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Supplemental Material for

“Data-driven model reconstruction for nonlinear wave dynamics”

I. METHODOLOGY FOR DYNAMIC MODEL IDENTIFICATION

This section provides a description of the machine learning method employed to extract the underlying equations
governing the system’s dynamics from the simulated data. The method uses regression techniques to identify a sparse
set of terms from a comprehensive library of potential functions that best describe the system’s temporal or spatial
evolution. This approach allows us to discover the governing equations and their coefficients.

We first collect data obtained from numerical simulations of the system using Eq. (1) in the main text, considering
the geometry presented in Fig. 1 (leftmost column). These data are structured as a series of field profiles that depend
on the coordinates (z, x). Their first-order derivatives along the z-axis are denoted as Y in Fig. 1 of the main text.
To perform regression, we construct a library of functions, forming the matrix X. This library consists of various
functional terms, including spatial derivatives of different orders along the x-axis and nonlinear terms involving the
field values (see also the next sections in the Supplemental Material). These terms serve as potential building blocks
of the governing equation.

With the input data and the library of functions defined, we proceed to solve an optimization problem to identify
the coefficients that best represent the underlying dynamics. The goal is to find a sparse vector of coefficients, c, that
minimizes the error between the observed data and the model predicted by the library functions. Mathematically,
this is formulated as finding the coefficients such that Xc approximates Y in the least-squares sense, expressed by
the minimization problem: minc ∥Xc −Y∥2. To solve this optimization problem, we use standard linear regression,
implemented via the LinearRegression function from the sklearn library in Python.

This standard linear regression returns the coefficient vector c, which represents the weights of the terms in the
library that describe the system’s dynamics. The goal of our method is to approximate the dynamical equations, even
when the relevant terms are not known a priori. This implies that c should be sparse, meaning many of its entries
should be zero. The sparsity of c determines the relevance of the terms in the library: when an entry in c is zero (or
very small), the corresponding term in X is considered irrelevant for reconstructing the system’s dynamics.

II. PROCEDURE DETAILS FOR THE LINEAR LOW-INTENSITY REGIME

In the linear regime, the governing equation for the envelope amplitude Ã,
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can be rewritten in terms of real and imaginary parts Ã ≡ ÃR + iÃI ,
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The aim of using a machine learning (ML) approach with linear regression is to identify the structure of the
governing equations (relevant terms) and determine the exact values of the coefficients.

First, we prepare datasets with three beams of different widths as the initial condition: L1 = 3a,L2 = 3a/2,L3 =
3a/2× 1.5. These datasets were generated through solving the paraxial equation using beam propagation method for
different widths for the same input intensity and then mixing the data for all three widths. While constructing X,
we multiply spatial derivatives on L3, such as ∂x ∝ L3. Then we randomly select the data points where the intensity
exceeds the threshold value of 0.05.

The training set is divided into 100 validation folds, each consisting of approximately 40,000-60,000 points. For
every dataset within these folds, the coefficients are extracted, followed by the calculation of their mean value, denoted
as ⟨ci⟩, and standard deviation, δci. This rigorous process ensures a robust statistical analysis of the model coefficients
across the various validation sets.
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dw set k ⟨β0⟩+ δβ0 (1/mm) ⟨v⟩+ δv (·10−2) ⟨η⟩+ δη (·10−4mm) ⟨η′
I⟩+ δη′

I (·10−6mm2)
bearded II K0 -0.18±5·10−5 0.61 ± 0.0006 0.43 ± 0.002 -0.24 ± 0.01
bearded II K1 -0.25±4·10−5 0.52 ± 0.0004 0.43 ± 0.002 0.09 ± 0.009
bearded II K2 -0.09±1·10−5 0.7 ± 0.001 0.52 ± 0.005 -0.53 ± 0.02
bearded I K0 -0.77 ± 0.0001 0.86 ± 0.002 0.54 ± 0.008 0.13 ± 0.03
bearded I K1 -0.87 ± 0.0001 0.72 ± 0.002 0.61 ± 0.007 0.21 ± 0.03
bearded I K2 -0.66 ± 0.0001 0.96 ± 0.001 0.49 ± 0.008 -0.11 ± 0.03
zig-zag I K0 -0.82 ± 0.0001 0.79 ± 0.002 0.09 ± 0.01 0.96 ± 0.06
zig-zag I K1 -0.9 ± 0.0001 0.71 ± 0.002 0.42 ± 0.009 0.79 ± 0.04
zig-zag I K2 -0.73 ± 0.0001 0.69 ± 0.002 -0.33 ± 0.01 -0.33 ± 0.07
zig-zag II K0 -0.67±4·10−5 0.23 ± 0.0005 -0.15 ± 0.002 0.42 ± 0.01
zig-zag II K1 -0.64±4·10−5 0.17±0.0005 -0.29 ±0.002 0.31 ± 0.01
zig-zag II K2 -0.7±5·10−5 0.24 ± 0.0007 0.01 ± 0.0027 0.35 ± 0.01
zig-zag II K3 -0.77±7·10−5 5 · 10−5±0.0007 0.31±0.003 -0.0002±0.01

TABLE SI. Linear coefficients ⟨ci⟩ and their possible ranges, ⟨ci⟩±δci, where δci is defined as the standard deviation, extracted
from linear datasets at different wave numbers k along the edge-state dispersion curve, denoted as K0 = 4π/(3a), K1 =
(4π/3 + 0.4)/a, K2 = (4π/3 − 0.4)/a, K3 = 2π/a. “dw” stands for the domain wall, and the column “set” refers to the
parameter sets listed in Table I of the main text.

We conduct a ML analysis for three different library function choices. This approach enables a comprehensive
evaluation of model performance and helps identify the most suitable library function for the dataset, avoiding both
overfitting and underfitting.

In the first library, we analyze each term for the real and imaginary components independently. This step enables
us to recognize potential combinations between the real and imaginary parts.

In the second phase, we analyze the coefficients for suitable combinations of these real and imaginary terms col-
lectively, as [∂zÃR, ∂zÃI ], [ÃI ,−ÃR], [ÃR, ÃI ], [∂xÃR, ∂xÃI ], [−∂xÃI , ∂xÃR], [−∂xxÃI , ∂xxÃR], [−∂xxÃR, ∂xxÃI ],
[∂xxxÃI , ∂xxx − ÃR], [∂xxxÃR,−∂xxxÃI ].
In the final phase, we focus solely on four largest specific terms [∂zÃR, ∂zÃI ], [ÃI ,−ÃR], [∂xÃR, ∂xÃI ],

[−∂xxÃI , ∂xxÃR].
We rigorously validate the extracted coefficients not only by assessing their performance on test datasets but also

by comparing the paraxial data against the numerical solutions of the extracted equations. Additionally, we enhance
the analysis by fitting a dispersion curve by ω = β0 − v(k − k0) + η(k − k0)

2 + η′I(k − k0)
3 as well.

III. PROCEDURE DETAILS FOR THE NONLINEAR HIGH-INTENSITY REGIME

We prepared data with three intensity values at the input. We then truncate the propagation paths from z0 ≈
7.5 mm to z1 ≈ 23 mm. To ensure accurate analysis, we select these propagation segments where the nonlinear edge
wave has fully formed (given that at the initial z = 0 we set a linear transverse profile of the edge mode, we exclude
the initial transitory stage of propagation). These segments are also constrained to regions where the assumptions
of the weakly nonlinear wave (the nonlinear frequency shift is smaller than the gap size) and smooth profile hold.
Additionally, they are short enough to minimize interactions between the formed nonlinear edge wave and the bulk
modes.

Subsequently, in the preparation of X, the data is normalized to ρn = 0.4, and only points with intensity exceeding
0.1 are selected. The dataset is then segmented into 100 validation samples, similar to the linear case, each containing
around 30, 000 points, where the coefficients are calculated and averaged.

Further, we explore various function libraries and assess the error on the respective test datasets using the mean
absolute percentage error function for both phase and intensity equations. Our findings indicate that incorporating all
three terms with the nonlinear group velocity results in a significant standard deviation in coefficient determination,
suggesting overfitting. Hence, sets of functions (2-4) are more favorable for achieving a more robust model. Our
analysis revealed that library sets 2 and 3 exhibited the lowest error values on the test dataset.
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Function library 5: [B cos θ;B sin θ] = [vg1ρ
1 ∂ρ2

∂x , vg2ρ
3 ∂ρ2

∂x , γ1ρ
3, γ2ρ

5;G1ρ
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5];
Function library 6: [B cos θ;B sin θ] = [γ1ρ

3, γ2ρ
5;G1ρ

3, G2ρ
5];

Function library 7: [B cos θ;B sin θ] = [vg2ρ
3 ∂ρ2

∂x ;G1ρ
3].

library set/dw
⟨G1⟩ ± δG1

[(0.4)2mm−1

(·m2/1016W)2]

⟨G2⟩ ± δG2

[(0.4)4mm−1

(·m2/1016W)4]

⟨vg1⟩ ± δvg1
[(0.4)2·

(·m2/1016W)2]

⟨vg2⟩ ± δvg2
[(0.4)4·

(·m2/1016W)4]

⟨vg3⟩ ± δvg3
[(0.4)6·

(·m2/1016W)6]

⟨γ1⟩ ± δγ1
[(0.4)2mm−1

(·m2/1016W)2]

⟨γ2⟩ ± δγ2,
[(0.4)4mm−1

(·m2/1016W)4]
lib 1/ bearded 0.13 ± 0.0002 -0.0007 ± 0.0001 0.03 ± 0.004 0.003 ± 0.007 -0.003 ± 0.003 0.003 ± 0.0002 -0.002 ± 0.0001
lib 2/ bearded 0.13 ± 0.0002 -0.0007 ± 0.0001 0.03 ± 0.001 x x 0.003 ± 0.0002 -0.002 ± 0.0001
lib 3/ bearded 0.13 ± 0.0002 -0.0007 ± 0.0001 x 0.02 ± 0.001 x 0.003 ± 0.0002 -0.002 ± 0.0001
lib 4/ bearded 0.13 ± 0.0002 -0.0007 ± 0.0001 x x 0.007 ± 0.0004 0.003 ± 0.0002 -0.002 ± 0.0001
lib 5/ bearded 0.13 ± 0.0002 -0.0007 ± 0.0001 0.03 ± 0.004 0.003 ± 0.007 x 0.003 ± 0.0002 -0.002 ± 0.0001
lib 6/ bearded 0.13 ± 0.0002 -0.0007 ± 0.0001 x x x 0.03 ± 0.004 0.003 ± 0.007
lib 7/ bearded 0.13 ± ·10−5 x x 0.03 ± 0.004 x x x
lib 1/ zig-zag 0.015 ± 0.0002 0.013 ± 0.0002 0.32 ± 0.006 -0.21 ± 0.013 0.096 ± 0.007 0.003 ± 0.0002 -0.004 ± 0.0001
lib 2/ zig-zag 0.015 ± 0.0002 0.013 ± 0.0002 0.22 ± 0.001 x x 0.003 ± 0.0002 -0.004 ± 0.0001
lib 3/ zig-zag 0.015 ± 0.0002 0.013 ± 0.0002 x 0.2 ± 0.001 x 0.003 ± 0.0002 -0.004 ± 0.0001
lib 4/ zig-zag 0.015 ± 0.0002 0.013 ± 0.0002 x x 0.14 ± 0.001 0.003 ± 0.0002 -0.004 ± 0.0002
lib 5/ zig-zag 0.015 ± 0.0002 0.013 ± 0.0002 0.32 ± 0.006 -0.21 ± 0.01 x 0.003 ± 0.0002 -0.004 ± 0.0001
lib 6/ zig-zag 0.015 ± 0.0002 0.013 ± 0.0002 x x x 0.3 ± 0.006 -0.2 ± 0.01
lib 7/ zig-zag 0.03 ± 6 · 10−5 x x 0.32 ± 0.006 x x x

TABLE SII. Nonlinear coefficients ⟨ci⟩ ± δci, representing the mean value ± standard deviation. As in Table SI, “dw” stands
for domain wall, and the symbol “x” denotes terms that are not included in the corresponding library.

Next, we investigated the effect of small variations in accuracy, calculated using the mean absolute percentage
error, when selecting libraries 2, 3, and 4. To do so, we analyzed the reconstruction of the Hopf equation itself. This
equation was numerically solved in the form of library 3,
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Subsequently, we fitted all the aforementioned libraries. We compared the results of the evolution from the original
simulation with the evolution from the extracted equations. In the initial stages of propagation, the difference is
minimal, and it is possible to fit a coefficient equally well for any type of nonlinear group velocity. However, over
longer distances, the coefficients of library 3 provide the best fit. Therefore, we conclude that for additional verification,
it is necessary to observe the evolution over an extended distance, particularly in its final stages.

To further differentiate between libraries 2 and 3, we conducted numerical simulations using the extracted coeffi-
cients. Although both libraries produced solutions exhibiting minor discrepancies from the paraxial data, library 3
demonstrated greater consistency and appears to be a more accurate representation.

Our findings demonstrate that in the nonlinear regime, the dominant factor shaping the propagation of a Gaussian
pulse depends on the dispersion strength. For weak dispersion, characteristic of the zig-zag domain wall, the nonlinear
group velocity is the primary distorting factor, resulting in an asymmetric pulse profile. Conversely, for strong second-
order dispersion, typical of the bearded domain wall, the nonlinear phase shift dominates, causing symmetrical
compression of the pulse and an increase in its peak intensity.


