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How to realize compact and noncompact localized states in disorder-free hypercube networks
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We present a method for realizing various zero-energy localized states on disorder-free hypercube graphs.
Previous works have already indicated that disorder is not essential for observing localization phenomena in
noninteracting systems, with some prominent examples including the one-dimensional Aubry-André model,
characterized solely by incommensurate potentials, or two-dimensional incommensurate moiré lattices, which
exhibit localization due to the flat-band spectrum. Moreover, flat-band systems with translational invariance can
also possess so-called compact localized states, characterized by exactly zero amplitude outside a finite region
of the lattice. Here, we demonstrate that both compact and noncompact (i.e., Anderson-like) localized states
naturally emerge in disorder-free hypercubes, which can be systematically constructed using Cartan products.
This construction ensures the robustness of these localized states against perturbations. Furthermore, we show
that the hypercubes can be associated with the Fock space of interacting spin systems exhibiting localization.
Viewing localization from the hypercube perspective, with its inherently simple eigenspace structure, offers a
clearer and more intuitive understanding of the underlying Fock-space many-body localization phenomena. Our
findings can be readily tested on existing experimental platforms, where hypercube graphs can be emulated, e.g.,
by photonic networks of coupled optical cavities or waveguides. The results can pave the way for the devel-
opment of quantum information protocols and enable effective simulation of quantum many-body localization
phenomena.
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I. INTRODUCTION

The disorder-induced localization phenomenon has been
known since the seminal work of Anderson studying the
quantum phase transition between an isolating and metallic
phase [1]. In the presence of disorder, the wave functions of
electrons confined by one- and two-dimensional periodic po-
tentials become exponentially localized in space, as multiple
scattering processes generate destructive interference between
the otherwise delocalized modes. In higher-dimensional dis-
ordered systems D � 3, there can coexist both extended and
localized states, and the energy level, separated by these two,
is known as the mobility edge [2–6].

However, later it was realized that a disorder is not
an essential ingredient for observing localization phenom-
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ena. For instance, a periodically kicked quantum rotator can
be related to the Anderson localization problem in one-
dimensional (1D) disordered lattices [7]. Localization can
also manifest in quasiperiodic systems without disorder, such
as the 1D Aubry-André model, which is characterized by a
quasiperiodic, i.e., incommensurate, potential energy [8,9].
Incommensurate potentials in a Hamiltonian have a quasiperi-
odic modulation that does not align rationally with the lattice.
In 2D, the localization transition can occur in moiré lat-
tices [10], Vogel spirals [11], and in linear [12] or nonlinear
quasicrystals [13]. Moreover, even in purely periodic, i.e.,
translational-invariant, systems without quenched disorder,
localization can arise due to many-body interactions. A pri-
mary example is the Mott transition from insulator to metal
(superfluid) in fermionic (bosonic) systems, both demon-
strated using ultracold-gas quantum simulators [14,15], where
the localization properties are rather triggered by the pres-
ence of Coulomb-like interactions. Furthermore, in 1D lattice
gauge theories, localization can result from gauge supers-
election sectors that act as an effective internal quenched
disorder [16,17]. In two-dimensional (2D) periodic systems,
localization may occur due to emergent classical percola-
tion transition that divides the system into isolated real-space
clusters [18]. A form of localization can manifest also in
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noninteracting and periodic systems through the so-called
compact localized states (CLSs), i.e., wave functions whose
amplitude strictly vanishes outside a finite domain of a system
[19,20]. These CLSs emerge from destructive interference
of macroscopically degenerate eigenstates whose existence is
determined by a flat-band energy spectrum [21–28].

Apart from Hermitian systems, the localization phenomena
can also be observed in disordered non-Hermitian systems
as well [29,30]. Additionally, it was found that the bulk-
boundary correspondence failure in non-Hermitian systems
is intrinsically related to the so-called non-Hermitian skin
effect, where a number of edge modes exponentially become
localized at the boundaries [31–35]. These theoretical find-
ings have been further experimentally validated in photonic
platforms [36–38].

Here, we investigate emerging and controllable localiza-
tion occurring in disorder-free systems, whose geometry is that
of a hypercube graph. Similar hypercube structures have been
studied in connection with various phenomena. In the classi-
cal realm, they are closely related to the mutation-selection
models of population genetics, which seeks to predict gene
susceptibility or resistance to mutations [39]. In the quantum
field, hypercube structures and their spectral characteris-
tics can be useful for evaluating geometric entanglement in
multipartite states [40], for exhibiting phase-space features
significantly smaller than Planck’s constant [41], and even for
implementing high-performance fault-tolerant quantum com-
puting [42]. Hypercube geometry has also gained interest in
condensed-matter physics, particularly in the description of
spin-glass models [43,44]. Additionally, the spectral proper-
ties of chaotic hypercube lattices can bear resemblance to the
Maldacena-Qi model, which describes wormholes [45]. Fur-
thermore, hypercubes with disordered potentials have been
recently explored, for example, in the context of continu-
ous parabolic Anderson models [46], discrete models with
quantum walks [47], and Fock-space many-body localization
[48–52].

Specifically, we demonstrate that both zero-energy CLSs
and noncompact localized states (NCLSs) can be realized in
disorder-free hypercube networks. These graphs can be read-
ily emulated, e.g., by a bosonic network of coupled cavities
and waveguides, or implemented in high-dimensional pho-
tonic synthetic spaces [53–59]. The key difference between
the two is that while CLSs have strictly zero amplitudes be-
yond a finite region in the lattice, NCLSs do not, making the
latter more akin to Anderson localized states, exhibiting expo-
nentially decaying site populations around a few pronounced
eigenstate intensity peaks.

We show that in the case of identical site potentials, the
hypercube spectrum exhibits macroscopic degenerate states,
similar to those found in flat-band systems, whose destructive
interference results in CLSs. Conversely, (in)commensurate
potentials without disorder can produce NCLSs with a con-
trolled (single-site) periodic amplitude density. These findings
are in contrast with previous studies [46,48–50,52], which
exclusively attribute hypercube localization, when mapped to
the Fock space of spin systems, to disorder.

We describe a constructive procedure to obtain the param-
eters needed to generate these states, based on a recursive
application of Cartan products to the basic building blocks of

the hypercubes known as dions. This construction ensures that
the engineered localized zero-energy states (ZESs) of the hy-
percube are robust against various perturbations and disorder.
We additionally reveal that specifically weighted hypercube
graphs can be associated with the Fock space of interacting
spin-1/2 systems, with or without disorder, providing thus
deeper insights into the origin and existence of robust many-
body localized states in such systems [51]. In this respect, we
note that despite the existent literature on Fock-space many-
body localization in spin systems [28,48–51], its explicit con-
nection with hypercube space is often overlooked. However,
viewing localization from the hypercube perspective, with its
inherently simple eigenspace structure, offers a clearer and
more intuitive understanding of the underlying phenomena.

Our results further suggest that linear hypercube networks
can provide a promising practical platform for implementa-
tion of various quantum information protocols, particularly
for quantum storage [24], and the simulation of both the
flat-band and disorder-induced-like many-body localization
[19,20,51]. This could pave the way for advancements in
quantum information processing and effective simulation of
various quantum many-body models.

This paper is structured as follows: In Sec. II, we give
a brief summary of our main results on localization on hy-
percube graphs characterized by ordered site potentials. In
Sec. III, we introduce and describe a general method for con-
structing hypercubes with certain ordered site potentials and
outline its main properties. Section IV focuses on the appli-
cability of this method for engineering CLSs on the example
of eight-dimensional (8D) hypercubes. There, we also explain
the similarities between the CLSs in the hypercube networks
and many-body flat-band localization encountered in interact-
ing spin-1/2 systems. In Sec. V, we explore the construction
of NCLSs with both single-site and periodic amplitude den-
sities and their robustness against imposed correlated and
uncorrelated disorder. The similarity between NCLSs on such
perturbed hypercube networks and Fock-space many-body
localization is discussed in Sec. VI. The conclusions and
outlook are provided in Sec. VII.

II. OVERVIEW OF THE MAIN RESULTS

In this work we focus on the study of the eigenvalue prob-
lem of a Hamiltonian,

Hψ = Eψ, (1)

which describes a certain disorder-free hypercube graph. Such
a graph can emulate, e.g., a set of coupled waveguides or cavi-
ties. In that case the Hamiltonian H can be written in the mode
representation, i.e., Ĥ = �̂†H�̂, where �̂ = [â1, . . . , ân]T is
the vector of the bosonic annihilation operators, where an
operator â j represents a mode j. The bosonic operators also
obey the known commutation relations, namely, [â j, âk] = 0,
and [â†

j , âk] = δ jk , with δ jk being a Kronecker delta function.
More specifically, a bosonic Hamiltonian defined on an

n-dimensional hypercube graph can read as

Ĥ =
2n∑

i=1

ν(i)â†
i âi + g

⎛
⎝ ∑

j,k∈N j

â j â
†
k + H.c.

⎞
⎠, (2)
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where ν(i) and g account for the potential energy (frequency)
at the hypercube site i, and the nearest-neighbor site interac-
tion energy, respectively, where N j is the set of n vertices
constituting the nearest neighbors of the site j. The poten-
tial energy here thus can be considered as the frequency of
the mode âi, and the parameter g as the intermode coupling
strength.

Evidently, the single-particle Hamiltonian in Eq. (2) can
also describe fermions. However, for concreteness, here we
assume that it is of bosonic nature.

Our main result is that localization phenomena on such a
bosonic hypercube graph can be observed and even controlled
when the site potential attains the following ordered form:

ν(i) =
n∑

j=1

α jH( fi, j ) + β jH(− fi, j ), (3)

where fi, j = sin [2 jπ i/(N − 1)], and H(x) denotes the
Heaviside step function, i.e.,

H(x) =
{

1, x � 0,

0, x < 0,
(4)

and α j , β j are, in general, certain real-valued coefficients
dependent on the index j. Depending on the values of α j, β j

the potential energy in Eq. (3) can exhibit either commensu-
rate or incommensurate behavior. Incommensurate potentials
in a system Hamiltonian refer to spatially varying poten-
tials whose periodicity is incommensurate (i.e., not a rational
multiple) with the underlying lattice structure. In contrast,
commensurate potentials have periodicities that align ra-
tionally with the lattice, typically preserving translational
symmetry.

We explicitly show that while the commensurate case leads
to the emergence of compact localized states, the incom-
mensurate case can result in the appearance of noncompact
localized states in the hypercube eigenspectrum. By demon-
strating this, we reveal that localization in a hypercube graph
can occur even in the absence of disorder, which contrasts
with previous common assumptions [46,48–50,52].

Another important outcome of our results is that hypercube
Hamiltonians with specifically varied mode-coupling strength
g in Eq. (2) can be mapped to the Fock space of interacting
spin-1/2 systems exhibiting many-body localization. This sug-
gests that linear hypercube networks could also serve as an
experimental platform for simulating many-body localization
phenomena occurring in the interacting spin systems.

III. THEORY

A. Hypercube construction

We first set the stage by describing a general framework for
hypercube construction and its spectral characteristics.

Geometrically, an n-dimensional hypercube can be readily
constructed by iteratively applying the Cartesian product of
n one-dimensional edges (dions) [60,61]. For instance, in 2D
a Cartesian product of two dions generates a square; in 3D,
three dions give a cube, and so on. The resulting n cube has in
total 2n vertices and 2n−1n edges. In a quantum-mechanical
formalism, the iterative Cartesian products of dions

correspond to iterative Kronecker sums applied to the
Hamiltonians that describe the dions. Specifically, we choose
the description where each dion can be associated with a
2 × 2 matrix,

Sk =
(

αk κk

κk βk,

)
, (5)

representing the Hamiltonian of a qubit or that of a linear two-
mode system. Following this choice, a 2n × 2n Hamiltonian
matrix Hn of weighted n-hypercube graph can be iteratively
constructed. One fixes

H1 = S1 (6)

and then

Hn = Hn−1 ⊗ I2 + In−1 ⊗ Sn, n > 1, (7)

where Ik is the identity on the k-dimensional Hilbert space.
Importantly, when αk = βk = 0, and κk = 1, the Hamiltonian
takes the form of an ordinary adjacency matrix of a regular
n hypercube with zero-potential vertices [62]. Throughout
the text, without loss of generality, we assume κk = 1 ∀k.
Indeed, since we focus solely on localization in the hypercube
eigenspace, its qualitative nature remains unchanged when an
arbitrary κk is absorbed by the diagonal elements of the matrix
Sk , i.e., when rescaling αk and βk by κk .

In this regard, we note that previous studies on hyper-
cube localization primarily began with hypercubes featuring
zero-site potentials, where the diagonal elements were later
perturbed in a disordered manner (see, e.g., Ref. [46]). In
contrast, here we demonstrate that a more general construction
of a weighted hypercube is sufficient to observe localization.

From Eq. (7) it directly follows that N = 2n vertices,
or sites, of the n-dimensional hypercube with indices i =
0, . . . , N − 1 are characterized by the potentials

ν(i) =
n∑

j=1

α jH( fi, j ) + β jH(− fi, j ). (8)

Note also that when ν(i) = 0, the n-dimensional hyper-
cube can be readily interpreted as a system of 2d interacting
Majorana fermions [43,45], or as the interaction term in the
Maldacena-Qi model describing a space-time wormhole [63].
Indeed, by introducing the gamma matrices

γ L
k =

(
k−1⊗

1

σx

)
⊗ σz ⊗ I2n−2k,

γ R
k =

(
k−1⊗

1

σx

)
⊗ σy ⊗ I2n−2k, (9)

with σx,y,z being the Pauli matrices, the Hamiltonian in Eq. (7)
can read as

H = i
d∑
k

γ L
k γ R

k . (10)

In the case when on-site potentials attain the form as in
Eq. (8), the left and right spaces in Eq. (10) become coupled.
As a result, the corresponding Hamiltonian acquires a more
complicated form.
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Alternatively, the hypercube space can be mapped to the
Fock space of Ising spins. Indeed, the Kronecker sum in
Eq. (7) can be written as follows:

Hn =
n∑
k

(
αk − βk

2
σ k

z + σ k
x

)
+ I2n

n∑
i

αi + βi

2
. (11)

The second term in Eq. (11) just shifts the energy spectrum
of the set of spins, subjected to a transverse uniform magnetic
field, described by the first sum in the Hamiltonian Hn.

Finally, a general n-dimensional hypercube Hamiltonian
in Eq. (7) can be associated with a linear network of 2n

coupled bosonic modes, whose frequencies are identified with
potentials ν(i) [see also Eq. (2)].

Evidently, hypercube graphs can be mapped onto the
Hilbert space of various physical systems, including single-
particle bosonic or fermionic networks, interacting Majorana
fermions, and spin systems, among others. In this work, we fo-
cus exclusively on the single-particle Hamiltonian in Eq. (2).
At the same time, in what follows, we will also draw parallels
with spin systems where relevant.

B. Hypercube eigenspectrum and symmetry

The eigenvectors ψ and eigenvalues λ of the Hamiltonian
Hn in Eq. (7) are straightforwardly obtained as follows:

ψi1,i2,...,in =
n⊗

k=1

ψ
(k)
ik

, λi1,i2,...,in =
n∑

k=1

λ
(k)
ik

, (12)

where ψk
ik (λk

ik ) denotes the ik = 1, 2, eigenvector (eigenvalue)
of the matrix Sk in Eq. (7) [60,61].

The eigenvectors in Eq. (12) thus have a binary-tree struc-
ture [62] (see also Fig. 1 in Ref. [61]). Note that whereas
the eigenspectrum of the Hn has a tensor product structure,
the underlying 2n coupled bosonic modes, constituting the
Hamiltonian, as in Eq. (2), cannot be presented in the same
manner.

The construction in Eq. (7) implies that a hypercube Hamil-
tonian Hn possesses a chiral symmetry (within an appropriate
gauge)

H ′
n = Hn − νI2n , (13)

where

ν = max[ν(i)] + min[ν(i)]

2
, (14)

with ν(i) given in Eq. (8), and I is the identity matrix. That is,

CH ′
nC† = −H ′

n, C =
n⊗

i=1

σy,

C†C = CC† = C2 = I, (15)

where the symbol † denotes the Hermitian conjugation op-
eration [64]. This chirality ensures that the eigenvalues of
the matrix Hn (H ′

n) have the mirror-reflection symmetry with
respect to a mean eigenvalue (a zero of the energy) [33].
The chiral symmetry is, in general, broken, that is Cψλk ≡
ψλN−1−k , for ordered eigenvalues λ0 < · · · < λN−1, though

6

6

0

2

4

2

4

0 5 10 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

6

4

2

0

2

4

6

FIG. 1. (a) Site potentials ν(i) on a 4D hypercube described
by the Hamiltonian in Eq. (7) generated by the dion matrices Sk ,
k = 1, . . . , 4, with diagonal elements αk = −βk = √

k. (b) The same
site-potential distribution as in panel (a) but visualized on a Petrie
polygon of the given 4D hypercube.

nondegenerate zero-energy states of H ′
n, if any, respect the

chiral symmetry of the system [65].
To illustrate the described construction of a hypercube

with a simple example, let us consider the four-dimensional
(4D) case. Specifically, we assign the following values to
the diagonal elements of each dion Hamiltonian matrix Sk in
Eq. (7), k = 1, . . . , 4: βk = −αk = −√

k, which guarantees
that the on-site potentials of the resulting hypercube with H4

are incommensurate. To visualize the obtained 4D hypercube
with given site potentials, we project it onto the 2D Petrie
polygon, as shown in Fig. 1. A Petrie polygon for a regular
hypercube or any polytope of n dimensions is a skew polygon
in which every (n − 1) consecutive sides (but not n) belong
to one of the facets [60,66]. Generally, a hypercube with
commensurate site potentials produces a degenerate energy
spectrum, whereas incommensurate site potentials lift this
degeneracy (see also Fig. 2 and the text below).

033002-4



HOW TO REALIZE COMPACT AND NONCOMPACT … PHYSICAL REVIEW RESEARCH 7, 033002 (2025)

0 5 10 15
20

10

0

10

20 =0.0
=1.0
=2.0
=3.0

FIG. 2. Eigenvalues λ of the Hamiltonian H4 describing a 4D
hypercube. The matrix H4 is constructed according to Eq. (7), with
elements of the dion matrices Sk taken as αk = −βk = η

√
k, for

k = 1, 2, . . . , 4, and where the constant parameter η can acquire
various values in the range [0, 1, 2, 3].

IV. ENGINEERING COMPACT LOCALIZED STATES

Elaborating on the method described above, we now show
how to construct CLSs on hypercubes with sites that have con-
stant potentials. Without loss of generality, we assume that the
constant potential is zero (αk = βk = 0 ∀k). For an arbitrary
n-dimensional hypercube, the zero potential always results in
a highly degenerate spectrum, reminiscent of that observed
in flat-band systems but in reciprocal space [21]. However,
it is only for even (2n)-dimensional hypercubes that this flat
spectrum contains a zero-energy level, which, moreover, has
a degeneracy of the degree [61]

m2n = (2n)!/(n!)2. (16)

For instance, in the case of the 8D hypercube with 28 =
256 vertices and 27 × 8 = 1024 edges, the degeneracy of the
zero-energy level is m8 = 8!/(4!)2 = 70 [see also Fig. 3(b)].
Furthermore, these degenerate zero-energy states (ZESs), de-
noted as ψk

0 , k = 1, . . . , m2n, are extended in nature, i.e., with
site amplitudes ψk

0 (i) ≡ ±1 [67], and which form the orthog-
onal basis. Because of this, any superposition

ψ s
0 ≡

∑
k

ckψ
k
0 , ck ∈ C, (17)

is also a ZES. Some superpositions in Eq. (17) can result in
destructive interference, leading thus to the formation of the
CLSs, where only a fraction of the sites have nonzero ampli-
tudes [21]. Indeed, since each extended state ψk

0 in Eq. (17)
is formed by the multiple tensor products of two eigenvec-
tors (1, 1)T and (−1, 1)T of the generating matrix Sk = σx,
according to Eqs. (5) and (12), their combinations can lead to
destructive interference between their entries that differ only
in sign. Since one can readily construct all (2n)!/(n!)2 ZESs,
one can subsequently form various combinations in Eq. (17)
which result in the CLSs. One can show that there are at least
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FIG. 3. (a) The intensity of a zero-energy compact localized state
(CLS) of an 8D hypercube with zero-site potentials visualized on
a hypercube Petrie polygon. (b) The degenerate “flat-band” energy
spectrum of the given hypercube Hamiltonian H8. (c) Similar to panel
(a), showing the CLS intensity distribution as a function of the site
index.

2n such zero-energy CLSs on the 2n-dimensional hypercube.
We elaborate on this in more detail in Appendix A.

We plot one of the realizations of such CLSs in Fig. 3. As
can be seen from the graph, there are only a few nonzero peaks
in the CLS, whereas other sites have strictly zero amplitude.
Clearly, one can also find such a similarity transformation
(a permutation matrix) for the Hamiltonian H8 which can
reshuffle these nonzero peaks of the ZES [25].

Note that the Hamiltonian of an n-dimensional bosonic hy-
percube graph in Eq. (2) with everywhere ν(i) = 0, apart from
the chiral symmetry, also respects parity symmetry, meaning
that Hn = PHnP , where the parity operator P = ⊗n

k=1 σx.
Moreover, the zero-energy degenerate states ψk

0 share the
same parity, implying that the superpositions in Eq. (17) are
also eigenstates of the operator P .

Regarding chiral symmetry, the degenerate states ψk
0 may

enter the combination in Eq. (17) with opposite chirality,
meaning that in general, a superposition ψ s

0 is not the eigen-
state of the operator C. However, certain combinations of
ψk

0 may form chiral eigenstates ψ s
0: Cψ s

0 ≡ ψ s
0, making them

additionally robust against perturbations that respect this sym-
metry [65].
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Effects of perturbations on stability of compact
localized states

1. Correlated perturbations

The appearance of the high degeneracy in the hypercube
spectrum, discussed above, can also be easily understood
when mapping it to the Fock space of a system of identical
spins subjected to a uniform magnetic field, according to
Eq. (11). Moreover, by introducing hypercube perturbations
in the form

Hpert =
∑

σ i
xσ

i+1
x . . . σ i+2k

x , (18)

mimicking odd-spin interactions (k ∈ Z+) in the context of
interacting spin systems, one can preserve the CLSs set from
the unperturbed case, since such perturbation commutes with
the unperturbed Hamiltonian H = ∑

σx. In a particular case
when Hpert = P , these perturbations introduce extra edges be-
tween hypercube vertices, forming the hypercube diagonals.
Remarkably, despite significantly altering the link topology,
these modifications leave the hypercube eigenfunction space
unchanged. In the single-particle framework, such diagonal
links correspond to additional intermode couplings in the
bosonic networks, according to Eq. (2).

From the above analysis it follows that perturbations re-
specting both chiral and parity symmetries of the hypercube
Hamiltonian can preserve the presence of zero-energy CLSs,
formed by the eigenstates of P and C operators. This obser-
vation strongly resonates with the findings in Refs. [68–70],
where an exponentially large nullspace, featuring localization
of the many-body interacting spin system, is attributed to
the presence of parity and chiral symmetries in the system’s
Hamiltonian. Specifically, for a perturbed hypercube Hamil-
tonian in the form H → H + Hpert, where

Hpert = a
∑ (

σ i
yσ

i+1
z + σ i

zσ
i+1
y

) + b
∑

σ i−1
z σ i

xσ
i+1
z

+ c
∑

σ i−1
y σ i

xσ
i+1
y , (19)

the hypercube spectrum continues to host degenerate ZESs,
and hence CLSs, since the perturbation in Eq. (19) satisfies
[Hpert,P] = 0, and {Hpert, C} = 0.

The “two-spin interaction” term in Eq. (19) modifies only
the nonzero edge weights of the unperturbed hypercube by
adding imaginary values (±ia), leaving the link topology
unchanged. The second sum also alters the weights (with
real values ±b) of the unperturbed hypercube edges, but can
reduce the degree of certain vertices by 1 if a modified link
weight becomes zero. The degree of a vertex of a graph is the
number of edges that are incident to the vertex. For instance,
for an n-dimensional hypercube the degree of each vertex
is n.

In contrast, the third sum always increases the degree of
certain vertices by 1 by assigning the weight (±c) to newly
formed edges, thus leading to a modification of the hypercube
link network. This modification, again, is simply reflected in
the change of the corresponding mode couplings in the single-
particle Hamiltonian in Eq. (2).

We note that the method described for realizing CLSs also
echoes the approach studied in Ref. [28], which, in particular,
analyzes bosonic and spinful fermionic many-body flat-band
Hamiltonians. This similarity arises when mapping the Fock

space of such Hamiltonians onto the hypercube space, where
the local and global integrals of motion of the many-body
system are expressed as local- and global-parity symmetries
on the associated hypercube graph. Together with the chiral
symmetry of the hypercube, this leads to the existence of
zero-energy CLSs, as revealed above. Thus, the hypercube
framework allows to unify different approaches [28,68] de-
veloped for constructing CLSs.

2. Effects of pure disorder on CLSs

The effects of uncorrelated disorder on hypercubes, with
initial zero-energy site potentials, though implicitly, have been
studied in Ref. [48] in the context of quantum random-
energy models. That is, a perturbed hypercube Hamiltonian
in Eq. (11) can be written as [48]

H = E
({

σ i
z

}) +
∑

σ i
x, (20)

where the first term represents a random operator assigning
hypercube vertex potentials with values drawn from a Gaus-
sian distribution.

Apparently, any nonzero disorder destroys CLSs by break-
ing parity and chiral symmetries of the hypercube, although
the eigenstates remain delocalized for sufficiently small per-
turbations. As disorder is increased further, the hypercube
graph undergoes a delocalization-localization transition. De-
noting the energy density of hypercube states as ε, the
transition for the Hamiltonian in Eq. (20) occurs at ε = 1 [48],
with the condition ε > 1 marking the onset of localization.
In the context of spin systems, this corresponds to the hy-
percube network entering a many-body localized phase. This
disorder-induced localized regime is characterized solely by
the presence of NCLSs.

V. ENGINEERING NONCOMPACT LOCALIZED STATES

Here, we discuss the formation of zero-energy NCLSs on
hypercubes with both commensurate and incommensurate site
potentials. Additionally, we demonstrate how to generate such
states with specific localization features.

A ZES of a Hamiltonian Hn describing an n-dimensional
hypercube, with varying site potentials in Eq. (8), can always
be straightforwardly obtained from Eq. (7) by choosing the
parameters of each matrix Sk such that βk = α−1

k . This is
because Sk has a zero-valued determinant whenever αkβk =
1. The (unnormalized) zero-energy eigenvectors of the Sk

read [71]

ψk,λ=0 ≡ [βk, 1]T . (21)

For an n-dimensional hypercube, the zero-energy eigenvector,
according to Eq. (12), then takes the form

ψ0 =
n⊗

k=1

ψk,λ=0. (22)

Due to the binary-tree structure of the eigenvectors, result-
ing from the Kronecker product [61], the elements of the
resulting eigenstate ψ0 can be easily encoded with binary
strings. Specifically, the binary string consisting of n elements
i = i1i2 . . . in, with ik = 0, 1, represents the decimal index i of
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FIG. 4. Panels (a) and (c) show the site-potential distributions of the 8D hypercube, projected in 2D, which result in (b) the zero-energy
noncompact localized state (NCLS) ψ42, and (d) the domain-wall NCLS, respectively.

the site amplitude ψ0(i). Moreover, this string also encrypts
the element ψ0(i) expressed as

ψ0(i) ≡ β
¬i1
1 β

¬i2
2 . . . β

¬in
D , (23)

where the notation ¬ik denotes the NOT operation over the
Boolean ik . For instance, take a 3D hypercube or simply a
cube. Its zero-energy eigenvector reads

ψ
(b)
0 ≡

[
β1β2β3, β1β2, β1β3, β1, β2β3, β2, β3, 1

000, 001, 010, 011, 100, 101, 110, 111

]T

. (24)

In Eq. (24), the upper line accounts for the actual elements
of the vector ψ0, whereas the lower line refers to their binary
representation according to Eq. (23).

Based on the structure of the zero-energy eigenvector in
Eq. (22), one can construct a vector state of an n-dimensional
hypercube with desired localization characteristics. Indeed,
suppose that one wishes to obtain a specific zero-energy
eigenstate on an 8D hypercube. Assume first that the desired
ZES is a single-site localized state at the vertex, say v(42).

In the state ψ42
0 , the vertex with the index 42, which in the

Boolean form reads as b00101010, has the following ampli-
tude: ψ42

0 = β1β2β4β6β8, according to Eq. (23). To guarantee
that the ZES amplitude concentrates at the vertex v(42), one
must then ensure that |β3,5,7| 	 1 < |β1,2,4,6,8|. We plot one
of the possible hypercube potential distributions in Fig. 4(a),
which generates the localized state shown in Fig. 4(b). We
also present complementary plots with the eigenspectrum de-
composition for the 8D cube in Fig. 5. From Fig. 5 it is seen
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FIG. 5. Energy spectrum of the perturbed hypercube Hamilto-
nian and its zero-energy state intensity for various perturbations
drawn from a uniform distribution in the range [−W,W ] (see details
in the main text). Energy spectrum of the Hamiltonian which gener-
ates (a) a zero-energy localized state ψ42 and (c) domain-wall state,
whose state intensities are shown in panels (b) and (d), respectively.
The inset in panel (a) shows the detailed energy spectrum (which
is almost overlapped for different values of the parameter W ) and
corresponding perturbed zero-energy state around the zero-energy
level.

that apart from a deltalike peak at the vertex v(42), there
are a number of other smaller peaks which correspond to the
products of 4, 3, and so on, terms of βk in Eq. (23). By varying
the values of βk one can correspondingly modify the intensity
of these satellite peaks as desired. It must be noted that the
localization is observed in the whole eigenspectrum, not only
for the ZES.

Next, suppose that the intended ZES is a “domain-wall”
state, meaning that only one half (assume the first half) of the
vertices can be excited [72]. This can be readily achieved by
having the first half of the elements of the zero-energy vector
ψ0 possess the term β1. Note that each term βk has a vertex
periodicity 2−kL in ψ0, where L = 2n is the system length,
in the considered case L = 28. By setting |β1| > 1, and the
remaining terms |β2,...,8| ≈ 1, one attains an 8D hypercube
with the desired ZES [see Figs. 4(c) and 4(d)]. The explicit
form of the spectrum and the density of the domain-wall state
ψ0 are also shown in Figs. 5(c) and 5(d). Figures 4(c) and 4(d)
show that vertex excitations in this ZES exhibit a duality with
the potential distribution on the hypercube. Specifically, hy-
percube sites with smaller potentials (in absolute magnitude)
have a higher probability of being excited in this state.

Robustness of the noncompact localized states to disorder

Here, we analyze the effects of both uncorrelated and
correlated disorder on the stability of the engineered NCLSs
discussed above.

1. Uncorrelated disorder

We start our consideration from the effects of pure, i.e.,
uncorrelated, disorder on the stability of the NCLSs. Such
random perturbations are imposed on all diagonal elements
of the hypercube matrix, similar to Eq. (20), as used in the
study of quantum random-energy models [48,49].

We study the robustness of the 8D hypercube Hamiltonian
when the site potentials are perturbed by random values drawn
from a uniform distribution over the range [−W,W ], with
W ∈ R. Two scenarios can be distinguished upon such per-
turbations: (i) when the density of states near zero energy is
high, and (ii) when the ZES is well isolated from the rest of
the spectrum.

For the first case, our analysis shows that whenever
W � |λe|, where λe is the energy gap, i.e., the distance be-
tween the first excited state above or below zero of the
unperturbed system, the initial ZES remains immune to per-
turbations. Namely, despite the fact that the zero energy of the
initial state can be shifted, the perturbed ZES remains closest
to the zero-energy level [see Figs. 5(a) and 5(b)]. However, for
larger values of W , the initial ZES, while preserving its shape,
can be shifted far away from the level λ = 0, becoming an
“excited” state [see Figs. 5(a) and 5(b)].

For the second scenario, the ZES exhibits larger robust-
ness against disorder. Namely, the energy of the initial ZES
remains zero upon perturbations. However, the modification
of the state increases with larger disorder W [see Figs. 5(c) and
5(d)]. In both scenarios, the increasing values of W eventually
lead to the emergence of continuous energy spectra, which
is an indicator of a completely disordered system [73] (see
Fig. 5).

The above observation implies that a ZES of a hypercube,
within a region of the state space with a high (low) density of
states, exhibits high (low) susceptibility to perturbations. In
other words, isolating the ZES in the system spectrum allows
for the engineering of the robust system response in the pres-
ence of disorder. We also note that the ZES remains immune
to purely imaginary perturbations, e.g., when the potential’s
disorder is dissipative in nature (see Appendix C for details).

2. Correlated disorder

The previous analysis suggests that any correlated disorder
represented, e.g., by a perturbing hypercube Hamiltonian in
the form H → H + Hpert, where

Hpert ≡
∑
i,k

εiσ
i
zσ

i+1
z . . . σ i+k

z , (25)

also preserves the structure of the initial NCLSs. Such pertur-
bations modify the hypercube vertex potentials only, similar
to the case discussed earlier on uncorrelated disorder. The
random perturbation parameters εi in Eq. (25) can be taken
from a uniform distribution [−W,W ], similar to that in Fig. 5.
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The fact that the vertex potential disorder, when small
enough, does not significantly affect the hypercube NCLSs
can be also understood in the context of interacting spin sys-
tems, as directly indicated by Eq. (25). Indeed, when mapping
the hypercube network onto the Fock space of the spin system,
the spin interactions in Eq. (25) do not induce excitation
transfer between lattice sites [20]. Consequently, such per-
turbations tend to preserve the shape of the initial hypercube
NCLSs.

VI. DISCUSSION

In analyzing the robustness of NCLSs against disorder, it
is useful to draw parallels with previous studies on disorder-
induced Fock-space many-body localization in spin systems
[48,50]. Notably, as indicated in Ref. [50], disorder-induced
many-body localized states (DIMBLS) remain stable when
Fock-space site energies exhibit maximal correlations at finite
Hamming distances. We recall that the Hamming distance
between two nodes on the graph is defined as the shortest path
between them following the links. This condition is exactly
satisfied in our case. It can be said that the NCLSs studied
here represent an extreme case of the DIMBLS, since one sets
specific (not necessarily random) values of βi in Eq. (23) to
construct a given localized state. The construction in Eq. (23)
maximizes correlations between hypercube sites, thus ensur-
ing the NCLSs’ robustness.

The NCLSs’ stability to pure disorder analyzed in
Sec. V A 1 can be also understood in this context. Indeed, the
pure disorder introduced on the hypercube vertices, similar
to Eq. (20), competes with the inherent hypercube site cor-
relations determined by the NCLS construction in Eq. (23).
However, the NCLSs are already localized, so introducing un-
correlated disorder merely modifies their shape and preserves
the localization phase on the hypercube graph [50].

VII. CONCLUSIONS AND OUTLOOK

In conclusion, we showed that localization phenomena
can naturally emerge on hypercube graphs without disor-
der. At the same time, we presented a method allowing for
engineering robust CLSs and NCLSs on such disorder-free
hypercubes. Namely, we showed that for the hypercubes with
constant-site potentials, the resulting highly degenerate en-
ergy spectrum in real space enables producing CLSs, whereas
the incommensurate-site potentials lead to the emergence of
NCLSs with prescribed localization features. Given the im-
portance of CLSs and NCLSs in the realization of various
information and wave manipulation protocols, our results can
potentially lead to advancements in these fields. The hyper-
cube graphs presented and their localization properties can be
directly simulated in existing experimental photonic platforms
exploiting both real and synthetic spaces, e.g., networks of
coupled cavities or waveguides [56,57,59].

Moreover, our findings indicate that hypercube structures
can be directly associated with the Fock space of interacting
spin systems. This provides additional insights into many-
body localized states and may open avenues for simulating
complex quantum many-body models. That is, the demon-
strated robustness of constructed CLSs and NCLSs against

hypercube perturbations, which effectively emulate many-
body interaction in the Fock space of spin systems, offers a
perspective on the origin of many-body localization in such
systems.

Additionally, the approach used can be readily extended to
other hyperpolytopes constructed by iterative Cartan products
of triangles, tetrahedra, and so on. Consequently, in future
research we wish to explore other types of CLSs and NCLSs
that can be engineered in these hyperstructures. In relation
to this, it would be also interesting to investigate how the
studied localization phenomena on hypercubes are modified
when mapped to lower-dimensional systems [33].

Analogous to the hypercubes studied here, the hyperpoly-
topes could be also potentially mapped to the Fock space of
higher-spin interacting models. This, in turn, can shed light
not only on localization phenomena in more complex quan-
tum many-body systems but also can lead to their effective
simulations with linear hyperpolytope networks.
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APPENDIX A: ANOTHER METHOD TO GENERATE
ZERO-ENERGY COMPACT LOCALIZED

STATES IN SEC. IV

In Sec. IV we mentioned that zero-energy CLSs can be
simply generated by various combinations of the ZES ψk

0 in
Eq. (17). These ZES ψk

0 of the 2n-dimensional hypercube are
obtained via tensor products of two (un-normalized) eigenvec-
tors φ1 and φ2 of the generating matrix S = σx. Namely,

ψk
0 =

2n⊗
i, ji={1,2}

φ ji , k = 1, . . . , 2n!/(n!)2 (A1)

where

φ1 ≡ [1, 1]T , φ2 ≡ [−1, 1]T . (A2)

The tensor product in Eq. (A1) contains n number of vectors
φ1 and the same number of vectors φ2 in various combina-
tions, ensuring that the resulting vector ψk

0 is a ZES, according
to Eq. (12).

As a result, the elements of the (un-normalized) ZESs
ψk

0 consist of an equal number of ±1 entries. The precise
position of ±1 values in a vector ψk

0 is determined by the
expression in Eq. (23), where each βi = ±1 is defined by the
first element of the ith eigenvector φ ji=1,2 in the product in
Eq. (A1). Clearly, because of the latter, one can realize various
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CLSs through symmetric and asymmetric combinations of the
eigenstates ψk

0 , according to Eq. (17). However, while this
approach can, in principle, yield CLSs, it would most likely
require numerical methods, especially for high-dimensional
hypercubes, since the specific combinations that form CLSs
are generally unknown.

Alternatively, CLSs can be generated using a different
approach. By noting that the ZESs of a 2n-dimensional hy-
percube can also arise from the tensor products of ZESs of
lower-dimensional hypercubes (<2n), one can first construct
CLSs for these lower-dimensional hypercubes and then obtain
CLSs for the 2n-dimensional case through their corresponding
tensor products.

Let us demonstrate the latter on a simple example of a
4D hypercube. The 16 eigenstates of the 4D hypercube are
obtained from Eq. (A1), through fourfold tensor products of
the two states φ1,2. However, the lower-dimensional hyper-
cube with respect to the 4D hypercube, which still possesses
ZESs, is a two-dimensional hypercube, i.e., a square. The
square is characterized by two ZESs, namely, ψ1

0 = φ1 ⊗ φ2

and ψ2
0 = φ2 ⊗ φ1. More explicitly,

ψ1
0 =

⎛
⎜⎜⎝

−1
1

−1
1

⎞
⎟⎟⎠, ψ2

0 =

⎛
⎜⎜⎝

−1
−1
1
1

⎞
⎟⎟⎠. (A3)

One can form now CLS-like zero-energy states through
symmetric and asymmetric combinations of the vectors in
Eq. (A4). Namely,

ψ s
1 ≡ ψ1

0 + ψ2
0 ≡

⎛
⎜⎜⎝

−1
0
0
1

⎞
⎟⎟⎠,

ψ s
2 ≡ ψ1

0 − ψ2
0 ≡

⎛
⎜⎜⎝

0
1

−1
0

⎞
⎟⎟⎠. (A4)

Evidently, various tensor products of these two ZESs ψ s
1,2

(four in total), will produce four degenerate ZESs of the
4D hypercube, according to Eq. (16). However, since the
ZESs ψ s

1,2 already contain zero-valued elements, their tensor
products further reduce the number of nonzero entries. This,
in turn, facilitates the formation of CLSs in the degenerate
eigenspace of higher-dimensional hypercubes. Specifically,
for the 4D hypercube, one of the ZESs, obtained from the
tensor product

ψ s
1 ⊗ ψ s

2 = [0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0]T ,

(A5)

forms a CLS.
Clearly, the CLSs eigenspace for any 2n-dimensional hy-

percube can be constructed in this manner. Consequently,
for a given 2n-dimensional hypercube, with zero (constant)
on-site potentials, there are at least NCLS = 2n zero-energy
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FIG. 6. Energy spectrum (a) and intensity of the localized state
(b) that is closest to zero energy of an 8D hypercube with disorder
strength W = 10. The energy spectrum (c) and zero-energy localized
state intensity (d) of disorder-free 8D hypercube, constructed accord-
ing to the method described in Sec. V in the main text.

CLSs, formed by the n-folded tensor products of the two
eigenvectors ψ s

1 and ψ s
2 in Eq. (A4).

APPENDIX B: REALIZING DISORDER-INDUCED
NONCOMPACT LOCALIZED STATES ON

DISORDER-FREE HYPERCUBES

In the main text, we discussed the formation of NCLSs on
disorder-free hypercubes. Here, we further elaborate on the
localization on disorder-free hypercube graphs.

For that we first impose disorder on an 8D hypercube,
initially characterized by zero on-site potentials, which is
drawn from the uniform distribution [−W,W ], similar to that
in Sec. V A in the main text. For large values W � 0, the
disorder induces localization. We plot a disorder-induced lo-
calized state, closest state to the zero energy in Fig. 6. As seen
in Fig. 6(a), the energy spectrum is continuous, indicating the
onset of the localization transition. In Fig. 6(b) we show the
closest to zero-energy state (ZES) that has localization peaks
over a few sites, and with the maximum at the site v(229).

Next, we aim to simulate a similar localized state using
a disorder-free hypercube according to the method described
in Sec. V. Namely, by identifying the ZES amplitude at the
site v(229) as ψ0(229) = β4β5β7, according to Eq. (23), and
by setting |β4,5,7| � 1 and |β1,2,3,6,8| 	 1, one can easily
construct the ZES with similar localization characteristics
[compare panels (b) and (d) in Fig. 6], and whose spectrum
is still discrete.
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FIG. 7. Time evolution of the NCLS ψ42, initially defined on
disorder-free hypercube in Fig. 5(b), subjected to imaginary disorder
drawn from the uniform distribution [0, i] at time: (a) t = 1, and (b)
t = 2. The energy and timescale are set by κ = 1 in Eq. (7).

APPENDIX C: ROBUSTNESS OF NONCOMPACT
LOCALIZED STATES UNDER DISSIPATIVE

PERTURBATIONS

In this Appendix we discuss the robustness of NCLSs
against perturbations which are dissipative in nature. We ana-
lyze this resilience explicitly in the time evolution of the state.

Indeed, let us now assume that the state dynamics is gov-
erned by the time-independent Schrödinger equation, with the
(perturbed) Hamiltonian Hn. The hypercube Hamiltonian can
describe a network of coupled optical cavities or waveguides
with losses, and thus can be written in the matrix-mode repre-
sentation. The solution for the state dynamics then reads

ψ (t ) = exp(−iHnt )ψ (0), (C1)

where we set Planck’s constant h̄ = 1. For the studied 8D
hypercube, the Hamiltonian matrix takes the form

Hn = H8 − idiag[γ1, . . . , γN ], (C2)

where H8 is the Hamiltonian of the unperturbed hypercube
in Eq. (7), and the parameters γk are sampled from the
uniform distribution [0,W ]. We initialize the system in the
zero-energy state ψ42, localized at the vertex v(42) as shown
in Figs. 4(b) and 5(b), and we set W = 1. In this case, the
state ψ42 still preserves its shape over time, though it begins
steadily decaying with a certain rate depending on the disorder
strength (see Fig. 7). For larger values W � 1, the dynamics
of the state becomes more intricate due to the growing role of
the dissipation, eventually leading to the complete loss of the
initial state.
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Z. Papić, Quantum scarred eigenstates in a Rydberg atom chain:
Entanglement, breakdown of thermalization, and stability to
perturbations, Phys. Rev. B 98, 155134 (2018).

[70] M. Schecter and T. Iadecola, Many-body spectral reflection
symmetry and protected infinite-temperature degeneracy, Phys.
Rev. B 98, 035139 (2018).

[71] The other eigenvector with the eigenvalue λk = αk + α−1
k at-

tains the form ψk,λ�=0 ≡ [αk, 1]T .
[72] J.-y. Choi, S. Hild, J. Zeiher et al., Exploring the many-body

localization transition in two dimensions, Science 352, 1547
(2016).

[73] L. A. Pastur, Spectral properties of disordered systems in
the one-body approximation, Commun. Math. Phys. 75, 179
(1980).

033002-13

https://doi.org/10.1103/PhysRevB.96.161104
https://doi.org/10.1016/0550-3213(84)90281-5
https://doi.org/10.1103/PhysRevLett.127.060602
https://doi.org/10.1103/PhysRevB.98.155134
https://doi.org/10.1103/PhysRevB.98.035139
https://doi.org/10.1126/science.aaf8834
https://doi.org/10.1007/BF01222516

