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We introduce bipartite projected ensembles (BPEs) for quantum many-body wave functions, which consist of
pure states supported on two local subsystems, with each state associated with the outcome of a projective
measurement of the complementary subsystem in a fixed local basis. We demonstrate that the correspond-
ing ensemble-averaged entanglements (EAEs) between two subsystems can effectively identify entanglement
phases. In volume-law entangled states, EAE converges to a nonzero value with increasing distance between
subsystems. For critical systems, EAE exhibits power-law decay, and it decays exponentially for area-law
systems. Thus, entanglement phase transitions can be viewed as a disordered-ordered phase transition. We also
apply BPE and EAE to measured random Clifford circuits to probe measurement-induced phase transitions.
We show that EAE not only serves as a witness to phase transitions, but also unveils additional critical
phenomena properties, including dynamical scaling and surface critical exponents. Our findings provide an
alternative approach to diagnosing entanglement laws, thus enhancing the understanding of entanglement phase
transitions. Moreover, given the accessibility of measuring EAE in quantum simulators, our results hold promise

for impacting quantum simulations.
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I. INTRODUCTION

The development of quantum information [1-4] has high-
lighted the significance of entanglements in understanding
quantum matter [4—6]. For instance, in one-dimensional lo-
cal gapped quantum many-body systems, the entanglement
entropies of ground states have been proved to satisfy the
area law [7]. However, in critical systems, the entanglement
entropies display a logarithmic divergence [8—11]. In addition
to low-energy physics, entanglements can also shed light on
high-energy excited states and nonequilibrium systems [12].
Specifically, the singular changes of entanglement scaling of
pure quantum many-body states can be identified by entan-
glement phase transitions. One typical example is the phase
transition between thermalization and many-body localiza-
tion, where high-energy excited states of the former system
obey a volume law, while the latter one has area-law entangled
excited states [13—-19]. Another novel family of entangle-
ment phase transitions, known as measurement-induced phase
transitions (MIPTs) [20-49], has been discovered in moni-
tored quantum many-body systems, and is currently under
experimental investigation [50-52] in various quantum sim-
ulators [53-55]. The different measurement-induced phases
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manifest in different behaviors of entanglements in steady
states. For small rates of measurements, the system resides in
an entangling phase with volume-law entanglements of steady
states. For high measurement rates, it is disentangling phase
with area-law entanglements. At the critical point, the steady
states generally exhibit logarithmic entanglement entropies,
satisfying the subvolume law.

Entanglement dynamics in some random circuits can be
mapped to classical statistical mechanics [25,26], where the
entanglement entropies correspond to free energies and the
entanglement phase transitions can be mapped to ordered-
disordered phase transitions. However, in conventional phase
transitions, we generally need to define the corresponding
correlation functions to identify short- and long-range order.
Moreover, correlation functions can guide us to a universal
scaling law, which is significant for understanding the phase
transition and critical phenomenon. For entanglement phases,
one potential candidate is quantum mutual information [56],
which characterizes the quantum correlation of two subsys-
tems. However, quantum mutual information between two
local subsystems is akin to a connected correlation function,
which tends to zero for both volume- and area-law entan-
gled states [24], so it cannot distinguish between ordered and
disordered phases. Thus, an open question arises: Whether
we can define a correlation function to further understand
entanglement phase transitions.

In this paper, we introduce a type of correlation function
with bipartite projected ensembles (BPEs) to identify entan-
glement phases. Here, BPE is a set of pure states supported
on two local subsystems, where each element represents an
output state obtained after a projective measurement of the
complementary subsystem in a fixed local basis. We also
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FIG. 1. Setup. (a) The diagram of BPE. For a many-qubit system with a pure state |V}, the subsystem R is measured in a fixed local basis.
Then, the remaining unmeasured subsystems A and B are in a pure state, which depends on the measurement outcome on R. (b) The scaling of
EAE for different entanglement laws. (c) The structure of the unitary-measurement hybrid circuit. The local two-qubit gates are drawn from
the uniformly sampled Clifford group, and the random projected measurement is onto the z component with a probability p.

define ensemble-averaged entanglements (EAEs) between
these two subsystems, which can be regarded as a type of
correlation function. We show that the scaling of EAEs can
identify the entanglement laws of quantum many-body wave
functions. In the case of volume-law entanglements, EAE
converges to a nonzero value for large distances between
two subsystems. In a critical system, EAE follows power-law
decay, and it exhibits exponential decay in an area-law system.
We then apply BPE and EAE to investigate the MIPT in a
random Clifford circuit with local projective measurements,
and our results show that EAE can effectively witness MIPT.
Remarkably, we demonstrate that BPE can reveal the univer-
sal scaling of the dynamics and surface critical exponents,
which are significant for understanding critical properties of
MIPT. We also propose an experimental protocol for measur-
ing EAE and estimate the corresponding complexity, where
our results show that measuring EAE is easier than measuring
entanglement entropies.

II. SETTING UP THE BIPARTITE
PROJECTED ENSEMBLES

Here, BPE is generalized from projective ensembles in
Refs. [57-59]. Without loss of generality, we consider a many-
qubit system, where the system is divided into three parts A,
B, and R, with the number of qubits N4, Np, and Ng. The
local bases of each qubit are labeled by |z), with z =0, 1,
and |W) denotes the wave function of the full system. Here,
the BPE of A and B is generated by performing projective
measurements on all qubits in R with a local basis {|zz)},
where |zz) € {0, 1} are the measurement results of R with
probability p(zg) [see Fig. 1(a)]. Thus, the wave function |W)
can be rewritten as

W) = > V/pGr) [Was(r) @ [2r) . ()

with
p(zr) = (V| (Iap ® Izr) (zr]) |¥), )
[War(zr)) = (ILag ® (zr]) I¥) /v/ P(zr), 3)

where [45 is the identity of subsystems A and B. Thus, the
BPE for subsystems A and B can be defined as

Ev.ap = {P(zr), IWan(zr))}. 4

To measure the correlation between subsystems A and B,
we also define the corresponding EAE as

EA:B):=Y pp)Saze) = Y pzr)Spr),  (5)

IR <R

where S4,p(zg) is the von Neuman entropy of subsystem
A/B with respect to the state |Wap(zz)). Here, both the BPE
and EAE depend on the measurement bases. The maximum
value of E(A : B) over the allowed measurement bases is
the localizable entanglement [60,61], which has been used to
study ground-state quantum phase transitions and multipartite
entanglements.

In this work, we primarily utilize BPE and EAE to study
entanglement phases, where we only consider a fixed basis.
Our setting is suitable for numerical simulations and quantum
simulators [57]. In the following discussion, for simplicity, we
only consider Ny = Ng = 1, and r labels the distance between
Aand B,ie.,E(A:B)=E(r).

Now we discuss the relations between EAEs and the
laws of entanglement entropies. In Appendix A, we present
phenomenological derivations of the scaling of the EAE in
different entanglement phases with the matrix-product state
representation [62]:

(1) For area-law entangled states, E(r) exhibits an ex-
ponential decay, corresponding to a short-range correlated
(disordered) phase (Appendix A 1). In Appendix A 4, we also
consider a valence-bond solid state as an example to illustrate
1t.

(2) For volume-law entangled states, £ () can converge to
a nonzero value when increasing r,

lim E(r) ~ const, (6)
r—00

corresponding to a long-range correlated (ordered) phase
(Appendix A 2). To understand this, we can consider a ran-
dom state as an example (Appendix A 4), which is a typical
volume-law entangled state describing quantum chaotic sys-
tems [63,64]. For this state, £y 4p is nearly independent of
measurement bases and positions of A and B, and tends to be
a Haar ensemble leading to

E(@r) =~ (In2)/2, @)

for arbitrary r [57-59].
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FIG. 2. The results of EAE for random Clifford circuits. The dynamics of E(r) for (a) p = 0.05, (b) p = 0.16, and (c) p = 0.25. The
system size is L = 256. The scaling of E(r) at t = 2L for (d) p = 0.05, (e) p = 0.16, and (f) p = 0.25. The black dashed line in panel (e) is
for the fit: E(r) ~ r~", with n ~ 0.71. The sampling times are 10 000 for L = 32, 64, 128, and 5000 for L = 256.

(3) For critical states, due to scaling invariance, we expect
that E (r) exhibits a power-law decay (Appendix A 3).

Therefore, EAE can be interpreted as an effective corre-
lation function, and an entanglement phase transition can be
mapped to a conventional disordered-ordered phase transition
[see Fig. 1(b)].

III. WITNESS OF MEASUREMENT-INDUCED
PHASE TRANSITIONS

A. Monitored random Clifford circuit

Since BPE and EAE can characterize the different laws
of entanglement entropies, we now apply them to investi-
gate MIPTs. The monitored random Clifford circuit can be
simulated efficiently on classical computers [65] and is a
paradigmatic model to study MIPTs, which only consists of
Hadamard gates, Pauli X, Y, Z gates, control-not gates, and
Z-component projective measurements.

Here, we find that E (r) of stabilizer states can also be effec-
tively calculated, and the details are presented in Appendix B.
Thus, for concreteness, we consider the measured stabilizer
circuit model as an example to investigate BPE and EAE
across an MIPT. The circuit diagram is shown in Fig. 1(c),
where each time step contains two layers of quantum gates
and measurements. Each local two-qubit gate U ,j+1 1s inde-
pendently drawn from a uniformly sampled Clifford group,
and the probability of each projective measurement on the
circuit is p. In addition, the measurement bases of BPE are
also of z-component type. We start from a trivial product state
|Wo) = |0)®L, with L being the system size.

Generally, the unitary quantum gates can produce the
entanglement entropies, while the projected measurements
can decrease the entanglements. Thus, when tuning the
measurement probability p, there exists an entanglement

phase transition with a critical point at p. ~ 0.16 [20,24,29].
When p < p,, the system is in an entangling phase with exten-
sive entanglement entropies for steady states. When p > p,,
it is in a disentangling phase with area-law entanglement
entropies. At the critical point, the entanglement entropies of
the steady states hold a subvolume law.

B. Phase transitions

Now, we numerically study the behaviors of BPE and EAE
across an MIPT. In Figs. 2(a)-2(c), we present the dynamics
of EAEs for different p. We can find that, for small p, the
correlation can spread to the whole system, indicating ex-
tensive entanglement after a long-time evolution. However,
for large p, there only exist short-range correlations during
the dynamics, showing area-law entanglements. To further
demonstrate this picture, we also present the results of E (r)
for steady states (t = 2L). When p < p,, E(r) can converge to
a nonzero value for large distances, i.e., E(r — 00) ~ const
[see Fig. 2(d)]. When p = 0.16 (critical point), EAE holds a
perfect power-law decay [Fig. 2(e)]:

E(ry~r™", ®)

with

n~0.71. )

When p > p,., E(r) tends to exhibit an exponential decay [see
Fig. 2(f)]. Our results show that the behaviors of E(r) can
diagnose the different entanglement phases of the measured
stabilizer circuit, which is consistent with Fig. 1(b).
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FIG. 3. The integrated EAE o vs p for different system sizes.
The inset is a collapse of the data, with the critical point p. ~ 0.16
and exponent v &~ 1.24. We choose periodic boundary conditions.
The sampling times are 10 000 for L = 32, 64, 128, and 5000 for
L = 256.

To further understand MIPT with EAE, we define the inte-
grated EAE as

1
0=

~I

L
ZE(r). (10)
r=1

Here, o is in analogy with the squared magnetization in the
Ising model [66], which is useful for identifying the magneti-
zation phase transition. We present the results of o for steady
states versus p in Fig. 3. Similar to the squared magnetization,
in the ordered phase (small p), o can be nonzero in the thermo-
dynamic limit, while it tends to zero for the disordered phase
(large p). Moreover, o is also expected to satisfy the scaling
ansatz (Appendix D 1)

0=L""F[(p— po)L'"]. (11)

By data collapse, we can obtain the optimal correlation length
critical exponent (see the inset in Fig. 3)

v A 1.24, (12)

which is consistent with the results in Refs. [20,24,29].
Therefore, by introducing EAEs, MIPTs can indeed be de-
scribed with the language of conventional disordered-ordered
phase transitions. In Appendix C, we demonstrate that BPE
and EAE can also identify MIPTs in measured Haar random
circuits.

C. Critical dynamic scaling

We also study the critical dynamic scaling of EAE in this
system. Generally, the length scales in the spatial (§) and the
temporal (7) directions satisfy the relation t ~ &%, where z

is the dynamical critical exponent. To identify the universal
dynamics of EAE, we first need to obtain z. In previous works
[20,29], z is usually taken as 1. However, there has not been
any reliable analytical or numerical results to verify z = 1 in
this system [20,29]. Here, we demonstrate that EAE can be
used to obtain z. In analogy to conventional critical nonequi-
librium systems, the dynamics of EAE is expected to satisfy
the scaling ansatz [67]

E(rt, p) =1t""glr/t"* (p — po)t'/™], (13)

where d = 1 is the spatial dimension and 6 is a universal
critical exponent. Here, we can also define the k-moment of
EAE as

1 _
o = T ZrkE(r), (14)

where o = 0*=. According to Eq. (13), we can obtain the
dynamics of o by integrating r as (Appendix D 2)

o®(t, p) = "G l(p — pt]. (15)

Thus, in the thermodynamic limit L — oo and at the critical
point, the early-time dynamics of o’ satisfies (Appendix D 2)

0®(t, po) = 172G (0) ~ 17Tz, (16)

In Fig. 4(a), we present the dynamics of o®) at the critical
point for L = 256, where 0¥ indeed exhibits power law
increasing for early times. By linear fitting, we can obtain
the optimal critical exponents z &~ 1.01 and 6 ~ 0.38 [see
Fig. 4(b)].

Now, we can further verify the universal dynamics of o®.
In Fig. 4(c), we plot the dynamics of ¢! in the disordered
phase. The perfect data collapse is consistent with the scaling
ansatz in Eq. (15). In addition, at the critical point, the early-
time dynamics of o® can be generalized to the finite-size
scaling form

Q(k)(t) — L6+k/ZG(lL_Z). a17)

In Fig. 4(d), we present the dynamics of o) for different
system sizes at the critical point, of which the perfect data
collapse at early times is consistent with Eq. (17).

D. Surface criticality

Now, we apply EAE to identify surface criticality [68,69],
which requires open boundary conditions. We first consider an
edge site as the subsystem A and a bulk site as the subsystem
B, respectively, and label the corresponding EAE as £, (r). In
Fig. 5(a), we plot £, (r) of steady states at the critical point.
The results show that £, (r) can also exhibit a power-law
decay:

E\(r)~rm, (18)
with
n,. ~ 1.02. (19)

Then, we consider two edge sites as the subsystems A and
B, respectively, and label the corresponding EAE as E}(L). In
Fig. 5(b), we present numerical results of £ of steady states
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FIG. 4. Critical dynamic scaling. (a) The dynamics of o® at the critical point with L = 256. The black dashed lines are linear fits.
(b) Scaling of ¢® vs k. The black dashed line is a linear fit with 6 ~ 0.38 and z &~ 1.01. (c) The dynamics of o" in the disentangling
phase for different p with a fixed system size L = 256. (d) Finite-size scaling of 0" (¢) at the critical point.

versus the system size L at the critical point, where we can
find that

E_‘H(L) ~ L_n” 5 (20)

with

n ~ 1.34. 21

Therefore, similar to the correlation functions in conventional
phase transitions [68,69], the bulk and surface critical expo-
nents described by EAEs in this MIPT also satisfy the relation

nL~m+n)/2. (22)

IV. EXPERIMENTAL PROPOSAL AND THE COMPLEXITY
FOR MEASURING EAE

According to Eq. (5), to measure E(A:B), it suffices to
obtain the projected single-qubit density matrices of A, i.e.,

Pa(zr) :=Trg |Wap(zr)) (Wap(zr)| - (23)

Moreover, it is not necessary to access the full set of Ey 4p;
instead, a subset of partial density matrices pa(zg) with high
probabilities p(zz) is sufficient to approximate E(A:B) (see
also Appendix E).

In experiments, a single-qubit state tomography on A can
be performed alongside a joint readout on R, and E(A:B)

can be extracted by postselection processing. Generally, the
maximum p(zg) decreases exponentially with system size,
implying that the complexity of probing EAE scales as g",
where ¢ < 2. In Appendix E, we provide a detailed analysis
of the complexity for measuring EAE, demonstrating that it is
more scalable than measuring entanglement entropies [70] in
noisy intermediate-scale quantum systems.

V. CONCLUSION

In summary, we have introduced the BPE and EAE as
tools for probing entanglement phases. Our findings establish
that EAEs can be interpreted as a form of correlation func-
tion, whose scaling exhibits a direct correspondence with the
entanglement laws of quantum many-body wave functions.
This insight allows us to extend concepts from conventional
disordered-ordered phase transitions to the study of entangle-
ment phase transitions, where volume- and area-law entangled
states correspond to ordered and disordered phases, respec-
tively. Using a monitored stabilizer circuit as a case study,
we have demonstrated the efficacy of EAE in identifying
MIPTs. In particular, we have shown that EAE enables the
extraction of universal scaling behavior in dynamical evo-
Iution and the determination of surface critical exponents
in MIPTs. Our results deepen the understanding of entan-
glement phases and offer promising avenues for advancing
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FIG. 5. Surface critical phenomena. (a) The scaling of EAEs
between an edge site and a bulk edge. (b) The scaling of EAEs
between two edge sites. The black dashed lines are linear fits, with
n. ~ 1.02 and n; ~ 1.34.

quantum simulation techniques. In addition, we anticipate the
generalization of BPE and EAE to investigate other quan-
tum many-body physics, such as quantum thermalization
[64,71-74] and many-body localizations [13—19].
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APPENDIX A: SCALING OF EAE

In this Appendix, we present phenomenological descrip-
tions for the scaling of the EAE in different entanglement

phases. Our derivations are based on the matrix-product state
(MPS) representations [62].

We write a generic many-qubit state as an MPS state with
open boundary conditions

W) =Y T{T5 - T la),

zZ

(AD)

where the index z = {z1, 22, ..., 2.}, with z; = 0, 1 is the phys-
ical index. We assume the maximum bond dimension to be y,
which satisfies 2" < x < 2m+1 Thus, the dimensions of the
matrices ij are

(1,2),2,4), ... 2", 0, (X X5 o5
O X (6 27), s (4,2)(2, 1),

Without loss of generality, we let sites 1 and L be the
subsystems A and B, respectively. Thus, the projected states
of A and B can be written (without normalization) as

(Was(zr)) = ) Ti'RGRT} |21, 2L)

21,21

(A2)

where R(zg), with zg = {r2, r3, ..., r1_1},1s a2 x 2 matrix and

has the form

R(zg) =TT3 - - T/ (A3)

Here, we can use the concurrence C to represent the entan-
glement of the two-qubit state |W45(zg)). It is not difficult to
verify that [61]

det[R
CWap(a))) = RG]

_ _detrenll oo
THRGORG) 1 | A8):

(A4)
where [Wap):=)_.
Here, the entanglement entropy of |W,z) depends on the
singular values of I'{', and thus equals to the entanglement
entropy of A for | W), which is generally nonzero. Therefore,
to calculate the scaling of the EAE, we just need to calculate
the scaling of

[{'T}" |z1, z) (without normalization).

_ _IdetlR(z)]|
" TRGRRGR)

In the following, we will discuss the scaling of F in different
entanglement phases.

(AS5)

1. Area-law entanglement

We first consider area-law entangled states, which can be
efficiently represented by MPS with the maximum bond di-
mension x ~ O(1). Thus, m ~ O(1).

For simplicity, we let R(zg) as the product of three matri-
ces, i.e., R(zg) = XWY, where

—rhrh., ..t
X = FZ l_‘3 Fm+l’

_ Tmy2 prmt2 | IL-m-1
W= 1—‘erZFerZ 1—‘Lfmfl’
— 7-m pL-mtt -1
Y = 1-‘L—mr‘L—m+1 1—‘L—l' (A6)

Thus, the dimensions of X, W, and Y are (2, x), (x, x), and
(x,2). We perform a singular-value decomposition for W i.e.,
let W =UAV?". Here, U and V are both y x x unitary ma-
trices and A = diag(iq, A2, ..., A, ), where we let the singular
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values satisfy

Mz A 20y

We also define X := XU and Y := V'Y, and have
R(zz) = XAY.

We label the elements of the matrices X and ¥ as x; ; and y; ;,
respectively, where |x; j| ~ |y; ;|. Thus, we can obtain R(zg)
as
bt
C o Ay
R(zp) = |:Z{<:1 LjAjYjt

=1 %2.jAjYj

X Y
Zj:l X1,jAjYj2

. A7
P xz,_/?»jyj,z] &7

Therefore, we have

X
|det[R(zp)]l = Y dikjlxrixa j(viayjo — yiayi)l.  (A8)
i,j=1

X
TrARGRR(R) 1 = Y hidjxixt j + X205 )
i,j=1

X (Vi1 ¥j1 +Yi2Yio)- (A9)

Since x ~ O(1) for area-law states, we know that the ma-
trix W can be described by a few singular values; i.e., A;
should decay very fast. We first consider the nondegenerate
case A # Ay, where the corresponding area-law states are
generally topologically trivial and do not have long-range
entanglement. Thus, we have

AL > Mg (A10)

To obtain the scaling of A;/A;, we can consider a coarse-
grained picture. We consider the subsystem R (i.e., sites
m+2, m+3, m+4, ..., L—m—1) as a cell, where the
corresponding tensor is W and the correlation length of the
new lattice is ~1/L. For an MPS, the correlation length is
generally given by

1 1

~——— ~ —. All
: In(A2/21) L A1
Thus, the maximum singular value of M is exponentially

larger than the second largest one, i.e.,

A
2L~ exp(kL). (A12)
A2
According to Egs. (A8) and (A9), we have
| det[R(zr)]| ~ A1A2, (A13)
Tr[R(zr)R(zx)'] ~ A7. (A14)
According to Eq. (AS),
A2
F ~ o ~ exp (—«L). (A15)
1

Therefore, for these area-law entangled states, EAE is ex-
pected to exhibit an exponential decay when increasing the
distance.

Now we consider the degenerate case A; = A, corre-
sponding to ground states of topological systems or the
GHZ (Greenberger-Horne-Zeilinger) state. As an illustrative

example, we consider the GHZ state:
1
V2

We now examine a class of homogeneous measurement bases
defined as

IVaHz) = —=(100---0) + [11---1)). (A16)

{lp1) = sin 6 [0) + cosO |1), |¢p2) =cosb |0) —siné 1)},
(A17)

with 0 € [—m /2, 7w /2]. Each measurement outcome |zg) is a
product state of |¢;) and |¢,). The corresponding projected
state of subsystems A and B takes the form
|Wap(zr)) =N (sin™ 6 cos™ >0 00)
+ cos” 0 sinf "2 0 |11)), (A18)

where A is a normalization factor and m denotes the number
of |¢1) in the outcome |zg). Using concurrence to quantify the
entanglement between A and B, we obtain

C(zg) = N?|sint ™20 cos" 2 4|. (A19)
The averaged EAE over all measurement outcomes is then

)
_ L —2\ C(zg) . _
EA:B:Z< - )NI; = |sin 26|72

(A20)

m=0

Thus, E,.p exhibits exponential decay for generic 6 and vi-
olates it only when 6 = 4 /4. Therefore, we can find that,
for long-range entangled and topologically nontrivial states,
the EAE can violate exponential decay only for specific
measurement bases.

2. Volume-law entanglement

For volume-law entangled states, the situation becomes
completely different, which cannot be efficiently represented
by MPS with finite maximum bond dimensions; i.e., the tensor
cannot be truncated. This results from two properties of MPS
for volume-law entangled states: (1) Singular values of the
tensor I';* decay very slowly; i.e., they have the same order.
(2) The direction regarding each singular value is nearly ran-
dom. Therefore, the matrix R(zz) should be a random matrix.
We label two singular values of R(zg) as s; and s, which are
also random. Thus, s; and s, are expected to satisfy

LN o). (A21)
52
In addition,
| det[R(zr)]| = 5152, (A22)
Tr[R(zr)R(zp)'] = 57 + 3. (A23)
Thus,
| det[R(zg)]
———— ~ 0O(1). A24
TRGoRGT  CW (A24)

Therefore, for volume-law entangled states, F' in Eq. (AS) is
finite when L — oo; i.e., EAE converges to a nonzero value
when increasing the distance between subsystems.
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3. Critical states

For critical states, the entanglement entropies diverge log-
arithmically with respect to subsystem sizes. In addition, the
critical states can be efficiently described by MPS with the
maximum bond dimension

x ~ L%, (A25)
where the parameter « relates to the central charge. Here, the
singular values A ; of the matrix W defined in Eq. (A6) decay
slowly. Thus, the scalings of | det[R(zg)]| and Tr[R(zz)R(zr)']
depend on all A; and the matrices X and ¥, making it challeng-
ing to obtain the scaling of F.

However, according to the MPS representation, we know
that the scaling of EAE for critical states should be inter-
mediate between the one of area- and volume-law states. In
addition, due to the scaling invariance for the critical states,
intuitively, EAE is expected to exhibit a power-law decay.

4. Two solvable examples

Here, we present two instructive solvable examples of
quantum many-body states to illustrate the scalings of EAE
for area- and volume-law entangled states.

For area-law states, we consider a valence-bond solid state
as an example, i.e.,

N/2

1
[Wves) = Q) 1b2j-12))  Iajo12)) = —=
j=1

01) — |10)).
ﬁ(|> 110))

(A26)

We choose the first site as the subsystem A. When the subsys-
tem B is site 2 (i.e.,, r = 1), we can find that |W,5(zz))} =
Jli(|01) —|10)) for arbitrary zg. Thus, the corresponding

EAE is E(A:B) = In2. When the subsystem B is not site 2
(i.e.,r > 1), each element |\W45(zz))} in the BPE has four pos-
sibilities: |00), |01), |10), and |11), which are all product
states, leading to E(A: B) = 0. Therefore, the scaling of EAE
for [{ryps) satisfies

_ {mz,
E(r)=

r="1 (A27)
0, r>1,

indicating a short-range correlation.

The other instance is a random state |YRand), Which is
a typical volume-law entangled state and can describe the
equilibrium state of infinite-temperature chaotic systems. For
|¥Rand)»> €w ap is nearly independent of the positions of A and
B. Thus, the BPE of two distant qubits should be equiva-
lent to the case of two nearest-neighbor qubits. According to
Refs. [57-59], Ey ap is nearly a Haar ensemble,

Evap ~ Exaarap = AV, |¥) € Has),

where H4p is the Hilbert space of the qubits A and B. Thus,
we have

(A28)

Er) In2
)~ —,
2

for arbitrary r, showing a long-range correlation.

(A29)

APPENDIX B: ENSEMBLE AVERAGED
ENTANGLEMENTS FOR STABILIZER CODES

Here, we present details about how to calculate the EAEs
of stabilizer states. Consider a codeword |¢) determined by
the stabilizer group

S=1{81,82 - 8L : 8 V) = V),

where L is the number of qubits and g, is a Pauli string
operator satisfying [2«, 8s] = 0. Now, for the wave function
|Y), we perform a projected measurement of the jth qubit
onto the z component.

First, we consider a simple case, where |y/) is the eigenstate
of 6']?; i.e., [8o, 6;] = 0 for all «. Thus, the measurement result
is certain, and the wave function remains invariant after the
projected measurement.

Second, we consider the case when [v) is not an eigen-
state of 6;. Here, without loss of generality, we consider
[81, 6j]+ = 0, while [2,, 6;] = 0 for o # 1. This can always
be satisfied. For instance, if there exists g4 (8 # 1) that satis-
fies [§, 671+ = 0, we can rewrite g4 as

B

8 > &18p, (B2)
and the new g commutes with 6;. Now, the measurement
result can be either +1 or —1 with equal probabilities. If the

measurement result is +1, the wave function collapses to

)+ ) = o 1. (83)
We can also find that |/) satisfies

BulVs) =14) (@ #1),

U; |1/~f+> = |l5+> . (B4)

Thus, the new code word |, is determined by the following
stabilizer group:

Si={81=6/2, 8 8lV)=1¥1).  (BS)

Similarly, if the measurement result is —1, then the wave

function after the projected measurement, labeled by |v/_), is
determined by the following stabilizer group:

S ={t1=-67.2, 8 &IV )=1V).

Thus, the difference between 5+ and S_ is just that the corre-
sponding g; has the opposite sign.

Note that the entanglement entropy of a codeword |{r) is
independent of the signs of g,. Thus, S, and S_ have the
same entanglement entropies. Generalizing to the case of joint
projected measurements of many qubits, we can conclude that
the entanglement entropy of a codeword after the measure-
ments is independent of the measurement results. Therefore,
for a codeword |/), we consider the BPE with respect to the
z-component basis as

(B6)

Ey.ap = {par), |War(zr))}. (B7)

The von Neuman entropy of subsystem A/B for the state
|Wap(zr)) is zg independent. Therefore, when calculating the
EAE of &y ap, we can first perform a projected measurement
of the subsystem R. Then calculate the von Neuman entropy
of subsystem A/B, which is the EAE of £y 43.
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FIG. 6. The results of EAE for Haar random circuits. The dynamics of £ (r) for (a) p = 0.05, (b) p = 0.17, and (c) p = 0.25. The system
size is L = 20. (d) The integrated EAE o of steady states vs p for different system sizes. (e) Data collapse of panel (d) using Eq. (6) with the

critical point p, & 0.17 and exponents v &~ 1.4 and n =~ 0.45.

APPENDIX C: HAAR RANDOM QUANTUM CIRCUITS
WITH PROJECTIVE MEASUREMENTS

In the main text, we have applied BPE and EAE to investi-
gate MIPT in the measured stabilizer circuits. In this section,
we apply BPE and EAE to study MIPT in Haar random quan-
tum circuits with projective measurements. In a Haar random
quantum circuit, each two-qubit gate is sampled according to
the Haar measure on the unitary group SU (4). The numerical
results are shown in Fig. 6 with periodic boundary conditions.
We find that EAE can indeed identify the MIPT of Haar
random quantum circuits with projective measurements, and
the critical point is consistent with Ref. [30]. We also calculate
the critical exponents as v & 1.4 and n = 0.45.

APPENDIX D: FINITE-SIZE SCALING

In the main text, we have presented the universal scaling
ansatz and the corresponding numerical results of the EAE
across the critical point. In this Appendix, we derive the
scaling functions of the EAE across a generic MIPT. Our
derivations are all premised on a hypothesis: The role of
EAE in MIPTs is equivalent to the correlation function in
conventional phase transitions.

1. Static scaling ansatz

We first consider the scaling ansatz of steady states in mon-
itored quantum systems. Near a critical point, the correlation

length & for a steady state diverges as

E~(p—p)". (DD
Thus, according to scaling invariance, an arbitrary observable
O can be described by a universal scaling function

N Syive) i
o-cr(t).

where A is the dimension of O. According to Eq. (D1), we
have

0 = L‘Aof[

(D2)

(p _fc) j| _ L_AOF[(p _ pc)Ll/v],

(D3)
where the function F(x) = f(x~'/"). For the integrated EAE
0:=1 Sk E(r), since E(r) ~ r~" at the critical point, we
have

1 L
o~ Z/ drr "~ L7, (D4)
0

Thus, the dimension of ¢ is A, = 1, and it should obey the
scaling ansatz

o=L""F[(p—poL""]. (D5)

2. Dynamical scaling ansatz

Since MIPT is a nonequilibrium phase transition, we
can also study dynamical scaling. We first consider the

043022-9



ZI-YONG GE AND FRANCO NORI

PHYSICAL REVIEW RESEARCH 7, 043022 (2025)

thermodynamic limit, i.e., L — oo. In addition to the correla-
tion length £ of the steady sate, there also exists a dynamical
correlation length £(¢). Here, £(¢) can be understood as the
instantaneous correlation length at time 7, and satisfies

E(t) =17,

where z is the dynamical critical exponent. Similar to the
dynamical scaling of conventional phase transitions [67], the
dynamics of EAE is expected to satisfy the scaling ansatz

E(r,t,p) =" hlr/&@), £(t)/]
=177 En[r/t'7, (p — po)'t']
= 1" g[r /15, (p — por'],

where d = 1 is the spatial dimension, 6 is another universal
critical exponent, and the scaling functions satisfy g(x, y) =
h(x, y'/V). Thus, the k-moment of EAE satisfies

(D6)

D7)

L
oMt p) ~ oy | dr g/t (p = pe' ]
0

~ "G [(p — pe', (D8)

where
Gk(y)=/dx g(x, y).

At the critical point p = p,, according to Eq. (D8), we have
o, p) ~ 1"*G(0), (D9)

showing that o® exhibits a power-law increase at the critical
point.

Now we consider finite-size systems, where the correlation
length of a steady state satisfies & = L at the critical point.
Therefore, according to Eq. (D7), we have

E(r.t,pc) =t hlr/e(t), E(1)/€]
— t97d/zh[r/t1/z’ tl/Z/L]
= 1974=G[r/t"7 1177, (D10)

where G(x,y) = h(x,y?). For the k-moment of EAE o®,
similar to Eq. (15), integrating r, we can obtain

Here, we note that Eq. (D10) is only valid when ¢ < L. There-
fore, the scaling ansatz in Eq. (D11) is also only valid for early
times.

APPENDIX E: COMPLEXITY OF PROBING EAE
IN QUANTUM SIMULATORS

In this Appendix, we discuss the complexity of measuring
EAE in quantum simulators with more details, where we
mainly choose monitored Haar random circuits as an example.

According to Eq. (5), to measure E(A : B), we only need
to measure single-qubit density matrices of A,

Pa(zr) = Trp |Wap(zr)) (Wap(zr)| - (ED)

In quantum-simulation experiments, it is challenging to obtain
all states |Wap(zg)) in the ensemble Ey 4p. Instead, we can
obtain the partial density matrices p4(zg) with the largest
probabilities p(zr), where we label the number of density
matrices as m. Then, we can approximate EAE with these m
density matrices as

m

1 GNe[A ()
<o L rE)S[E)]. ®2)
ijl p(Z;gJ)) ; ( R ) [ A( R )]

where zl(ej ) (j = 1,2, ..., m) is the corresponding measurement
results of R. According to Fig. 7(a), we can find that £,,(A : B)
satisfies

E.(A:B) =

En(A:B)=Ey+Alnm. (E3)

Thus, by using the extrapolation, we can obtain £(A : B) for
the full ensemble £y 45. In Fig. 7(a), we can find that the
extrapolation results of E(A : B) are close to the true values
(.e.,m=2L72).

Now, we discuss the complexity of measuring EAE in
quantum simulators; i.e., how many repetitive readouts are
necessary. The number of measurements depends on the mth
largest probability p(zgz), labeled by p,,. For a many-qubit
system, intuitively, p,, decays exponentially when increasing
the system size, i.e.,

pm=q". (E4)

Thus, the complexity of measuring EAE scales as the inverse

(k) ~ 0+k/z —z ! ( . . 1
Q@ (t pe) ~ Gr(tL ™). (DD of Pms 1€, g-. Here, since m < D, where D is the dimension
102
e, Sizea0s  * A
03} 1o e,
N “Ue.
_116x10 o - e ]
. Paot 2‘7 ) - 0 .\\ .\71. 2 L
Q0.2 10 IN B = ‘e, e
~ ~33%" - p=005 & 1074k o p=0 ®
Jesy P e 0 [ ° . 5
) _228 0 1o p=0.1 p=0.17 ~l42
- 00 |,
0.1 m& e p=0.15 e p=03 | 8;-1,
0.0 ‘(a.) ._*._.7)11&0’—" ® p=03 10-5 | .(b) | | ‘.
102 103 10 10° 10 15 20 25
m L

FIG. 7. Complexity of probing EAE in monitored random Haar circuits. (a) Extrapolation of E(L/2) with L = 20 for different monitoring
rates p. The solid line is the fit according to Eq. (E3) and the gray triangles show the extrapolation values. The complexities of probing EAE,
i.e., pm, are also presented. (b) The scaling of pjq for different monitoring rates p.
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of the Hilbert space, p,, should satisfy

1
Pm> 3 (E5)
Thus, we have
q <2 (E6)

In Fig. 7(b), we present the 100th largest p(zz) for the mon-
itored random Haar circuits. We can find that p;gp exhibits
exponential decay when increasing the system size. In addi-
tion, the corresponding ¢ becomes small when increasing the
monitoring rate (the entanglement entropies become small).

According to Fig. 7(b), for a larger p, i.e., the lower-
entangled system, although it needs larger m to fit EAE, p,,
is exponentially larger than the one of p = 0. Thus, the cor-
responding complexity should not be larger than the case of
p = 0. According to Fig. 7(a), we can find that, to make EAE
accurate enough, the case of p = 0 has the largest complexity.
Specifically, when p =0 and L = 24 (i.e., the Haar random
circuits without monitoring), pigo &~ 1075, Figure 7(a) shows
that m = 100 is enough to obtain an accurate EAE, so we need
about 10° repetitive readouts. For superconducting qubits,
10% single-shot readouts can be accomplished in about 1 h.
However, for a 24-qubit system, measuring the half-chain
entanglement entropies needs about 103 times of readouts
[52]. Therefore, measuring EAE is easier than measuring
entanglement entropies in quantum simulators.
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