (θ/�k = ±1), which is shown in Fig. 7(a).

Similarly, by extending the non-Hermitian system with the
Naimark dilation method, we consider the ratio of the quan-
tum Fisher information for the non-Hermitian sensors F LL

Q
to the one for the extended Hermitian system FQ, which are
compared with the postselection success probability Pd [see
Fig. 7(b)]. In addition, we consider the effective quantum
Fisher information of the non-Hermitian sensor, which is
smaller than that one of its Hermitian counterpart as Pd F LL

Q <

FQ [Fig. 7(c)].
From Figs. 7(b) and 7(c), the effective quantum Fisher

information of the non-Hermitian sensor Pd F LL
Q achieves the

maximum when the postselected probability Pd achieves its
local minimum. It means more information of θ can be
obtained with less trials of measurements using the non-
Hermitian sensor from its Hermitian counterpart, i.e., “when
less is more.” However, the effective quantum Fisher informa-
tion Pd F LL

Q of the non-Hermitian sensor is still much smaller
than that one for its Hermitian counterpart cause the loss
of information during the postselection process. Our inves-
tigation employs quantum measurements with a weak probe,
which inherently yields a low success probability. In contrast,
classical measurements using a strong probe may achieve a
higher success probability, presenting a problem for future
research.
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