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Data-driven model reconstruction for nonlinear wave dynamics
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The use of machine learning to predict wave dynamics is a topic of growing interest, but commonly used
deep-learning approaches suffer from a lack of interpretability of the trained models. Here, we present an
interpretable machine learning framework for analyzing the nonlinear evolution dynamics of optical wave
packets in complex wave media. We use sparse regression to reduce microscopic discrete lattice models to
simpler effective continuum models, which can accurately describe the dynamics of the wave packet envelope.
We apply our approach to valley-Hall domain walls in honeycomb photonic lattices of laser-written waveguides
with Kerr-type nonlinearity and different boundary shapes. The reconstructed equations accurately reproduce the
linear dispersion and nonlinear effects, including self-steepening and self-focusing. This scheme is proven free
of the a priori limitations imposed by the underlying hierarchy of scales traditionally employed in asymptotic
analytical methods. It represents a powerful interpretable machine learning technique of interest for advancing
design capabilities in photonics and framing the complex interaction-driven dynamics in various topological
materials.
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I. INTRODUCTION

Machine learning (ML), a branch of artificial intelligence,
is revolutionizing various scientific fields by enabling pattern
extraction and prediction from large datasets [1–4]. In recent
years, the use of ML to determine the governing equations of
various dynamical systems and processes has shown remark-
able potential.

One possible instrument for this purpose is the regression
algorithm [5,6]. In particular, this tool has been success-
fully tested on famous fundamental physical models described
by partial differential equations (PDEs), such as nonlin-
ear Burgers’ and Korteweg-de Vries equations [7], and the
Belousov-Zhabotinsky reaction [7,8]. It was shown that the
coefficients of governing PDEs of a known type can be
recovered from numerical data generated by solving the equa-
tion within the same problem dimensionality.

Furthermore, the algorithms of symbolic regression, such
as those implemented in the open-source library PySR [9],
serve to automate the optimization problem for discovering
empirical relationships from data. For the latter supervised
learning task, search is performed in the model space spanned
by analytic expressions, rather than fitting concrete pa-
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rameters into overparameterized models. Further combining
enhanced deep reinforcement learning and symbolic rep-
resentations, the proposed DISCOVER framework explores
open-form PDEs to reveal underlying physical laws [10].

The current challenge is to apply ML methods to real-
world problems, moving beyond pre-expected basic models.
Recently, beginning efforts in this direction have been
reported. For instance, the authors of Ref. [11] used exper-
imental data from degrading perovskite thin films subjected
to environmental stressors to infer the underlying differ-
ential equation. Similarly, in nonlinear optics, data-driven
approaches have been utilized to identify optimal conditions
for four-wave mixing in an optical fiber [12].

A particularly striking form of wave dynamics arises in
topological materials, where complicated microscopic lattice
models give rise to robust guided modes at edges or interfaces
between distinct topological phases. Such edge-based form
of transport has sparked significant interest in photonics, as
it shows promise for constructing scattering-resistant trans-
mission waveguiding channels in high-speed photonic circuits
and communication networks [13].

The analysis of electromagnetic wave propagation along
topological domain walls traditionally relies on numerical
simulations. Analytical methods are based on simplifying
assumptions to achieve a quasi-one-dimensional reduction
in the long-wavelength limit from higher-dimensional PDEs.
In the case of two-dimensional lattices, this implies exclud-
ing the dimension transverse to the interface [14–17]. One
can additionally use multiscale analysis to integrate out any
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microscopic spin-like degrees of freedom to obtain simpler
scalar wave equations [18].

More generally, dimensionality reduction is applicable to
complex problems in other domains. For instance, the in-
herently nonlinear Navier-Stokes equations in hydrodynamics
can be reduced to Lorentz-like ordinary differential equations
(ODEs) to facilitate easier bifurcation analysis and identify
conditions for chaotic dynamics corresponding to turbulence
in the original system [19]. Another example is the nonlinear
Schrödinger equation, analyzed using ODEs for moments, in-
tegral characteristics of the beam. ML regression was recently
tested to reconstruct the coefficients of these ODEs, instead of
analytical means [20].

However, the sophisticated geometry of topological lattices
and the presence of optical nonlinearities often pose chal-
lenges in formulating reduced models that adequately capture
the key properties needed to describe edge wave packet dy-
namics. The analytical approach based on perturbation theory
involves a hierarchy of characteristic scales. Higher-order
terms are typically omitted to obtain the simplest cubic nonlin-
ear Schrodinger equation, regardless of the underlying lattice
geometry or the form of modulation used to create the topo-
logical domain wall [14,15,21–23]. For example, to obtain
an effective nonlinear Schrödinger equation for edge states
of Floquet topological insulators, one needs to average over
both spatial and temporal modulations. While the reduction to
the cubic nonlinear Schrödinger equation provides an elegant
way to understand the lowest-order nonlinear effects, it is
only valid in the limit of weak nonlinearity. The question of
which higher-order terms need to be taken into account and
at what input power level remains unclear and cumbersome
to address using asymptotic methods [18]. Data-driven ML
approaches potentially offer an effective and systematic way
to answer these questions. However, they generally require
transitioning from multidimensional PDEs to simpler one-
dimensional PDEs, necessitating the adaptation of existing
regression schemes.

In this work, we apply a data-driven ML for the first time
in the context of complex nonlinear photonic lattices with
nontrivial topology, demonstrating how ML regression can
be used to obtain simpler yet accurate PDE models for the
edge state dynamics. The usefulness of such a model lies in
its predictive power, which comes from identifying underly-
ing physical effects. As a specific example, we consider the
valley-Hall domain wall created by inversion in feasible hon-
eycomb staggered arrays of waveguides laser-written in glass,
with parameters comparable to those used in the experiments
of Ref. [24]. In this context, a nonlinear optical response arises
from the intensity-dependent refractive index of the ambient
glass medium.

Starting from simulations within the standard paraxial
equation governing the electric field E (x, y, z) and light prop-
agation in optical lattices [14,16–18,24,25], i∂zE (x, y, z) =
Ĥpar(x, y, |E (x, y, z)|2)E (x, y, z), we aim to obtain an equa-
tion for the slowly varying envelope A(x, z) of the edge wave
packet, localized on the domain wall. Here, Ĥpar(x, y, |E |2)
represents a complex paraxial operator, incorporating diffrac-
tion, the spatially varying refractive index profile [as depicted
in Fig. 1(a)], and the nonlinear Kerr effect in the medium. Our
objective is to obtain an equation of the form i∂zA(x, z) =

ĤPDE(A(x, z), |A(x, z)|2, ...)A(x, z) [17,18], where ĤPDE de-
scribes the underlying PDE model, with its constituent terms
schematically illustrated in Fig. 1(c). This dimensional re-
duction, aided by an ML-assisted approach, simplifies the
analysis of wave processes in complex systems, particularly
phenomena at interfaces and topological boundaries.

We determine the PDE model governing the evolution of
the edge wave packet envelope as it propagates along the
domain wall using a sparse-regression method based on data
obtained from direct modeling. Our approach is summarized
in Fig. 1. The lattice geometry in the xy plane, transverse to the
waveguide axis z, is depicted on the left in Fig. 1. While the
wave packet propagates in xz plane, it remains localized along
the y axis, forming an edge wave packet bound to the interface.
We seek a continuum model that is universally applicable
to relatively broad wave packets, with widths significantly
exceeding the lattice period. The envelope function profile is
extracted from the waveguides at the interface. In view of dis-
creteness, more complete data are accumulated by sweeping
the position of the input beam between the lattice sites.

We use a split-step strategy to differentiate between linear
and nonlinear scenarios and switch between them by tailoring
the input power magnitude. Accordingly, for convenience, we
represent the complex-valued function A either in terms of its
real and imaginary parts or in terms of its intensity and phase.
The regression is used to identify a subset of relevant terms
from a large library of potential functions that best replicate
the system’s dynamics [26]. The (x, z)-dependent datasets A,
whose derivatives ∂zA are denoted as Y in Fig. 1, are used
to create a library of candidate functions represented by the
matrix X. We then iteratively solve an optimization problem
to obtain a sparse vector of coefficients c, representing the
unknown dynamical equations (see also the Supplemental
Material [27]).

While the initial library contains an extended set of pos-
sible functions, the scheme allows filtering out absent or
inessential contributions and retaining only the physical ef-
fects relevant for the studied propagation distances. The
nonlinear terms in the PDE model at higher intensities are
obtained as a refinement of the linear differential operator,
initially reconstructed for low intensities in the linear regime.
This approach is somewhat analogous to the split-step so-
lution for evolutionary problems and ML boosting, which
iteratively improves the predictive power of the model by
refining its weaker predictive versions [28].

II. DATA COLLECTION

To model the paraxial evolution of light through the optical
lattice, with the lattice profile in the xy plane and extended
along the z axis, we employ the paraxial wave equation for
the field E :

i∂zE + 1

2k0
(∂xx + ∂yy)E + k0nL(x, y)

n0
E + n2|E |2E = 0, (1)

where z is aligned parallel to the waveguides axis, k0 =
2πn0/λ is the wave number, n0 is the background refractive
index, nL(x, y) is the perturbation of the refractive index form-
ing the geometry of the lattice, |nL(x, y)| � n0. Equation (1)
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FIG. 1. Schematic of the methodology for extracting the partial differential equation (PDE) model with machine learning using regression
and numerically calculated datasets. (a) Refractive index distribution in the (x, y) plane. The perturbations nA and nB [see Eq. (2)] are shown
in different shades of blue. Waveguides forming the domain wall at y = 0 (i.e., the interface) are highlighted in dark blue (nB). (b) Edge wave
packet profiles for z > 0 in the xy plane, localized at the interface y = 0, obtained by numerically solving Eq. (1). Their envelopes along x at the
domain wall are visualized as line plots. Bottom: linear propagation (low initial intensity), with the convenient representation for the complex-
valued envelope function Ã = ÃR + iÃI . Top: nonlinear propagation (high initial intensity), with the convenient intensity-phase representation
Ã = ρeiϕ . (c) Schematic of the regression algorithms for the linear (bottom) and nonlinear (top) regimes. The schematic illustrates the library of
candidate functions (X) corresponding to possible physical processes, target functions (Y), and fitted equation coefficients (c), which constitute
the unknown dynamical equations. (d) Pipeline of the procedure. The sequence of steps includes: data collection through paraxial modeling
at low input powers (linear data), reconstruction of the linear operator terms L̂ (Regression 1), analysis of the data calculated at higher input
powers (nonlinear data), and solving the regression problem for the expression (i∂zÃ − L̂Ã)e−iϕ (Regression 2), refining the PDE by including
nonlinear terms. Filled arrows indicate data loading, empty arrows represent coefficient determination (i.e., identifying the appropriate library
of functions), and an encircled arrow denotes the transition from the linear to the nonlinear case, where the coefficients describing the linear
operator are utilized during the fitting of the nonlinear equations.

also includes a nonlinear term ∝ n2|E |2E , which is responsible
for the focusing cubic Kerr-type nonlinearity.

The lattice geometry is imprinted into a refractive index
distribution

nL(x, y) = nA

∑

n,m

F (x − xnm, y − ym)

+ nB

∑

n,m

F (x − xnm, y − ym − a0). (2)

Here, A and B are the indices labeling the two triangular
sublattices of the graphene lattice, which has a spatial period
a = √

3a0, and nA and nB refer to the perturbations of the re-
fractive index in waveguides. The Gaussian-shaped elliptical
waveguides have semiaxes Lx and Ly, described by the func-
tion F (x, y) = e−x2/L2

x −y2/L2
y . The parameters corresponding to

different degrees of parity breaking are listed in Table I.
The interface between two domains is created by swapping

the refractive index perturbations between two sublattices,
nA → nB, nB → nA. This results in a domain wall where the
refractive index perturbation is the same across the interfacing
neighboring elements, as highlighted by the gray rectangle in
Figs. 2(a) and 2(b). In a dimerized honeycomb lattice, this
interface can take two distinct shapes: zigzag and bearded
shapes.

To prepare datasets, we solve the paraxial Eq. (1) numer-
ically. First, the plane wave expansion method is employed
to obtain the edge mode profile transverse to the interface,
u(x, y), with the substitution E = u(x, y)e−iβz+ikx and setting
n2 = 0. The band structure β(k) is obtained by solving the
stationary form of the paraxial equation in the linear regime,
which leads to the following eigenvalue problem for u(x, y)
and β: βu = − 1

2k0
[(∂x + ik)2 + ∂2

y ]u − k0
n0

nL(x, y)u within a
supercell geometry [indicated in Figs. 2(a) and 2(b) by the
violet rectangles]. According to Bloch’s theorem, applied to
the supercell, u(x, y) = u(x + a, y) is a periodic function. The

TABLE I. Two sets of lattice parameters simulated using paraxial
modeling.

Parameter Set I Set II

Lx 3.2 µm 4.9 µm
Ly 4.9 µm 3.2 µm
a0 20 µm 18.5 µm
n0 1.47 1.47
nA 2.6 × 10−3 7.5 × 10−4

nB 2.8 × 10−3 12.4 × 10−4

n2 3 × 10−20 m2/W 3 × 10−20 m2/W
λ 1650 nm 1045 nm
I0 1016 W/m2 1016 W/m2
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FIG. 2. (a), (b) Two distinct shapes of valley-Hall domain walls
in a honeycomb lattice of laser-written waveguides: (a) zigzag and
(b) bearded. Parameter a denotes the spatial lattice period. Supercells
of these configurations are framed in violet rectangles, with the
interface area of the domain wall shaded in gray. Panels (c)–(f) show
the band structures, β(k), for two parameter sets: Set I (upper row)
and Set II (lower row). Calculations are performed for supercells
of the staggered graphene lattice composed of 64 waveguides, each
having the same elliptical shape (see parameters for Set I and Set II in
Table I), but differing in the perturbations of the refractive indices:
for 32 waveguides in sublattice A, the refractive index is nA (light
blue), and for the remaining 32 waveguides in sublattice B, it is
nB (dark blue). The distinct domain walls have zigzag (c), (e) and
bearded (b), (d) shapes, with open boundary conditions along the
y-direction. The gray dashed line marks the position of wavenum-
ber K+ = 4π/(3a). The red dashed vertical lines indicate the three
scanning beam widths in the momentum space, centered at the
wavenumbers (K+a ± δ1,2,3), where δ1,2,3 = a/L1,2,3 with L1 = 3a,
L2 = 3a/2, and L3 = 3a/2 × 1.5. The corresponding transverse in-
tensity profiles of the plane-wave-like edge state |u(x, y)|2 at the
K+ point are shown in the violet frames on the left. These spatial
distributions along the y axis are associated with several waveguides
positioned adjacent to domain walls, with the corresponding super-
cell configurations schematically depicted in panels (a) and (b).

supercell consists of 64 waveguides in total, ensuring that the
computational domain is sufficiently wide to prevent interac-
tions between the interface mode and the mode localized at
the outer boundary of the lattice during edge wave packet

propagation for both sets of parameters. Periodic boundary
conditions are applied in the x direction, and we consider
open boundary conditions in the y direction, that is, the ter-
mination of the periodic modulation of the refractive index
at the ends of the lattice. The electric field satisfies Dirichlet
boundary conditions, u(y = ymax) = u(y = ymin) = 0, at the
edges of the computational domain, which extends beyond
the lattice to ensure proper field decay in the cladding re-
gion. In Figs. 2(c)–2(f), we plot the band structure β(k) for
the projected Brillouin zone over the interval ka ∈ [0, 2π ],
which is mathematically equivalent to the symmetric interval
ka ∈ [−π, π ]. This range contains two valleys near the points
K− = 2π/(3a) and K+ = 4π/(3a). Note that away from the
bandgap, the spectrum forms nearly a continuum, a feature
characteristic of bulk modes.

Then, the beam propagation method is used to simu-
late the evolution of the beams as they propagate along
the waveguides’ axis z. The beams are confined to the in-
terface and localized along the interface with a Gaussian
profile f (x, x̄0) = f0e−(x−x̄0 )2/(2L2 ) centered at x̄0. Accord-
ingly, the initial condition is set as E (z = 0, x, y, x̄0) =
f (x, x̄0)u(x, y)eik0x. To capture general features, nonspecific to
initial conditions, and to deduce the corresponding effective
model within reasonable propagation distances, simulations
are performed for several different beam widths, L, in the lin-
ear case, and then for several values of the initial intensity in
the nonlinear case. Here L is chosen to be L � a to ensure the
applicability of the slowly varying envelope approximation.

To describe the evolution in terms of the envelope func-
tion, we extract the values of the envelope at the centers of
the waveguides forming the domain wall (to ensure the cor-
rect mapping to the continuum limit), Ā(z, xm, x̄0) = E (z, x ≡
xm, y ≡ yc, x̄0), where yc is the vertical coordinate of the
waveguides comprising the interface [see Figs. 2(a) and 2(b)].
The sparse nature of the function Ā(z, xm, x̄0) along the x-axis,
defined within the waveguides at points x = xm, presents a
potential challenge in accurately determining the governing
continuum equation, where fine discretization is typically as-
sumed. The latter is particularly important for providing an
accurate approximation of derivatives in the PDE model. To
circumvent this challenge, we set a range of initial conditions
and calculate multiple envelopes to generate more com-
plete data. Specifically, we mesh the intervals [xm, xm+1] =
[xm, xm + 	xq], where the number of steps q = 32 and step
size 	x = a/q, and sweep x̄0 such that x̄0(n) = x̄0 + 	xn,
n = [1, ..., q]. This enables us to perform several calculations
of Ā(z, xm, x̄0(n)), which can then be combined into a smooth
function A(z, x).

In Ref. [18], we used an analytical asymptotic procedure to
derive the evolution equation for the slowly varying amplitude
Ã(z, x) of edge wave packets in the continuum limit, applica-
ble regardless of the shape of the domain wall, to both zigzag
and bearded cuts,

i
∂Ã
∂z

= iv
∂Ã
∂x

−G|Ã|2Ã−ivg|Ã|2 ∂|Ã|2
∂x

Ã−η
∂2Ã
∂x2

+ β0Ã .

(3)

To derive this equation, one can introduce a small param-
eter μ and assume that μ ∝ |G/β0| × max(|Ã|2), and that
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|ηβ0| ∝ μ2. This implies that the asymptotic scope is always
limited by a priori assumptions for the lattice parameters,
which narrow the range of applicability to specific conditions.
Instead of performing series expansions at different orders, the
aim of the present study is to determine the structure of the
equation and its coefficients using ML techniques and data
for the numerically extracted envelope A(z, x). For this, we
developed custom code implementing the linear regression
algorithm.

We mix data prepared using the evolution profiles of wave
packets with all beam widths (all intensities), randomly select
points (z j, x j ), and compute the matrices Y, X by utiliz-
ing A(z j, x j ) and its numerically obtained derivatives. When
collecting data, we use only the points where the intensity
exceeds a certain threshold, which is fixed for the entire pro-
cedure [27]. For our purposes, it is essential to focus on and
accurately describe the dynamics of the field within the beam
localization region. Including all data points, especially those
with very low values, can introduce uncertainty and ambiguity
in phase calculations and lead to inaccurate derivative compu-
tations. Randomly shuffled data points are divided into 80%
for training and 20% for testing. Coefficients c are determined
from the larger training set by minimizing ‖Xc − Y‖2 (see the
Supplemental Material [27]), and then these coefficients are
tested on the test set. Additionally, the coefficients are vali-
dated by comparing numerical solutions of the full paraxial
and the PDE models [27] for datasets not used in training.

III. LINEAR LOW-INTENSITY REGIME

We begin with the low-intensity linear case. The envelope
equation can be formulated as a system for the real and imag-
inary parts in the representation Ã = ÃR + iÃI . We assume
this system has the following form:

∂ÃR

∂z
= β0ÃI + β0IÃR + v

∂ÃR

∂x
− vI

∂ÃI

∂x

− η
∂2ÃI

∂x2
− ηI

∂2ÃR

∂x2
+ η′ ∂

3ÃI

∂x3
+ η′

I

∂3ÃR

∂x3
, (4a)

∂ÃI

∂z
= −β0ÃR + β0IÃI + v

∂ÃI

∂x
+ vI

∂ÃR

∂x

+ η
∂2ÃR

∂x2
− ηI

∂2ÃI

∂x2
− η′ ∂

3ÃR

∂x3
+ η′

I

∂3ÃI

∂x3
. (4b)

The library of functions consists of differential operators of
various orders for recovering spatial dispersion. This essen-
tially addresses the problem of reconstructing the dispersion
of the edge state by scanning it (setting different k0) with a
beam of finite spectral width in the vicinity of the specified
wave vector k0 (see Fig. 3). The real and imaginary parts
representation is optimal for this problem, as it enables a more
compact function library for differential operators compared
with the intensity-phase representation.

We generated a dataset by sequentially launching pulses
with varying beam widths: specifically, L1 = 3a, L2 = 3a/2,
and L3 = (3a/2) × 1.5 (their spectral widths in momentum
space are shown in Fig. 2). This approach was designed to
capture different aspects of the system’s response. Narrower
pulses provide higher resolution for estimating dispersion and

FIG. 3. Comparison between the numerical (blue dots, as in
Fig. 2) edge-state dispersion curve in the band structures and the
dispersion plotted using machine learning (ML)-determined co-
efficients (green lines). Parameters for panels (a)–(d) correspond
to Figs. 2(c)–2(f), respectively. Panels (a), (b), and (d) show the
ML-based approximation recovered near k0 = K+. In plot (c), the
approximations to the left and right of the brown vertical line seg-
ment are recovered near k0 = K+ and k0 = 2π , respectively. Dashed
vertical lines visualize the three scanning beam widths, similar to
Fig. 2.

pulse broadening, while the wider pulse allows for better
extraction of the linear velocity parameter. By combining data
from different excitation beam widths, we can obtain equa-
tions that apply universally to various beam widths.

The schematic organization of the library is partially vi-
sualized in Fig. 1. Even when we assume all the coefficients
in the equations for ÃR and ÃI are different, some of these
coefficients group according to physical processes, while oth-
ers are minor and can be omitted, following the principles of
sparse regression [27]. The coefficients of the dominant terms
are then further refined. The leading terms at short propaga-
tion distances stem from linear phase accumulation, drift with
group velocity, and second-order dispersion, which causes
gradual symmetric broadening. These are described by the
coefficients 〈ci〉 = 〈β0〉, 〈v〉, 〈η〉 and their standard deviations
δci calculated on 100 validation folds of the training dataset
[27].

The obtained nonzero terms are the coefficients that best
describe our system. We may verify these coefficients by
reconstructing the edge-state dispersion relation near different
k0, as depicted by the green lines in Fig. 3:

βe = β0 − v(k − k0) + η(k − k0)2 + η′
I (k − k0)3. (5)

Notice that in Fig. 3, we show an enlarged view of Figs. 2(c)–
2(f) over the range ka ∈ [π, 2π ], which encompasses a single
valley in the vicinity of the point k0 ≡ K+.
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FIG. 4. Evolution of the beam envelope at zigzag (left column)
and bearded (right column) domain walls with Lt = 3a/2 × 1.8 at
low input intensity, I (z = 0) < 0.04 × I0. Plotted is the intensity,
normalized to its maximum, In1. (a), (b) Snapshots taken at three
propagation distances: at the input (z = z0 = 0, blue dotted line),
at z = 22 mm, and at z = 44 mm. Green circles: paraxial model-
ing results for the wave packet’s envelope obtained using Eq. (1);
black solid lines: numerical solution of PDE Eq. (4) with machine
learning-determined coefficients. (c), (d) Spatial profile mapped
along the z-directed propagation. For the domain wall of the zigzag
and bearded shapes, we operate at k0 = K+ = 4π/(3a) and k0 =
(4π/3 − 0.4)/a, respectively.

The determined coefficients can additionally be validated
by analyzing the spatial dynamics of the system. To do so,
we numerically solve PDE Eq. (4) with recovered nonzero
terms, setting the Gaussian profile f (x, x̄0) = f0e−(x−x̄0 )2/(2L2

t )

as the initial condition at z = 0, where Lt is the beam width
different from L1,2,3. The regimes of undistorted propagation
and broadening, accompanied by a decrease in amplitude,
are illustrated in Fig. 4. The results obtained from the full
paraxial modeling show strong agreement with those derived
from the simplified envelope dynamics, as described by the
recovered PDE. At longer propagation distances, the model
can be further refined by incorporating third-derivative terms
responsible for the asymmetric distortions.

IV. NONLINEAR HIGH-INTENSITY REGIME

As the optical power increases, we anticipate the man-
ifestations of nonlinear effects such as self-focusing or
self-steepening originating from the nonlinear group velocity.
Therefore, it is natural to focus on these effects and evaluate
whether they suffice to accurately describe the beam’s trans-
formation at certain distances. The library of functions (see
also Ref. [27]) is assembled to fit the following equation:

i
∂Ã
∂z

= iv
∂Ã
∂x

− η
∂2Ã
∂x2

+ iη′
I

∂3Ã
∂x3

+ β0Ã

− i(vg1Ã + vg2|Ã|2Ã + vg3|Ã|4Ã)
∂|Ã|2
∂x

− (G1|Ã|2 + G2|Ã|4)Ã + i(γ1|Ã|2 + γ2|Ã|4)Ã .

(6)

Within the intensity-phase representation, Ã = ρeiϕ , it is
rewritten as a system of equations for ρ and ϕ. The last two
terms can be interpreted as nonlinear losses, which may occur

FIG. 5. The nonlinear scenarios of beam propagation of the
width L = 5a at zigzag (left column) and bearded (right column)
domain walls. Similar to Fig. 4, panels (a), (b) show snapshots taken
at the input (z = z0 = 7.5 mm, blue dotted line) and at z = 23 mm,
with the central wavenumbers the same as in Fig. 4. The initial inten-
sity is I (z = 0) = (0.45)2 × I0, plotted is In2 = I (z)/[(0.45)2 × I0].
(c), (d) Nonlinear beam transformation mapped along z.

due to interactions with bulk modes in the nonlinear regime at
increasing intensity [18], causing possible energy dissipation
from the edge state into the bulk [27]. In other words, even
though the paraxial model Eq. (1) is lossless, energy may
escape from the domain wall via nonlinearity-induced cou-
pling into bulk states, corresponding to the effective nonlinear
loss terms in Eq. (6). Remarkably, nonlinear effects appear
separated in this framework: self-focusing contributes to the
phase, while loss and self-steepening effects are incorporated
into the intensity equation. We assume that the coefficients
of the linear operator have already been determined from the
low-intensity analysis. Therefore, we now solve the regression
problem for the difference between the evolution operator
and the linear operator, multiplied by the phase (see also the
scheme in Fig. 1), (i∂zÃ − L̂Ã)e−iϕ ≡ |B| cos θ + i|B| sin θ ,
which can be attributed to the nonlinear correction N̂Ã show-
ing up at higher intensities,

−|B| cos θ = −β0ρ + G1ρ
3 + G2ρ

5 , (7a)

|B| sin θ = −(vg1ρ + vg2ρ
3 + vg3ρ

5)
∂ρ2

∂x
+ γ1ρ

3 + γ2ρ
5 .

(7b)

In our datasets, we include evolution profiles of beams with
three different intensity values at the input (z = 0): I1(z =
0) = (0.5)2 × I0, I2(z = 0) = (0.425)2 × I0, and I3(z = 0) =
(0.35)2 × I0, while keeping the beam width fixed at L = 5a.

The determined coefficients (see exact values in the
Supplemental Material [27]) confirm the presence of two
competing major nonlinear effects, namely self-steepening
and self-focusing. Figure 5 shows representative cases
of the nonlinear dynamics, similar to Fig. 4, which showcases
the linear regime. Specifically, Fig. 5 presents the evolu-
tion of the wave packet with an initial intensity of I1(z =
0) = (0.45)2 × I0. This input field intensity, distinct from the
dataset intensities, allows us to validate our analysis. A grow-
ing asymmetry of the wave packet is visible in Figs. 5(a) and
5(c). This self-steepening deformation occurs due to the pre-
vailing nonlinear velocity term vg2 [18,25]. In contrast, grad-
ual self-compression, a hallmark of self-focusing [14,17,18],
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is evident in Figs. 5(b) and 5(d). The latter behavior is typ-
ical of the nonlinear Schrödinger equation with attractive
nonlinearity and dominant quadratic spatial dispersion. Notice
that while our presumed model allows for the presence of
nonlinear losses with coefficients γ1,2, their effect remains
negligible in our system due to their small magnitude (see
Table SII in the Supplemental Material [27]).

Which nonlinear effect is dominant depends on the micro-
scopic lattice parameters. Conventionally, the corresponding
nonlinear coefficients would be computed in terms of integrals
of the edge states’ spatial profiles transverse to the interface
when applying a conventional asymptotic multiscale analy-
sis [16,18]. The present data-driven approach allows one to
bypass this step and infer the corresponding nonlinear coeffi-
cients purely using beam propagation simulations.

V. CONCLUSION

In this study, we demonstrated how ML can effectively
unveil the continuum PDE model governing edge waves con-
fined to domain walls in photonic lattices. It enables the
revelation of various effects, including spatial dispersion and
higher-order nonlinearities, and the resultant corrections to the
nonlinear Schrödinger equation, such as the nonlinear velocity
term, for domain walls of different cuts. Thus, our approach

provides a valuable alternative to traditional fully analytical
asymptotic methods for addressing wave dynamics in non-
linear and crystalline systems, allowing for the exploration
of distinct topological phases and being applicable beyond
photonics to various wave media. It can readily be extended
to other types of nonlinearities and interparticle interactions,
for example, in polaritonic platforms.
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