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A unique phenomenon in non-Hermitian systems is the non-Hermitian skin effect (NHSE), namely, the
boundary localization of continuous-spectrum eigenstates. However, studies on the NHSE in systems without
translational invariance are still limited. Here, we unveil a new class of NHSE, dubbed the imaginary-Stark
skin effect (ISSE), in a one-dimensional lossy lattice with a spatially increasing loss rate. This ISSE is beyond
the framework of non-Bloch band theory and exhibits intriguing properties significantly different from the
conventional NHSE. Specifically, the energy spectrum of our model has a T-shaped feature, with approximately
half of the eigenstates localized at the left boundary. Furthermore, each skin mode can be expressed as a
single stable, exponentially decaying wave within the bulk region. Such peculiar behaviors are analyzed via
the transfer-matrix method, whose eigendecomposition quantifies the formation of the ISSE. Our work provides
new insights into the NHSE in systems without translational symmetry and contributes to the understanding of

non-Hermitian systems.
DOI: 10.1103/xc42-Thcg

I. INTRODUCTION

In closed systems, the Hermiticity of Hamiltonians is
a fundamental postulate. In contrast, for open systems,
non-Hermiticity emerges and can be described by effective
Hamiltonians [1], displaying peculiar properties and poten-
tial applications in various fields [2-24]. A unique feature
of non-Hermitian systems is the non-Hermitian skin effect
(NHSE), namely, the boundary localization of bulk band
eigenstates, causing a high sensitivity of the spectrum to the
boundary conditions [25-27]. The NHSE can induce phenom-
ena without Hermitian counterparts, including unidirectional
physical effects [28-30], critical phenomena [31-34], and
geometry-related effects in high dimensions [35-39]. Notably,
the NHSE has also been observed across diverse experimen-
tal platforms, such as active mechanical materials [40-42],
electrical circuits [43—45], optical systems [46—49], and cold
atoms [50].

Thus far, most studies of the NHSE focus on translation-
invariant systems, amenable to non-Bloch band theory
[26,51-53]. Specifically, the extended Bloch waves are re-
placed by exponentially decaying waves, drastically changing
the system topology and thus reshaping the conventional
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bulk-boundary correspondence [54-66]. Recently, studies
on the NHSE have also been extended to translational
symmetry-breaking systems, mainly including quasicrystals
[67-73], and systems with disorder [74-81] or single im-
purity [34,82,83]. In a system with a single impurity, the
translational symmetry is preserved outside the impurity, and
thus, the exponentially decaying wave ansatz of non-Bloch
theory still holds. For quasicrystals and disordered systems,
the NHSE is typically quantified by the inverse participation
ratio, which offers only a superficial description of the NHSE
and fails to analyze the wave function comprehensively.
Therefore, it remains unclear whether the skin modes in
transnational symmetry-breaking systems can exhibit distinct
properties, compared to those in translation-invariant systems.
Furthermore, the accurate quantification of the NHSE is also
unsolved when non-Bloch band theory breaks down.

Here, we present a new class of NHSE, i.e., the imaginary-
Stark skin effect (ISSE), which is beyond the framework
of non-Bloch band theory. The ISSE demonstrates a dis-
tinct behavior compared to the NHSE in translation-invariant
systems, and can be studied by the asymptotic and conver-
gence properties of the transfer-matrix eigenvalues. This fills
an existing gap in the research on NHSE in translational
symmetry-breaking systems. We consider a one-dimensional
lossy lattice with a unidirectionally increasing loss rate. This
scenario resembles a lattice subjected to a leftward imaginary
field, and the energy spectrum of such a system displays a
T-shaped feature [84], with its upper-half eigenstates localized
at the left boundary. Surprisingly, these skin modes exhibit
an almost uniform decay rate within the bulk region, despite
the broken translational invariance. Moreover, our numerical
results indicate that these skin modes can be approximately

Published by the American Physical Society
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FIG. 1. A schematic diagram of the non-Hermitian lattice. The
Hermitian interaction is characterized by the hopping parameters
and 1,, while the monotonically increasing dissipation y,, features the
non-Hermitian processes. Here, n labels the lattice index.

expressed as a single wave within the bulk region. Therefore,
the ISSE fundamentally differs from the conventional NHSE
described by non-Bloch band theory (e.g., bipolar [85], cor-
ner [65,86], and geometry-dependent skin effect [36]), where
each skin mode comprises two exponentially decaying waves
with an identical decay rate. We employ the transfer-matrix
method to establish a connection between the ISSE and the
convergence rate of the eigenvalues of the transfer matrix. The
wave function is divided into two parts based on the eigende-
composition of the transfer matrix, with one part dominating
the behavior of the skin modes in the bulk, accounting for the
peculiar behavior of the ISSE.

II. MODEL OF THE IMAGINARY-STARK SKIN EFFECT

We consider a single particle in a one-dimensional lossy
lattice (see Fig. 1), which can be divided into two chains,

labeled A and B. We define |n, A(B)) as a basis state, where
the particle is in the nth site of chain A(B). The projection
of the wave function |v/) is denoted as ¥2®) = (n, A(B)|¢r)
and ¢ = (Yo', ¥B, ', Y2, ...). Then, the eigenequations
of this model can be expressed as

t t
Ev) =0 + 200+ 9 + i (Wi — vk,

2
B A tz A A .t2 B B
Ewn = tlwn + E(I/fn—l + I//VL-H) - li(w"—l - w”‘H)
- ()

where #; and 1, are the hopping parameters, and y,, represents
the loss rate at the nth site of chain B. When y,, is uniform,
this model can be transformed into the non-Hermitian Su-
Schrieffer-Heeger model with asymmetric hopping, whose
NHSE has been studied [26]. This manuscript focuses on
the case where y, monotonically increases and diverges as
n approaches infinity. The energy spectrum of such a model
demonstrates a T-shaped feature, as shown in Figs. 2(a)-2(d).
Furthermore, the eigenstates in the “—” horizontal part of
the T-shaped spectrum display a marked distinction from
those in the “|” vertical part. Specifically, the eigenstates in
the “—” part localize at the left boundary, manifesting the
NHSE. This is consistent with the fact that the “—” part
of the periodic-boundary-condition (PBC) spectrum encircles
the corresponding open-boundary-condition (OBC) spectrum
[52,87], as shown in the insets of Figs. 2(a)-2(d). Conversely,
the eigenstates in the “|” part are localized around each site
of chain B within the bulk region [see Fig. 2(e)]. Notably, the
eigenstates in the “—” part predominantly reside in chain A
[see Fig. 2(f)], while those in the “|” part in chain B [see
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FIG. 2. (a)-(d) Energy spectra for various loss rate functions y,,. Insets refer to the “—" horizontal parts of the T-shaped spectra. (e) Profiles
of the eigenstates from the “—" and “|” parts of the T-shaped spectrum. Eight eigenstates are displayed, of which four are in the “—” part and

the other four are in the “|” vertical part. (f), (g) Average probabilities Enlw,f | of a particle in chains A and B, where S € {A, B}, and this
summation is averaged over eigenstates in either the “—”" (f) or “|” (g) part of the T-shaped spectrum. In panels (e)—(g), ¥, = 0.25n, and in

panels (a)—(g), t; = 0.4, , = 0.5, and the chain length L = 60.
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FIG. 3. Energy spectra for turning “off” (a) and “on” (b) the coupling between chains A and B. Insets are the profiles of typical
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eigenstates from the
L = 60.

Fig. 2(g)]. This implies that chains A and B are relatively
independent. This distinction between chains A and B is also
reflected in their dynamical behavior, and a detailed analysis
of this is provided in Appendix A.

To gain insights, we turn off the coupling between chains A
and B, making them independent. Hereafter, we use E® and E
to denote the energies when chains A and B are decoupled and
coupled, respectively. The energy of chain A is real and given
by E%~ = t, sin(k), whose eigenstates are extended standing
waves with Bloch wave vector k. In chain B, each site is linked
to an eigenstate localized around it, with the energy closely
approximated by its imaginary potential. This is similar to the
Wannier-Stark localization [88,89]. The superposition of the
spectra of chains A and B results in a T-shaped spectrum, and
the “—”" and “|” parts are formed, as depicted in Fig. 3(a), by
the energies of chains A and B, respectively. Upon introducing
the coupling between chains A and B, the spectrum under-
goes certain distortions, but retains, almost unchanged, the T
shape [see Fig. 3(b)]. In such a coupled case, the eigenstates
corresponding to the |’ part are still localized around their
respective sites in chain B. However, the NHSE appears in the
eigenstates of the “—" part.

III. FEATURES OF THE IMAGINARY-STARK
SKIN EFFECT

For simplicity, we apply a local unitary transformation to
the basis |n, A(B)) and then obtain a new basis |n, A'(B’)).
Specifically, we define |n,A’) = (|n, A) —i|n,B))/«/§ and
In, B'Y = (|n, A) + i|n, B))/~/2. Consequently, the eigenequa-
tions [Eq. (1)] become more concise, yielding (see
Appendix B for details)

B =iyl oyl (0 2)ul,

2
: VB Yo\, a /
By = =iyl + (0= D)l + 0y,

> @

where ¥4 B) = (n, A'(B")|/) is the wave function projected
onto |1, A'(B')). We use H' to denote the Hamiltonian after
this transformation.

The ISSE exhibits two features. First, although the loss
rate y, increases spatially in the lattice, the skin modes have
an almost uniform decay rate within the bulk region. This is

parts of the spectra, corresponding to the red points. The parameters are t; = 0.4, #, = 0.5, y,, = 0.25n, and

illustrated by the linearity of the wave function ¥4 ®) on a
logarithmic scale [see Fig. 4(b)]. Second, for one-dimensional
spatially periodic tight-binding non-Hermitian models, the
eigenstates can be written as a superposition of two ex-
ponentially decaying waves. Under the OBCs, constructing
continuum bands requires the amplitudes of these two waves
to be equal [26,51-53], inducing interference in the bulk [see
Fig. 4(a)]. However, in our model, numerical results show the
absence of interference. This indicates that each skin mode
can be approximately expressed as a single exponentially de-
caying wave within the bulk region [see Fig. 4(b)], i.e.,

vy ~ B, 3)
where S’ € {A’, B'} and B < 1 is a uniform decay rate. This
result differs greatly from the spatially periodic cases.
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FIG. 4. (a), (b) Profiles of the eigenstates for uniform and linear
loss rates. For a uniform loss rate, two exponentially decaying waves
interfere in the bulk. Conversely, the linear loss case only exhibits
a dominant exponentially decaying and no interference. (c) Modulus
of the eigenvalues of the transfer matrix, |[A*(#)|, vs . The horizontal
black lines from top to bottom are Ay, 1, and A, respectively.
(d) Decomposition components of the wave function, wni, vs n. The
parameters are t; = 0.4, 1, = 0.5, L = 60 in all plots, while y = 5in
panel (a) and y,, = 0.25n in panels (b)—(d).
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Let us first adopt a rough approach to obtain 8 in Eq. (3).
We define the ratio 8, = 5 /¢ |, and substitute 8, into the
bulk eigenequation in Eq. (2), yielding

0 Zyn|:lE - %z(ﬂiﬁ-l - ﬂnl)]

+E*— (t1 + tzﬁ;l)(ll + BBur1)- 4)

To obtain solutions S, =~ B consistent with our numerical
findings in Eq. (3) and also to ensure this equation holds for
arbitrary n, the y,, term must be approximately zero, that is,

iE = 2 (Busi — ) 20, 5)

which gives two solutions of §:

—[1 + V1 - (/E)] (©)

Our simulation indicates that the analytical solution B_ agrees
with the numerical results of .

IV. ANALYSIS OF THE IMAGINARY-STARK SKIN EFFECT
A. Transfer-matrix method

The above approach fails to explain why B_, instead of 8,
fits B and how the ISSE arises. Below, we analyze the model
more accurately using the transfer-matrix method [90-92].
Consider the projected bulk eigenequations in a subspace
spanned by the bases |n — 1, B’) and |n, A’):

=E(n—1,By),
=E(n,A'lY), (N

(n— L BH'|Y)
(n, A'lH'|y)

which can be expressed as

(Mn,O Mn1)<|w(n_

0 _
() )‘0’ ®

BT is the wave function on the nth

where | (n)) = (¥,

unit cell, and

n-tp -itg
Mn,O: 0 ‘ s
2

M & 0 9)
n,1 — ljg’ _E t1—|—% .

Here, T refers to a transpose operation, and the nth cell con-
sists of the nth sites of chains A and B. Then, Eq. (8) directly
leads to

1Y (m)) =T M)y (n— 1)), (10)

where T'(n) is a 2 x 2 transfer matrix between the (n — 1)th
and nth unit cells, given by

Too T
Ty =M Mo=" ") (11
Tio Tn

where the matrix elements are

Ho— VYuo1/2
Top = = Yn1/2
4]
E+iy,_1/2
1o, =—+1y 1/ ,
153
T = (E"‘i%l/z)(tl_yn—l/z)
10 — — bl
t(t + yu/2)
E + iyy_1/2)E + iy,/2) — 2
T11=( + iVu1/2)E + iva/2) — 1; (12)

bt + ya/2)

If y, is uniform, then T (n) simplifies to a constant matrix 7Tp.
As a result, we have |y (n)) = (Tp)" |y (1)), which reduces
to the ansatz of non-Bloch band theory.

B. Convergence of transfer-matrix eigenvalues

In our model, 7' (n) is a function of n, and its eigenequation
can be written as

12 (n) + b(n)a(n) + ¢(n) = 0. (13)
Here,
t? 4+t — E? th —iy'E
b(l’l)— 1 + 2 +yn 1 lyn ,
bt + va/2)
H— Yu_1/2
c(n) = u’ (14)
tl + J/n/2
with y* = (y, £ ¥,-1)/2. It is clear that the two eigen-

values of the transfer matrix T'(n) are AT (n) = [—b(n) +
Vb*(n) — 4c(n)]/2, corresponding to the left and right eigen-
vectors ()Lf(n)| and |)$(n)), which are orthonormal and
complete. Here, we note that the transfer matrix in our model
is inherently non-Hermitian and may, in principle, exhibit
exceptional points at specific combinations of site index n and
energy E, where the two eigenvalues of the matrix coalesce
[93,94]. While a systematic analysis of such degeneracies is
beyond the scope of this work, we consider this an interesting
direction for future exploration.

Since b(n) and c(n) converge to —2iE /t, and —1, respec-
tively, as n approaches infinity, we therefore have

lim A*(n) > AT = —2[1 +1— (/E)], (15)

n— oo

which is the same as B+ in Eq. (6) obtained from the rough
approach mentioned above. Recall that the “—” part of the
T-shaped spectrum is E®~ = t, sin(k) in the decoupled case
of chains A and B. Thus, we define x = arcsin(E /f;), which
is a complex number; then, Eq. (15) becomes Ai = et
[95], which corresponds to the Bloch phase factor :l:ei”‘ in the
decoupled case. It is easily seen that |k3“| >1land |A;] <1
(see Appendix C for details), consistent with the numerical
results [see Fig. 4(c)].

Next, we examine the convergence of A*(n) toward )L(ﬁf. As
illustrated in Fig. 4(c), A~ (n) converges notably faster than
At (n). Here, we provide a concise idea for the proof of this
result. For convenience, we assume that y, takes the form
¥» = nyp. The detailed proofs for various types of y,, functions
are given in Appendix E. To analyze the speed of convergence,
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we perform a Laurent expansion for A% (n), given by
M) = A5 A vt (16)
and combining Egs. (13), (14), and (16), we obtain

AT :F(tl + 15 cos(k))(t; £ 1, cos(k) + o/2)

== (17)
ko

t, cos(k)

Equation (17) characterizes the convergence speed of A*(n);
that is, a smaller value of kli /)»(ﬁf implies a smaller 1/y, term,
and thus a faster convergence. In the thermodynamic limit,
the “—” part of the spectrum in the coupled case of chains
A and B closely approximates that in the decoupled case
(see Appendix D for details). Consequently, ¥ can be closely
approximated by k in the decoupled case, which ranges from
—m /2 to 7w /2. Then, it follows from Eq. (17) that [A] /A, | <
|)»l+ /Ag |. In particular, |A| /A,| approaches zero when cos(«)
is close to 1/t or (t; + yp/2)/t2, leading to a much faster
convergence speed of A~ (n).

C. Formation of the imaginary-Stark skin effect

We can now analyze the formation of the ISSE states in our
model. We decompose |1 (n)) into the eigenvectors of T (n):

[¥ () = ¥, [Ag () + ¥, 1Az (), (18)

where ¥* = (A7 (n)|y(n)). If y, is uniform, then A*(n) = A*
is constant. Together with Eq. (10), we obtain ¥ = Ay = |,
which aligns with the intuition that v are scaled by the corre-
sponding eigenvalues A*. When returning to the nonuniform
¥, and assuming that the transfer matrix 7 (n) varies slowly,
we can take the approximation (see Appendix F for details)

v R AEmY . (19)

Figure 4(d) shows how ¥* evolves with n. The compo-
nents of | (n)), namely, ¥,7 and ¥, need to be of the same
order at the two edges, so that they can cancel each other
to satisfy the OBCs |y (0)) = | (L + 1)) = 0. We divide the
wave function wni into three regions, labeled by I, II, and III,
as in Figs. 4(c) and 4(d). These three regions can be roughly
viewed as the left-boundary, bulk, and right-boundary regions,
respectively. In region I, near the left edge, ¥, and v, have
the same order. The eigenvalue A~ () converges to A, quickly,
so according to Eq. (F3), v, ~ (A, )" behaves like an expo-
nentially decaying wave. Moreover, as y, increases from 0
to 2t;, A (n) = c(n)/A™ (n) =~ c(n)/A, approaches 0. Hence,
|| decays much faster than |y, |, ultimately reaching an
extremely low value. In region II, |v,7| is several orders of
magnitude lower than [y, |, so ¥, dominates the behavior
of the state |Y(n)) and has a rigorously exponential decay.
As n grows, |1 (n)| monotonically increases to |AJ|. When
|[At(n)| > 1, it signifies a transition to region III, near the
right boundary. In this region, |¢,1| starts to increase, and
ultimately approaches the order of || at the right edge, to
satisfy the OBCs. Examining these regions reveals that || is
much larger than |7 | in the bulk. Therefore, the ¥/, |Az (n))
term of Eq. (18) dominates the behavior of |y (n)), which
scales as (A;)". In contrast, the v, |)$(n)) term becomes
dominant only near the boundaries, thus causing fluctuations
in the wave function at these areas [see Fig. 4(b)].

Our analysis shows that the formation of the ISSE in our
model demands a notably fast convergence speed of 1~ (n),
leading to a single stable exponentially decaying wave that
predominantly governs the behavior of the skin modes in the
bulk. We also discuss the impact of parameters in Appendix F.
An extremely small or large ¢;, compared to t,, can result in a
slow convergence speed of A~ (n), which weakens the features
of the ISSE. This also supports the relationship between the
ISSE and the convergence speed of A~ (n). Furthermore, we
demonstrate that it is possible to show the ISSE in a short
lattice, which provides the feasibility of future experimental
investigations with finite-size systems.

V. CONCLUSIONS

We unveil a class of NHSE, the ISSE, arising in a nonuni-
form lossy lattice. Unlike the conventional NHSE described
by non-Bloch band theory, the ISSE exhibits a single dom-
inant exponentially decaying wave within the bulk. Such a
peculiar behavior is closely related to the convergence speed
of the transfer-matrix eigenvalues. The eigendecomposition of
the transfer matrix reveals that the wave function comprises
two parts: a dominant, exponentially decaying component that
governs bulk behavior and a negligible component that is
impactful only at the boundaries. Our work provides a new
perspective for accurately quantifying the NHSE in transla-
tional symmetry-breaking systems and can be extended to
other models, e.g., Floquet systems with nonuniform dissipa-
tion [96,97], interacting non-Hermitian system [98—100], and
Liouvillian skin effect [101-103].
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APPENDIX A: DYNAMICAL BEHAVIOR OF INITIALLY
LOCALIZED STATES

In this section, we analyze the distinct dynamical behavior
of an initially localized state, depending on whether it is
prepared on chain A or chain B, reflecting the intrinsic differ-
ences between the eigenstates associated with each sublattice.

For simplicity, we treat the initial state as a particle, which
is placed on site (xp,A) or (xp,B) at time ¢ = 0. When
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FIG. 5. The escape probability Pg(x) for a particle initialized on
(a) site (xg, A) and (b) site (xo, B). The parameters are L = 100, xo =
60,1, = 0.4,1, = 0.5, and loss rate y, = 0.1n.

the particle is initially placed on chain A, previous works
[30,84,104] have shown that a peculiar non-Hermitian dynam-
ical phenomenon—known as the edge burst—can emerge.
Specifically, the particle spreads in both directions along chain
A and gradually escapes from chain B due to the on-site dis-
sipation. One might intuitively expect the escape probability
on site (x, B), denoted as Pg(x), to exhibit a single, asym-
metric peak centered around the initial position xo. However,
under certain conditions, a distinct peak can emerge at the left
boundary, as demonstrated in Fig. 5(a). This edge burst occurs
when two criteria are met:

(1) The system exhibits an NHSE, which favors motion
toward the boundary.

(2) The system supports eigenstates with purely real en-
ergy eigenvalues, enabling long-range propagation without
exponential decay.

Under these conditions, the particle can propagate toward
the boundary in a power-law decay fashion, retaining signifi-
cant probability amplitude that subsequently leaks into chain
B near the edge. This mechanism has been first theoretically
studied in Ref. [30] for uniform loss rate. Then, Refs. [84,104]
explored the generalization of the edge burst in systems with
nonuniform and spatially varying loss rate.

In contrast, if the particle is initially prepared on chain B,
the dynamical behavior is considerably simpler. Due to the
local imaginary potential, the particle experiences strong on-
site dissipation and decays rapidly without significant spatial
spreading. This is illustrated in Fig. 5(b), where the escape
probability Pg(x) remains localized near the initial position
with minimal broadening [105]. This stark contrast in dy-
namics further reflects the distinction we highlighted in the
main text: While chain A hosts skin modes, the eigenstates in
chain B are localized within bulk, resembling Wannier-Stark
localization.

APPENDIX B: ROTATION TRANSFORMATION
ON THE HAMILTONIAN

The Hamiltonian of our model is given by

L—1 L—1
n t t
H= 522_: In+1,A)(n,A| — [n+ 1, B)(n, B]] + 52 ;Hn—l— 1,B)(n,A| + |n+1,A)(n, B|]
L L
+t Y |In,A)(n Bl +He.— Y iyaln, B)(n. B|. (B1)
n=1 n=1

We regard each unit cell as a pseudospin. Specifically, we
define |n, A) as |0} = +1) and |n, B) as |0 = —1). Then, we
apply a m /2 rotation transformation along the x axis to each
spin, i.e.,

H =R 'HR, (B2)

where R is the spin rotation operator given by
bid
R= (=i%ar). B3
@ exp (—i o (B3)

After the rotation, the Hamiltonian becomes

L—-1
A =t22|n+ 1,AY(n, B'| + H.c.
n=1
L
+ 2 [(n+5)m a5
n=1
+ (t1 - —)|n B )(n,A/|]

—t—Z[lnA (n,A'| +|n,BYn,B|l,  (B4)

n=1

(

where |n, A’) and |n, B') are the new Z bases of the pseudospin
after the rotation. The transformation of the wave function is

given by
A A
(an/> - h (ZHB> ’ (BS)
that is,
N6 V2
A _Nc oA, N4 B
wn - 2 wn + 2 wn’
, 2 2
yy = fw + iw,,. (B6)

APPENDIX C: THE MODULUS OF THE PARAMETERS A

Let us begin with the following conclusion from the main
text:

Ay = Eexp(i), (C1)

where k = arcsin(E /1, ) is a complex number. Given that our
system is dissipative, the imaginary part of the eigenenergy is
negative, i.e., Im(E) < 0. Therefore, the imaginary part of «,
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namely, Im(k), is also negative, indicating that
IAd| = exp[—Im(k)] > 1,
[Ag | = exp [Im(x)] < 1. (C2)

APPENDIX D: ENERGY DIFFERENCE BETWEEN
THE DECOUPLED AND COUPLED CONFIGURATIONS
OF CHAINS A AND B

In this section, we show that the energy difference in the
—” horizontal part of the T-shaped spectrum, between the
decoupled and coupled configurations of chains A and B,
vanishes in the thermodynamic limit. For clarity, we introduce
the following notations for these two system configurations.
The Hamiltonian in the decoupled case is denoted as HO,
while the Hamiltonian in the coupled case is represented as H.
The difference between these Hamiltonians, denoted by AH,
is defined as AH := H — H. The right eigenstates of H are
denoted by |R?) with corresponding eigenenergies E”, where
the subscript i is the index of the eigenstates. Furthermore,
we specify EI.O‘_ (Eio ") and |R?’_) (|R?’|)) as the eigenenergies
and eigenstates belonging to the “— (**|””) subspace of the H°
spectrum, respectively. We use similar notations E;, E;, and

113

E[I to denote the corresponding energy spectra in the coupled
case.

In the decoupled case of chains A and B, for the “—” part of
the spectrum, the eigenenergies are given by Eio’f =t sink,
where k = (L’ﬁ — %)n andi=1,2,...,L. The correspond-
ing eigenstates are the extended standing waves in the bulk,
expressed as

L
IR ") = \/%Z (—1)"?sin [(% — k)n:||n,A). (D1)
n=1

For the “|” vertical part of the spectrum, the eigenstates are
localized around the sites of chain B, with energies that are
approximately equal to —iy,,.

Now, we focus on the energy difference in the “—” part,
between the decoupled and coupled cases of chains A and B,
based on the following assumption:

Assumption 1. Define H(t) :== H® +tAH for t € [0, 1],
such that H(0) = H° and H(1) = H. Consider an eigenvalue
in the “—" part of the spectrum of H®, denoted as Eio‘_, along
with its corresponding eigenvalue E;” in the “—” part of the
spectrum of H. As the parameter ¢ varies, the eigenvalue of
H (t) traces a trajectory, denoted by E;(¢). This trajectory con-
nects El-0 to E;, meaning that E;(0) = Eio’_ and E;(1) = E,
without any level crossings.

This assumption is akin to the adiabatic assumption in
Hermitian systems. Based on this assumption, we argue that
the energy from the “— part in the decoupled case of chains
A and B converges to that in the coupled cases; namely,
El.o’f ~ E; in the thermodynamic limit.

In Fig. 6, we show that the average energy difference,

AE = |E,.0*‘ —ET

, (D2)

decreases as the chain length L increases. This reduction
in AE can be attributed to two primary factors. First, as
L increases, the average separation between energies from
the “—” part and the “|” part also increases, scaling as y,.

0.06 0.10
0.05
0.08 Vo =8-In(n/10 + 1) 0.07 Yn=0.25n
0.03 0.04
0.02
.01 0.01
0.0 200 400 200 400
)
< 017 0.16
0.13 0.13
Yn=0.004n2+0.25 | 0.10 Vo =3(e0%03n — 1)
0.09
0.07
0.05 0.04
0.01 0.01
200 400 200 400

Chain Length L

FIG. 6. Average energy difference in the “—” part of the spec-
trum between the decoupled and coupled cases, given by AE =
(N*)"' Y, |EY™ — E7 |, where N~ = |{E""};| denotes the num-
ber of eigenenergies in the “—" part of the spectrum. This difference
is depicted as a function of chain length L for logarithmic, linear,
quadratic, and exponential loss rate functions. The parameters are
ty =04andt, =0.5.

Second, consider the strength of the couplings, introduced
by the perturbation AH, between the state |R?’_) and the
eigenstates from the ““|” part. Here, the eigenstates from the
part are localized states around the sites of chain B, denoted
by (n, B), and AH is a local coupling. Due to this localized
nature, through AH, the eigenstates from the “|” part can
only couple with the portion of the wave function that is
near (n, B). However, the state |R?‘_) is an extended standing
wave, with an amplitude that diminishes with L, scaling as
VT/L. Therefore, the coupling between the state [RY~) and
the eigenstates from the ““|” part weakens as L increases. These
two factors collectively contribute to the attenuation of the
virtual process between the eigenstates from the “— part and
the “|” part, resulting in a diminishing energy perturbation.
To elaborate further, we can use eigenvalue perturba-
tion theory to analyze this model, by treating AH as the
perturbation acting on H® [106]. Since AH only couples
adjacent A and B sites, the first-order perturbation of El.o’* is
zero. Instead, the dominant perturbation term arises from the
second-order process between the eigenstate of El.O '~ and the
eigenstates of the “|” part spectrum, represented by

E} = Z

J

“|”

(L~ |aH (R} | AH|RYT)
E)" —E}

) (D3)

where (L?’fl and (L?"| are the left eigenstates corresponding
to Eio’_ and E;)", respectively. In the term (L?‘_|AH |R?") of
Eq. (D3), the state |R?") is a localized wave function with
a width of w(j) ~ wo/yjf, where wq is a constant and ny =
%Ll: j- This phenomenon is similar to the Wannier-Stark
localization [88,89]. Since AH only couples adjacent A and
B sites, AH |R2“) also yields a localized wave function with a
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width approximately equal to w(j). Thus, its norm satisfies
AHRY) <t +)||RY) =0 +6. (DY)
where (#; + 1) is the largest eigenvalue of AH. In contrast,

the state (L)| = \@ Sk (=1)"?sin[(% — k)nl(n, A| rep-
resents a standing wave, which is extended in the bulk. As a
result, the matrix element (L?‘_ |AH |R(;’|) is bounded by

2
(02 ARIRY)| < @+ 2w

1
:@(m),

where O denotes the big O notation, which describes the limit-
ing behavior of a function. For the denominator (Eio’* — E;.)")

(D5)

in Eq. (D3), since |Ej(?’|| > |Ei0‘_ |, we can derive the inequal-
ity

B2 — | > [E0] - 0
P

Yi—h—h=y;—2h. (D6)

By combining inequalities (D5) and (D6), the upper bound of
El.z’* can be expressed as

1

C
EF <=y 5 —
CTL Z v/ (yj — 2n)

1

1
=0 ZZ

2
VY

, D7)

where C is a relevant constant. For a polynomial loss rate y, =
n®, with ¢ > 1, or an exponential loss rate, it follows that

1 1
LILHSOZZ 2., =0,
j

which implies that the second-order perturbation of the energy
Eiz’_ converges to zero in the thermodynamic limit. Although
this upper bound diverges for a logarithmic loss rate, numer-
ical results suggest that, for a logarithmic loss rate function,
the average energy difference in the “—” part between the
decoupled and coupled configurations of chains A and B also
decreases as the chain length L increases (see Fig. 6).

Upon E;~ ~ El.o‘f, one might raise the question of why an
NHSE state and an extended state share similar energy values.
In fact, as the parameter L increases, the NHSE weakens,
and the decay rate A, of the wave function tends toward 1,
as illustrated in Fig. 7. This makes the wave function more
akin to an extended state. This phenomenon aligns with the
physical intuition that a larger lattice implies a greater average
loss rate in this model. Additionally, a lattice with a uniform
loss rate will exhibit a weaker NHSE when the loss rate is
larger.

(D8)

APPENDIX E: CONVERGENCE OF THE
TRANSFER-MATRIX EIGENVALUES A*(n)

In the main article, we state that A~ (n) converges
much faster than AT (n). In this section, we delve into the

0.95
750.90
=
)
o 0.85
©
o
¢ 0.80
©

0.75

0 100 200 300 400 500 600 700
chain length L
FIG. 7. Average of |1, | over eigenstates in the “—" part of the

spectrum as a function of chain length L. The average |A; | increases
monotonically and tends to approach 1 as L increases. The parame-
tersare t; = 0.4,1, = 0.5, and y, = 0.25n.

convergence properties of A*(n) in detail and establish the
validity of this assertion across a broad range of types of the
function y,,.

According to Eq. (14), b(n) and c(n) converge to the con-
stant values by and c, respectively, as n approaches infinity.
For example, we have

lim b(n) — by = —2iE /ts,

lim c(n) — ¢ = —1, (E1)

n—o0

for the polynomial loss rate y, = n®. Consequently, A%(n)
converge to

. 1
nlggo,\i(n) — Ay = 5(—190 + /b — 4co)
E
=%niw—mwm. (E2)

To analyze the convergence properties of A*(n), we expand
Eq. (14) in terms of 1/y,,, yielding

Yn— Yno1 1 +IE

b(n) = by +
Vn 15}
1 2(1} +13 —E*+2iEn) by
Vn ) Vi ’
— Yot M
cmy=co+ Pl UL 2 (E3)
yﬂ Vn Vn

where b, and ¢, are the coefficients of the (1/y,)? terms.
To isolate the leading-order contribution, we neglect higher-
order terms (1/y,)" for m > 1, retaining only the 1/y,
and (¥, — Yu—1)/vn terms. The specific form of y, deter-
mines which one is the leading nontrivial term. We will
discuss several different types of the function y, in the
following.

(1) lim,— & (¥» — ¥u—1) = 0. For example, consider a log-
arithmic function y, ~ logn, or a polynomial function of
degree smaller than 1, i.e., y,, ~ n%, where 0 < o < 1.
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b c
(b) o 100 17 (c) —
B __ 10
>
0.4 10°°
= st
—_ 0 50 100 —_ 50 100
cell index n cell index n
0.2
0.0 0.0
0 25 50 75 100 0 25 50 75 100
K cell index n cell index n

FIG. 8. (a) |A1*/k§| as a function of «, under the condition that lim,_ . (¥, — ¥»—1) = 0. Here, « ranges from —x/2 to 7 /2.
(b), (c) Profiles of eigenstates, with insets showing the eigenstates on a logarithmic scale. y, = 201n (1 + n/100). For panel (b), the energy
is E = —0.270 — 0.079i (¢« = —0.560 — 0.185i). For (¢), E = —0.485 — 0.025i (k = —1.272 — 0.168i). Throughout panels (a)—(c), t;, = 0.4

and, = 0.5.

In this type of y, function, it is apparent that the leading
nontrivial term is the 1/y, term. By taking the first-order
approximation of Eq. (E3), we obtain

b
b(n) =by+ — +---,

n

C1
cm)y=co+ —+--,

n

2(tf + 13 — E* + 2iEn)

where b; = s
5]
c1 = 41. (E4)
Similarly, the expansion of A*(n) is
A'j:
MM =5+ L+, (ES)

n

where Af represents the expansion coefficient of the 1/y,
term. By substituting Eqgs. (E4) and (E5) into Eq. (13), we
can derive the ratio )»li / )»Oi:

+ +
Mo _htalk (E6)
Ay 2Ay + bo

The quantity )\f /)\Oi characterizes the convergence speed
of AX(n); specifically, a smaller value of )»]i /)% indicates a
smaller 1/y, term, resulting in a faster convergence to )L(ﬁf.

In the decoupled case of chains A and B, the “—” part of the
T-shaped spectrum is characterized by E®~ = t, sin k, where
k= (#1 — %)n, andi = 1,2, ..., L. Analogously, we define
k = arcsin(E /t;). Consequently, Eq. (E2) becomes

Ay = Lexp(ik), (E7)

which corresponds to the Bloch phase factor +e**. By sub-
stituting Eqs. (E4) and (E7) into Eq. (E6), we have

AT (£ ncos(k))?

g - > cos(k) (E8)

In Appendix D, we argue that in the thermodynamic limit,
the “—” part of the spectrum in the coupled case of chains A
and B converges toward that of the decoupled case. As aresult,
the parameter « in Eq. (E8) can be closely approximated by

k in the decoupled case, which spans the range from — /2 to
7 /2. Then, it follows from Eq. (E8) that |1 /A, | is always
smaller than |A]/AJ |, as shown in Fig. 8(a). Especially, the
ratio |A] /A, | approaches zero when cos(k) is close to t; /12,
which significantly accelerates the convergence of A~ (n) and
exhibits typical ISSE [Fig. 8(b)]. As « approaches £ /2, the
ratio |AF/AZ| diverges to infinity, which causes the ISSE to
become less apparent [Fig. 8(c)].

) lim, s 00 (¥n — ¥u—1) = Y0, Where y is a constant. For
example, consider linear function y,, = yn.

In this type of 1y, function, both the 1/y, and
(Yn — Yn—1)/Vvn terms exhibit leading nontrivial contribu-
tions. Thus, the leading terms of b(n), c(n), and A*(n) are
given by

b
b(n) =by+ — + -,

n

C1
cn)y=co+—+---,
(ty +iE)yo + 2(tf + 13 — E* + 2iEn)

where b = ; )
2

¢y =4t + v,
+ LM
WEmy =aE+ 2L

n

(E9)

Since the forms of b(n), c(n), and A*(n) are identical
to those in type (1), )»f /)»(jf can be derived using the same
method. This yields

+
Mo

=
2~

(t1 £t cos(k))(t; £ 1, cos(k) + 7/0/2)' (E10)
t, cos(k)

The magnitude of the ratio |A] /A, | is generally smaller
than that of |Af/AJ|. Notably, as cos(k) approaches either
t1/ty or (t; + yo/2)/t2, the value of [A] /A | tends to zero.

(3) im0 (Yo — Va—1) = 00, but lim, % =0.
For example, consider a polynomial function with a degree
greater than 1, y,, ~ n%, where o > 1.

In this case, the leading nontrivial term is (¥, — Yu—1)/Va-
Upon expanding b(n), c(n), and A¥(n) to the first-order
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approximation, we obtain

n = VYn— t+lE
b(n)=b0+blu+..., by = - ’
Vn 153
C(n):Co+C1M+"', cp=1,
)Li(n)=)¥(ﬂ)t+)\liy”_—y”_l+... (E11)

n

Using the same method as in type (1), we can derive
)»li/)»i, resulting in

kli __nh =+t cos(k)

— = E12
Ay tp cos(k) (E12)

Similar to the findings in type (1), the magnitude of the
ratio |A[ /Ay | is always smaller than |A]/A;|. Additionally,
this ratio converges to zero as cos(k) approaches t; /f,.

@4 lim,_ (Yn — VYn—1) = 00 and lim, % =
constant. For example, consider the exponential function
Vn ~ exp(an).

In this case, the term (y, — Y,—1)/¥n» degenerates to a
constant in the expansion. Therefore, the leading nontrivial
term is the 1/y, term. The coefficients b(n) and c(n) can be
expanded as in Eq. (E4), with the same expressions of b; and
c1. However, the values of by and ¢y will undergo a shift
due to the term (3, — ¥,4—1)/¥s. This shift only affects the
Kiltl?e) of )»(ﬁf, while preserving the convergence properties of

n).

APPENDIX F: RECURRENCE RELATION
OF y= AND ITS APPROXIMATION

In this section, we derive the recurrence relation for y=
and discuss the approximations used in the main text.

We begin by decomposing |1 (n)) into the eigenvectors of
T (n), using = = (A (n)|¥(n)) to denote the (AF(n)| com-
ponent of |y (n)). This decomposition can be expressed as

[y () = ¥,7 1A% () + ¥, [Ag (). (F1)

Substituting Eq. (F1) into Eq. (10) yields the recurrence rela-
tion between l/fni_l and 1//fz

YE =AW m)En — D)y,
+ (A FMIAEn — DYYF ] (F2)

If y, is uniform, i.e., the system has discrete translational
symmetry, then the recurrence relation in Eq. (F2) simpli-
fies to ¥¥ = ATy= . This result is straightforward, as the
(Af (n)| component is scaled by the corresponding eigenvalue
A%. In more general scenarios, however, ¥= # ki(n)lpf_ "
which implies that if [/ (n — 1)) contains only the |)»;§ (n—1))
component, then |¢(n)) will have both the |)»;(n)) and
|Ag (n)) components. This occurs because the transfer ma-
trix T (n — 1) differs from 7 (n), introducing a mixed term
(kz—L(n)M}F(n— D)y,7,. However, if we assume that the
transfer matrix 7 (n) varies slowly, then ()»f(n)M,i; n—1)~
1 and (Af(n)Mﬁ(n — 1)) &2 0. Consequently, the recur-
rence relation in Eq. (F2) can be approximated as

(a)
10t

Fig.9.(a)

D

g
-
2

— 1o iFig.9.(b)
ng107!

*
1

+I\ H
.3
=10 Fig.9.(c)

GM(jA

10-°
—+

6 02 04 06 08 1

FIG. 9. (a) |)\li/)%| as a function of « when #; and t, are
fixed. Here, x ranges from —m /2 to 7 /2. The triangle represents
the geometric mean of |A1i /)»(fl. The parameters are t; = 0.4, 1, =
0.5, and y, = 0.25n. (b)-(d) Geometric mean of |)L1i/k§| as a
function of #;, with ©, = 0.5 fixed. The loss rate function y, sat-
isfies lim,,_ o (yn - yn—l) =0 for Panel (b); lim,, . (yn - )/nfl) =
o = 0.25 for panel (c); and lim,_ o (¥, — Yu—1) = 00, while
lim,,_, o 2=2=L = 0 for panel (d). The three vertical dotted lines in
panel (b) collx‘respond to the parameter values of Fig. 10.

follows:
ATy or Y AT, . (F3)
unless [¥,7| 3> [¥,7| or |[¥,F| > |, |, respectively.

APPENDIX G: ANALYSIS OF PARAMETERS

In this section, we discuss the impact of various param-
eters, including the hopping parameters #;, t,, and the chain
length L, on the ISSE in our model.

1. Hopping parameters #; and ¢,

In the main text, we state that to generate an evident ISSE,
A~ (n) should converge to A rapidly and at a rate significantly
faster than A (n), namely,

A /Aol <1 Ay /Ag L K AT /4G L (G
Subsequently, we investigate how the hopping parameters,
and #,, impact )\f/ )\3[ to satisfy this condition.

In Appendix E, we show that Af / Agﬁ are determined by the
parameters #;, f,, and k. We also argued that in the thermody-
namic limit, the parameter x can be effectively approximated
by the corresponding k in the decoupled case of chains A
and B, with k € (—%, %). To characterize the convergence
speed of A* with fixed parameters ¢, and 1, while excluding
the influence of «, we focus on the geometric mean [107]
of |Afi/)»5:| across k as a metric [Fig. 9(a)]. This choice is
motivated by the fact that the arithmetic mean of |)LfE /)L(jﬂ
across « diverges in this context. The geometric mean (GM)

is defined as
1 /2
) = exp —/ 1n< )d/c . (G2)
T J_np

+ )\li

+
)“0

A
GM<
A

ZL
£
0
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FIG. 10. Profiles of eight randomly chosen eigenstates from the

[T L]

part of the spectrum. The parameters are , = 0.5 and y,, = 201n(1 +

n/100). For panel (a), t; = 0.05; for panel (b), #; = 0.5; and for panel (c), #;, = 1. These parameter selections correspond to the illustration

provided in Fig. 9(b).

We can depict GM(|A?E /)\(“,—L|) as a function of #; for fixed 1,
[Figs. 9(b)-9(d)].

As an illustrative example, we focus on the case where
lim,— o0 (¥ — Yn—1) = 0 [Fig. 9(b)]. A similar result can be
shown for other types of the y, function. Recall the conver-
gence speed given by Eq. (E8):

(t; £ 1, cosk)?
thcosk

M
=7 (G3)
0

The critical point of Eq. (G3) occurs at #; =1, since a
real zero point ¥ = arccos(t;/ty) exists only when #; < f,. It

supported by the following calculation:

A

L ~72x107% « 1.
ho YL

' ML) =) (G4)

=3

Consequently, an apparent ISSE is observed [Fig. 11(b)],
characterized by a uniform decay rate and the absence of
interference.

is evident that GM(|A{ /A{|) increases with 7. In contrast, 1.0\ @ |A*(n)| Lo
GM(|A] /A |) decreases as t; increases from 0, reaches a ® () . °
minimum at the critical point ¢; = f,, and then increases with 0.8 o’
t1. Therefore, when #; is close to t,, the condition stated in _ °
Eq. (G1) can be effectively satisfied, leading to typical ISSE = 0.6 Cee? . y
behavior [Fig. 10(b)]. However, if #; is significantly smaller E °
or larger than #,, the features of ISSE weaken, manifesting as 0.4 o o
an initial increase followed by a decrease in the wave function 0.2
from left to right, resulting in a peak near the left boundary ' o
[Figs. 10(a) and 10(c)]. 0ol @ o | ,
0 5 10 15
2. Chain length L cell index n

In previous sections, we analyzed the model in the ther- 10° \ .
modynamic limit, where the loss rate y;, exhibits a monotonic A\ - AI
increase, ultimately diverging to infinity as n — oco. However, 1071 D B
our analysis indicates that the emergence of an apparent ISSE
in the model does not require the loss rate to reach this — 12

. .. K . 3. 10 h

asymptotic condition. Specifically, as long as the loss rate in =
the lattice is sufficiently increased so that A~ (n) approaches N
Ay —that is, [(A7(L) — Ay)/Ay | < 1, where L is the length 1073 N\
of the lattice—we can expect to observe an apparent ISSE.
This observation suggests that the ISSE can manifest even in 10-4 (b) ~
finite-size systems, making it feasible for future experimental 5 10 15 20
investigations. cell index n

To illustrate this phenomenon, we present a numerical ex-
ample featuring a linearly increasing loss rate within a short
lattice configuration. In this example, the lattice length L is
only 20, and the loss rate at the right boundary, y;, is set to
5, a value significantly below “infinity.” Nevertheless, this is
adequate for A~ (n) to converge to A, [Fig. 11(a)], which is

FIG. 11. (a) Modulus of A*(n) and (b) profile of eigenstate || as
functions of cell index n, for an eigenstate where |A] /Ay | &~ 3.78 x
1072, in a short lattice of length L = 20. The energy of this eigenstate
is E ~ —0.291 — 0.190i. The parameters are t; = 0.4, #, = 0.5, and
¥n = 0.25n. The horizontal black line in panel (a) represents A, .
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