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Quantum phase transitions in many-dipole light-matter systems
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A potential phase transition between a normal ground state and a photon-condensed ground state in many-
dipole light-matter systems is a topic of considerable controversy, exacerbated by conflicting no-go and counter
no-go theorems and often ill-defined models. We contribute to the clarification of this long-lasting debate by
analyzing two specific arrangements of atoms, including a three-dimensional cubic lattice and a cavity-embedded
square lattice layer—which provides a physical model for single-mode cavity QED with coupled dipoles in the
thermodynamic limit. These models are shown to significantly differ from the standard Dicke model and, in the
thermodynamic limit, give rise to renormalized Hopfield models. We show that a ferroelectric phase transition
can, in principle, still occur and the description of the abnormal phase beyond the critical point requires the
inclusion of nonlinear terms in the Holstein-Primakoff mapping. We also demonstrate how our model agrees
with recent experiments.
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I. INTRODUCTION

The possibility of a phase transition between a normal state
and a photon condensate state within light-matter systems
under the influence of electric dipolar interactions, commonly
referred to as superradiant phase transition (SPT), has been
a long-standing debate for many decades [1–12]. The su-
perradiant phase is characterized by a macroscopically large
number of coherent photons in the ground state. Even in re-
cent years, several seemingly contradictory no-go and counter
no-go theorems still dispute the occurrence of a SPT in such
systems [13–18]. Notably, such debates are limited to the case
of electric dipolar interactions, as there is a general consensus
regarding the potential occurrence of a SPT in the presence
of magnetic interactions, given that in these systems the so-
called A2 term in the Coulomb gauge Hamiltonian (or P2

term in the multipolar gauge Hamiltonian), which prevents the
SPT, can be significantly smaller or possibly absent [19,20].
However, these quadratic terms are not only required to ensure
gauge invariance, but they are necessary to properly recover
fundamental classical limits [21–23]. Very recently, a Dicke-
like SPT has been observed in a magnetic system [24].

Recent no-go theorems demonstrated that gauge invariance
forbids any phase transition to a photon condensate state when
the cavity-photon mode is assumed to be spatially uniform in
the region where the dipoles are located [14,16], or when mag-
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netic interactions can be neglected [18]. However, a number of
papers still support the plausibility of a SPT in many-dipole
cavity-QED systems, grounded on the assumption that the
system’s Hamiltonian can be mapped onto a Dicke-like model
[13,25,26].

This apparent SPT possibility originates from the interplay
of direct electrostatic interactions and a transverse matter field
term, resulting in potential compensation within the mul-
tipolar gauge. There is instances where this compensation
has been effectively utilized, and outcomes have been de-
rived [27,28]. In contrast, Ref. [8] predicts that longitudinal
dipole-dipole interactions do not enable any quantum phase
transition (QPT), at least for the infinite, homogeneous, and
isotropic system of nonoverlapping dipoles. Moreover, there
is no general agreement on the nature of this controversial
QPT. According to Ref. [13], the phase transition occurring
in Dicke-like models corresponds to a spontaneous polariza-
tion of the two-level systems, which does not however lead
to a spontaneous transverse electric field, i.e., the QPT is
ferroelectriclike. However, Ref. [29] argues that a mean field
occupation in a mode of the transverse displacement field, far
from the dipoles, implies a mean field in the transverse electric
field. In contrast, Refs. [26,30] suggest that the nature of the
QPT is gauge dependent and purely ferroelectric only in the
Coulomb gauge.

To help solve these long-standing controversies, we inves-
tigate the interaction between the electromagnetic field and
ordered lattices of atoms. Specifically, we consider isotropic,
localized two-level atomic dipoles with threefold orientation
degeneracy. When applying the two-level approximation, a
consistent model of the atom requires one to consider the
orientation degeneracy in one of the two levels (e.g., the
excited state), since the electric dipole transition is allowed
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FIG. 1. Schematic of atoms arranged in a three-dimensional lat-
tice (left) and in a cavity-embedded planar lattice (right). In the latter
case, we consider radiation modes orthogonal to the atomic layer
(xy plane).

only between states with different parities (e.g., between s and
p orbitals). Considering these lattices, we take into account
(in a simple and rigorous way) the discrete and nonoverlap-
ping system topology, which is often overlooked during the
different approximations and limits employed to derive the
Dicke model. We start by considering a cubic lattice array
(an isotropic system in the long-wavelength limit) and suc-
cessively a cavity-embedded planar layer with a square lattice
(see Fig. 1). Such arrays of dipoles, when carrying out the
thermodynamic limit (number of dipoles N → ∞), are well
described by a light-matter Hamiltonian, having a Hopfield-
like structure [31] with an additional dipole-dipole interaction
term, which, as observed in a number of papers, cannot be
overlooked (see, e.g., Refs. [13,26,29]). Hence, this approach
provides a physically motivated model for single-mode cavity
QED in the dipole approximation and in the thermodynamic
limit.

II. THREE-DIMENSIONAL LATTICE

We consider a three-dimensional (3D) lattice of atoms in-
teracting with an electromagnetic field. The radiation field is
quantized by the introduction of radiation bosonic operators
ak,λ for each mode k and polarization êλ. We denote the field
frequency with ωk = v|k|, where v = c/

√
εm is the speed

of light and εm is the dielectric constant of the surrounding
medium. Hence, the vector potential of the electromagnetic
field can be decomposed into plane waves as

A(r) =
∑

λ

∑
k

Ekeik·rak,λêλ + H.c., (1)

where Ek = √
h̄/2ε0εmV ωk , with V being the quantization

volume, and êλ (λ = 1, 2) the two polarization unit vectors
orthogonal to k̂. Therefore, as usual, the Hamiltonian of the
free electromagnetic field is given by

Hph = h̄
∑
λ,k

ωka†
k,λak,λ. (2)

In contrast, the atoms are modeled as localized charges
in the sites Rn of a lattice. In the long-wavelength approx-
imation, the total polarization density is thus expressed as
P(r) =∑n dnδ(r − Rn), where dn is the total electric dipole
of the nth atom, thus assuming nonoverlapping dipoles for dif-
ferent atoms. The usual electrostatic dipole-dipole interaction

is given by

Hdip = 1

8πε0εm

∑
n �=m

dn · dm − 3(dn · r̂nm)(dm · r̂nm)

r3
nm

, (3)

where rnm = Rn − Rm and r̂nm = rnm/rnm is the associated
unit vector. The bare Hamiltonian of N noninteracting iden-
tical atoms is

HA =
∑

n

p2
n

2m
+ VC(rn), (4)

where VC(rn) is the intra-atomic Coulomb potential of the nth

atom. For the sake of simplicity, we consider single-electron
atoms. Generalization to many-electron atoms does not affect
the obtained results. We then perform the two-level approx-
imation (to derive Dicke-like models), reducing the atomic
states to just the ground and excited levels, where we consider
the excited states to have a threefold orientation degeneracy
(see Appendix A). The bare Hamiltonian (4), in the two-level
approximation, is written as

HA = h̄
∑

n

ω0

2
σ z

n . (5)

Next, we bosonify the system in the thermodynamic limit
(i.e., finite density as N, V → ∞) through the use of gener-
alized Holstein-Primakoff (HP) transformations [32,33] (see
Appendix B). The ensuing Hamiltonian for the matter sys-
tem (according to the usual definition in condensed matter
physics) is constituted by the array of dipoles with their elec-
trostatic interactions:

Hmat = h̄ω0

∑
α,k

b†
k,αbk,α + h̄

∑
α,β,k

χ2ω0 fk,α,β

× [(bk,α + b†
−k,α )(b−k,β + b†

k,β )], (6)

where the first term is the thermodynamic limit of Eq. (5),
the second one is the electrostatic dipole-dipole interaction
in Eq. (3), fk,α,β ≈ [3(k̂ · êα )(k̂ · êβ ) − δαβ]/3 for a sim-
ple cubic lattice in the long-wavelength limit, and χ =√

d2N/2h̄ε0εmV ω0 [34] (see Appendix C).
We can diagonalize the matter Hamiltonian through a

Bogoliubov transformation [31,35], which leads to Hmat =
h̄
∑

α,k ω̃k,αc†
k,αck,α , with renormalized matter frequency

ω̃k,α = ω0

√
1 + 4χ2 fk,α,α and bosonic eigenoperators ck,α .

The new transverse eigenmodes describe the collective matter
excitations which effectively couple with the radiation field,
giving rise to a Hopfield-like model. As we will see shortly,
only in the 3D case, the relation η = χ holds, where η is the
normalized light-matter coupling strength.

When the matter system interacts with the radiation field
solely through its polarization and neglecting the magnetic
interactions, the full light-matter Hamiltonian can be ob-
tained by applying the minimal coupling replacement in the
Coulomb gauge, or equivalently in the multipolar gauge, by
applying a suitable unitary transformation U to the photonic
Hamiltonian Eq. (2), where U is defined as [21]

U = exp

(
i

h̄

∫
A(r) · P(r)d3r

)
. (7)
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This procedure leads to a Hopfield-like Hamiltonian in the
multipolar gauge, which is given by (see Appendix D)

H = Hph + Hmat + HI1 + HI2 , (8)

with the light-matter interaction terms

HI1 = ih̄
∑
α,λ,k

η′
√

ωkω̃
⊥
k (a†

−k,λ − ak,λ)(c†
k,α + c−k,α )eλα

,

HI2 = h̄
∑

α,β,λ,k

η′2ω̃⊥
k (c†

k,α
+ c−k,α )(c†

−k,β
+ ck,β )eλα

eλβ
, (9)

where ω̃⊥
k = ω0

√
1 + 4η2 f ⊥

k and η′ = η ω0/ω̃
⊥
k are the trans-

verse resonance frequency and light-matter coupling strength,
both renormalized by the dipole-dipole interaction, respec-
tively. The bare light-matter coupling strength η is defined
by η = Ek

√
d2Nωk/h̄2ω0 =

√
d2N/2h̄ε0εmV ω0, which, as al-

ready pointed out, coincides with χ in the 3D arrangement.
The parameters f ⊥

k and f ‖
k represent the transverse and the

longitudinal part of fk,α,α , respectively (notice that f ⊥
k < 0).

Lastly, we defined eλα
= êλ · êα , where the {êα} are a generic

set of orthonormal vectors chosen as a basis for the electric
dipole orientation.

The dispersion relations for the transverse modes can be
obtained by diagonalizing the Hopfield-like Hamiltonian (8),
resulting in (see Appendix E)

ω2
k

�2
⊥

= 1 + 4η′2ω̃⊥2

k

ω̃⊥2

k − �2
⊥

, (10)

where h̄�⊥ is the energy of the transverse polaritons. The lon-
gitudinal modes, appearing in Eq. (8) through the term Hmat,
are not influenced by the interaction with photons; therefore,
�‖ = ω̃

‖
k. We observe that the same dispersion relations are

obtained by diagonalizing the full light-matter Hamiltonian,
without performing the initial Bogoliubov transformation on
the matter subsystem, as explicitly shown in Appendix E.
Moreover, the same results are obtained in the Coulomb
gauge, if gauge invariance is treated with a suitable approach
[21,36–38], as further elaborated on in Appendix E, thereby
highlighting the consistency of our results. Notice that the
dispersion relation in Eq. (10), obtained by diagonalizing the
Hopfield model, also agrees with the results obtained solving
the corresponding Maxwell equations in a semiclassical ap-
proach.

Let us now discuss the possibility for the system to undergo
a QPT. Equation (10) is formally derived by the diagonaliza-
tion of a Hopfield-like model with effective coupling constant
η′ [Eq. (8)]. Such a model, as is well known, does not exhibit
any radiation induced QPT [Fig. 2(a)] [40] for a finite value of
η′. However, the dipole-dipole interactions in Hamiltonian (6)
enable the occurrence of a QPT transition, as testified by the
softening of the transverse renormalized matter frequency ω̃⊥

k
at increasing dipole-dipole interaction strengths η [Fig. 2(b)].
This ferroelectric QPT occurs even without including re-
tardation effects and gives rise to a transverse polarization
condensate 〈P⊥

k 〉 �= 0, as explicitly shown in Appendix G. In
particular, for isotropic systems in the long-wavelength ap-
proximation, the QPT can be achieved for η > ηc ≈ √

3/2. In
contrast, near a QPT, η′ = η ω0/ω̃

⊥
k is not a suitable parameter

given that it diverges for η → ηc. This relation between η and

FIG. 2. Lower polariton frequencies for different modes
ωk/ω0 = 0.6 (purple), 0.8 (blue), and 1 (green). The vertical red
line indicates the coupling strength η′ = 1.83 measured in Ref. [39],
corresponding to η = 0.78. (a) Lower polaritons as functions of η′.
(b) Comparison of lower polaritons obtained from the renormalized
Hopfield-like model (solid lines), Dicke-like model (dashed lines),
and Hopfield model without dipole-dipole interactions (dash-dotted
lines) vs η.

η′ explains why the Hopfield model remains a valid descrip-
tion even for many-dipole systems approaching a ferroelectric
QPT.

It is noteworthy that neither the critical point nor the
ground-state transverse polarization in the condensed phase is
influenced by the interaction with the photon field. Instead,
the latter is determined solely by the strength of dipolar
interactions, as anticipated for a ferroelectric phase transi-
tion. However, this QPT involves transverse matter excitations
and, consequently, affects also transverse polaritons. We can
calculate the transverse dispersions in the condensed phase
using higher-order terms in the HP mapping and, through a
minimization procedure, we obtain (see Appendix G)

ω2
k

�2
⊥

= 1 + ω2
0/ f ⊥

k

ω2
0

(
1 − 16η4 f ⊥

k
2)+ �2

⊥
, for η > ηc, (11)

while Eq. (10) is valid only for η < ηc. In particular, the
ferroelectric condensation of the dipoles system occurring for
η > ηc determines a macroscopic transverse polarization den-
sity 〈P⊥

k 〉, which, although not affected by the interaction with
the photon field, induces a macroscopic occupation of 〈Dk〉 �=
0. The latter, in the multipolar gauge, is proportional to the
field momentum, i.e., 〈ak,λ〉 �= 0. This occurrence induced
recent works [26,30] to characterize the phase transition as
ferroelectric or superradiant depending on the gauge choice.
In contrast, we obtain 〈Dk〉 = 〈P⊥

k 〉, which, from the definition
of the displacement field, implies 〈E⊥

k 〉 = 0 (see Appendix G).
We observe that quantities such as Dk and the transverse
electric field E⊥

k are physical quantities, the expectation values
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FIG. 3. Comparison of transverse dispersion curves obtained for
the renormalized Hopfield-like model [Eq. (10)] (blue solid), Dicke-
like model (green dashed), and Hopfield model without dipolar
interactions (red dash-dotted) (coupling constant η′ = 1.83). Exper-
imental data (black dots) from Ref. [39] are included, which use
arrays of coupled metal nanoparticles, showing a strong agreement
with the proposed model.

of which are not gauge dependent. However, operators such as
the field momentum and the photon creation and destruction
operators are nonphysical quantities which can be used only as
calculation tools [41], and thus are not suitable to characterize
physical processes.

We now briefly discuss a potential cancellation proce-
dure which can possibly justify the usual Dicke model
[13,26,30,42]. Such a procedure is based on the interplay
between electrostatic terms in Eq. (6) (the dipole-dipole in-
teraction) and the interatomic part of HI2 (which originates
from light-matter interaction). In particular, a key step of this
procedure is the decomposition of the polarization field P(r)
in its intra- and interatomic, longitudinal and transverse parts.
After the compensation between these two terms, to obtain
the Dicke model, a single-polarization single-mode approxi-
mation for the radiation and a strict two-level approximation
for the dipoles are employed. The remaining intra-atomic
part of HI2 , in the strict two-level approximation, becomes
proportional to the identity operator. However, this term re-
sults from the combination of electrostatic and transverse
contributions and cannot be neglected when the orientation
degree of freedom of the dipoles is considered. Following this
procedure, the Dicke-like multipolar-gauge Hamiltonian for a
single mode is obtained (e.g., see Ref. [26]):

H̃=h̄ω0b†b+ h̄ωka†a−ih̄η
√

ωkω0(a†−a)(b†+b). (12)

This model, in contrast with the previous Hopfield-like one in
Eq. (8), predicts a light-induced QPT (superradiant QPT, or
SPT), for a critical value of the coupling η̃c = 0.5 [26,32].

Figure 2(b) shows the lower polariton resonances derived
from the Hamiltonians in Eq. (8) (solid lines) and Eq. (12)
(dashed lines). The different modes displayed all exhibit a
softening, indicative of a quantum phase transition, all van-
ishing at the respective critical coupling values, ηc and η̃c.
For completeness, we also plot the polariton modes computed
using a pure Hopfield model, where dipolar interactions are
neglected. Unlike the previous cases, the resulting lower po-
laritons do not exhibit any indication of a QPT.

In Fig. 3, we compare the dispersion curves for the trans-
verse and longitudinal sectors in both Hopfield-like [Eq. (8)]

and Dicke-like [Eq. (12)] models. In particular, Fig. 3 shows
the theoretical predictions of both models and the experi-
mental data taken from Ref. [39] (using arrays of coupled
metal nanoparticles). The data set reports measurements of the
lower polariton branch of a three-dimensional artificial crystal
made of spatially separated gold nanoparticles [43] (see also
Appendix H). The explicit fit parameters are provided in the
corresponding Ref. [39]. The nanoparticles, each supporting
triply degenerate localized dipolar surface plasmons, couple
through dipole-dipole interactions, giving rise to collective
plasmons that extend over the whole metamaterial. These
excitations can be described in terms of collective bosonic op-
erators, analogously to the atomic collective excitations (in the
thermodynamic limit) that we considered above. These artifi-
cial gold crystals can reach very high light-matter interaction
strengths. Hence, they represent an ideal testbed for discern-
ing among the different models considered, and help solve the
long-standing debate about QPTs in many-dipoles systems.

The measurements in Fig. 3 have already been compared
in Ref. [39], but with a Hopfield model where the light-matter
coupling strength was renormalized with respect to transverse
matter polaritonic frequency, which corresponds to our η′,
showing excellent agreement. However, probably for this rea-
son, in Ref. [39] it was not pointed out that a QPT could occur
for higher couplings (Fig. 3). Here, we make clear the relation-
ship between the bare and renormalized parameters involved
in the modeling. The high coupling achieved in the experiment
(η′ = 1.83, corresponding to η = 0.78 > η̃c), according to the
Dicke-like model, would imply a condensed phase and a dis-
persion relation, shown in Fig. 3, strongly differing from the
data. However, we point out that, beyond the critical point, the
dispersion relation for the atomic system and for the artificial
crystal may present quantitative differences owing to the dif-
ferent nonlinear response of these systems. Furthermore, we
notice that the achieved coupling strength η = 0.78 (red verti-
cal line in Fig. 2) is not far from ηc ≈ 0.87, and the consequent
softening of ω̃⊥

k , which dictates the asymptotic behavior of
the lower polariton, can be appreciated. We also observe that
the Hopfield model without dipole-dipole interactions fails to
reproduce correctly the data.

III. TWO-DIMENSIONAL LATTICE

In this section, we consider a system composed of a two-
dimensional (2D) layer of atoms, identified as the xy plane,
interacting with a radiation field confined in an ideal cavity
[e.g., with dielectric mirrors; see Fig. 1(b)]. Such a system is
of particular interest since it represents a realizable configura-
tion for single-mode cavity QED in the dipole approximation
and in the thermodynamic limit, useful for testing the validity
of the models for many-dipole systems.

This planar configuration naturally induces a decomposi-
tion of the vector potential in terms of k‖, the in-plane discrete
component of the wave vector with corresponding quantiza-
tion surface S, and its orthogonal component kz, quantized by
the length of the cavity L, as

A(r) =
∑
λ,k‖

∑
kz>0

Ekeik‖·r‖ êλ

× (eikzzal,k‖,kz,λ + e−ikzzar,k‖,kz,λ

)+ H.c., (13)
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where Ek = √
h̄/2ε0εmωkSL and ωk = v

√
k‖2 + k2

z . In this
expression, we introduced the left and right creation operators
al (r),k‖,kz,λ ≡ ak‖,±kz,λ, where the index l (r) is associated with
the +(−) sign. If we consider only modes orthogonal to the
planar surface, k‖ = 0 and thus k = kzẑ, Eq. (13) considerably
simplifies given that the two polarization vectors êλ now lie in
the xy plane and the bosonic operators become independent
on k‖, i.e., al (r),k‖=0,kz,λ ≡ al (r),kz,λ. Defining the even and odd
radiation modes operators as ae(o),kz,λ = (al,kz,λ ± ar,kz,λ)/

√
2,

the Hamiltonian of the free electromagnetic field can be writ-
ten as [44]

Hph = h̄
∑

λ

∑
j=e,o

∑
kz>0

ωkz a
†
j,kz,λ

a j,kz,λ. (14)

Following a procedure analogous to that previously applied
to the 3D dipoles lattice, we first perform the two-level ap-
proximation taking into account the dipole orientations, and
successively construct 2D collective bosonic operators bk‖ .
For incidence orthogonal to the planar surface (k‖ = 0), the
matter Hamiltonian reads

Hmat = h̄ω0

∑
α

b†
αbα + h̄

∑
α,β

χ2ω0 fz,α,β (bα + b†
α )(bβ + b†

β ),

(15)

where bα ≡ bk‖=0,α and the structure-dependent factor for the

2D square lattice is χ =
√

d2μ/h̄ε0εma3ω0, with a being the
lattice constant and μ ≈ 6.78/4π (see Appendix C).

As in the 3D lattice case, the Hamiltonian in Eq. (15)
can be diagonalized through the introduction of eigenopera-
tors cα , with a corresponding renormalized frequency ω̃α =
ω0

√
1 + 4χ2 fz,α,α . Therefore, the light-matter Hamiltonian in

the multipolar gauge reads

H = Hph + Hmat + HI1 + HI2 , (16)

with the light-matter interaction terms

HI1 = ih̄
∑

λ,kz>0

η′
√

ωkz ω̃
⊥(a†

e,kz,λ
− ae,kz,λ

)(
c†
λ + cλ

)
,

HI2 = h̄
∑

λ,kz>0

η′2ω̃⊥(c†
λ + cλ)(c†

λ + cλ), (17)

where η′ = η ω0/ω̃
⊥ is the renormalized light-matter coupling

for the planar layer, with η =
√

d2N/h̄ε0εmSLω0 and ω̃⊥ the
renormalized transverse matter frequency. We have chosen the
same basis for the dipole orientation and the radiation polar-
ization. When considering a single kz and a single transverse
polarization mode, the Hamiltonian (16) reduces to that of a
two coupled harmonic oscillators model, as the Dicke Hamil-
tonian in the thermodynamic limit, but with the presence of
the so-called self-polarization term, P2 (HI2 ).

From the total Hamiltonian (16), we can derive the trans-
verse dispersion relation (see Appendix E):

�2
⊥ − ω̃⊥2

2ω̃⊥ + 2η′2ω̃⊥∑
kz>0

�2
⊥

ω2
kz

− �2
⊥

= 0. (18)

In the single-mode approximation, such a relation reduces to
the dispersion relation derived from a renormalized Hopfield-

like model, as in the 3D lattice. This is to be expected due
to the formal equivalence between the structures of Hamil-
tonians (8) and (16). In both cases, we observe that the
dipole-dipole structure factor χ depends on a−3. However,
the 2D and 3D lattices exhibit different scaling behaviors of
the light-matter coupling with respect to the lattice constant,
as further discussed in Appendix C. In the 3D lattice, η can be
directly related to the volumetric density ρ, yielding the pro-
portionality η2 ∝ ρ ∝ a−3. In contrast, for the 2D lattice, this
proportionality does not hold because the charges are arranged
in a planar structure with a surface density σ ∝ a−2, which
appears in the light-matter coupling η together with the cavity
length L. Consequently, η cannot be straightforwardly con-
nected to χ , which, notably, is the key factor driving the QPT.
Moreover, we emphasize that in this case the cancellation
procedure loses meaning given that the couplings governing
the dipole-dipole and the light-matter interactions, χ and η

respectively, are different, despite both being dependent on
the atomic dipole moment. These evidences further confirm
the ferroelectric nature of the QPT.

IV. DISCUSSION AND CONCLUSIONS

We have shown that the standard Dicke model, a
widespread description of many-dipole cavity-QED sys-
tems (in the dipole and single-mode approximations), is
not a suitable description for simple systems of two-level
atomic dipoles with the usual orientation degeneracy, even
when dipole-dipole interactions are considered. In contrast,
the Hopfield model offers a more accurate representation
for systems of nonoverlapping dipolar quantum emitters,
with its parameters renormalized to account for electro-
static dipole-dipole interactions. Our analysis agrees with
recent experimental results on artificial crystals made of gold
nanoparticles, which display analogous linear optical prop-
erties. Although the Hopfield model does not admit any
radiation-induced QPT, the system of dipolar quantum emit-
ters can still undergo, at least in principle, a QPT when
the dipole-dipole interaction strength reaches the critical
value χc = √

3/2 (for a 3D lattice of atoms), different from
the value predicted by the corresponding Dicke-like model.
The potential QPT induces a macroscopic transverse matter
polarization field in the system ground state which, in turn,
affects the interaction between the matter system and light,
thereby modifying the dispersion relations for transverse po-
laritons in the ferroelectric phase.

Our results clarify the ferroelectric nature of the predicted
QPT, given the following:

(i) The QPT occurs even without including the transverse
interaction of the matter field with photons, and its inclusion
does not modify either the critical point or the transverse
polarization condensate.

(ii) The critical parameter χ does not correspond to the
light-matter coupling strength (although both depend on d2)
and, in contrast to the latter, χ does not depend on the cavity
length (in the 2D case).

(iii) The ground state does not display any coherent macro-
scopic transverse electric or magnetic fields.

However, we stress that this QPT is challenging to real-
ize experimentally, as achieving the required high coupling
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strength [45] necessitates densities approaching the point of
system solidification, as already noticed in previous works
[46,47]. Owing to the small size of the fine structure constant,
χ ≈ 10−3 r2λ0/a3 is usually far from the critical value χc,
with λ0 = 2πv/ω0 being the matter wavelength and r the
mean atomic radius. Notice, also, that 4r < a is typically
required to reasonably avoid overlap of the emitter wave
functions. It would be interesting to extend this analysis to var-
ious lattices of emitters, particularly to systems of anisotropic
quantum emitters where orientation degeneracy is lifted. Fur-
thermore, all the results presented here have been derived
under the assumption of a closed quantum system. Investi-
gating how these findings are altered by explicitly accounting
for the interaction of the matter and light components with
their respective thermal reservoirs could be a topic for future
research [48].
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APPENDIX A: TWO-LEVEL APPROXIMATION
WITH THREEFOLD DEGENERACY

In the derivation of the Hamiltonians presented in this
paper, we reduce the atomic states to two levels. Here we
consider isotropic atoms with inversion symmetry. Owing to
isotropy and electric dipole selection rules, a consistent model
requires that the excited state is threefold degenerated, while
the ground state is unique (p-like and s-like orbitals). We
denote with |−〉n the ground state of the nth atom, while we use
|+α〉n for the excited states in the three different orientations
(α ∈ {1, 2, 3}), which are orthogonal to each other. Thereby,
we can define generalized orientation-dependent Pauli oper-
ators, describing the transition in the respective orientation.
In particular, we define the generalized Sz

n = h̄
2 σ z

n operator
(where n = 1, . . . , N is the index of the atom) such that it
satisfies the usual relations for spin- 1

2 systems:

Sz|−〉 = − h̄

2
|−〉,

Sz|+α〉 = h̄

2
|+α〉,

∀α ∈ {1, 2, 3} , (A1)

where we dropped the atomic index n for notational con-
venience. Compactly, we can write the previous relations
as Sz|mα〉 = h̄m|mα〉, where |mα〉 ∈ {|−〉, |+α〉} and m ∈
{− 1

2 , 1
2 } are the respective eigenvalues.

Analogously, we define the orientation-dependent raising
and lowering operators S±

α = h̄σ±
α which raise or lower the

state in the corresponding direction, characterized by the fol-
lowing properties:

S+
α |−〉 = h̄|+α〉,

S+
α |+β〉 = 0,

S−
α |−〉 = 0,

S−
α |+β〉 = δα,β h̄|−〉.

∀α, β ∈ {1, 2, 3} . (A2)

In the basis {|+1〉, |+2〉, |+3〉, |−〉}, these Pauli operators have
the following matrix representation:

σ−
α =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

δα1 δα2 δα3 0

⎞
⎟⎟⎠, (A3)

σ+
α = (σ−

α )†, (A4)
σ x

α = σ−
α + σ+

α , (A5)

σ y
α = i(σ−

α − σ+
α ), (A6)

σ z =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠. (A7)

It can be shown that these operators satisfy generalized
commutation relations expected from angular-momentum-
like operators, such as [Sz, S±

α ] = ±h̄S±
α . Using these notions,

we can express the dipole moment operator of the nth atom as

dn =
∑

α

dn,αeα =
∑

α

dσ x
n,αeα =

∑
α

d (σ−
n,α + σ+

n,α )eα,

(A8)

where eα is the unit vector in the α direction. We considered
the dipole moment having the same modulus in the different
directions. Notice that the definition in Eq. (A8) is consistent
with the selection rules prohibiting the transition between
states of the same parity.

APPENDIX B: GENERALIZED HOLSTEIN-PRIMAKOFF
TRANSFORMATIONS

In this section, we define generalized Holstein-Primakoff
transformations mapping the spin operators, Eqs. (A1) and
(A2), into bosonic operators bk. Initially, we will bosonize a
two-level system with a threefold degenerated excited state,
and successively extend the mapping to a collection of such
systems.

To this end, we first derive a closed form for the action
of S±

α on a generic state |mβ〉. We notice that, by definition,
S±

α |mβ〉 = c±
αβ |m ± 1β〉. The coefficients c±

αβ are determined
by the following relation:

|c±
αβ |2 = ‖S±

α |mβ〉‖2 = 〈mβ |S∓
α S±

α |mβ〉 (B1)

= h̄2[s(s + δαβ ) − m(m ± δαβ )], (B2)

where in our case s = 1
2 . Thus, in accordance with the

Condon-Shortley phase convention, we select the coefficients
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to be real and positive:

c±
αβ = h̄

√
s(s + δαβ ) − m(m ± δαβ ) (B3)

= h̄
√

(s ∓ m)(s ± m + δαβ ). (B4)

Introducing the operator N = s + Sz/h̄, which represents
the number of excitations in the system, we observe that the
eigenvectors of Sz can be relabeled, as they are evidently also
eigenvectors of N . Thus, we have N |nα〉 = n|nα〉, with n =
1
2 + m ∈ {0, 1}. We notice that n = 0 if the system is in the
ground state, while n = 1 if the system is in its excited state,
consistently with the interpretation of the operator N . From
Eqs. (A1), (A2), and (B4), the actions of Sz and S±

α on |nβ〉 in
terms of the excitation number are

Sz|nβ〉 = h̄
(
n − 1

2

)|nβ〉, (B5)

S+
α |nβ〉 = h̄

√
n + δαβ

√
1 − n|n + 1β〉

= h̄δαβ

√
n + 1

√
1 − n|n + 1β〉, (B6)

S−
α |nβ〉 = h̄

√
1 − (n − δαβ )

√
n|n − 1β〉

= h̄δαβ

√
1 − (n − 1)

√
n|n − 1β〉, (B7)

where in the last steps of Eqs. (B6) and (B7) we exploited
the isomorphism between the two members. These relations
are indeed consistent with the physical interpretation of S±

α ,
since we expect the operator S+

α (S−
α ) to be able to increase

(decrease) the quantum number only in the α direction.
We can now define bosonic operators for the different

orientations bα , which satisfy the usual properties:

bα|nβ〉 = δαβ

√
n|n − 1β〉, (B8)

b†
α|nβ〉 = δαβ

√
n + 1|n + 1β〉, (B9)

b†
αbα|nβ〉 = δαβn|nβ〉, (B10)

[bα, b†
β ] = δαβ. (B11)

Therefore, using the previous relations (B5)–(B7), we can
establish the generalized Holstein-Primakoff transformations
for a single two-level system, which relate the spin to the
bosonic operators, as

S+
α = h̄b†

α

√
1 −
∑

β

b†
βbβ, (B12)

S−
α = h̄

√
1 −
∑

β

b†
βbβ bα, (B13)

Sz = h̄

⎛
⎝∑

β

b†
βbβ − 1

2

⎞
⎠. (B14)

In the limit of low excitations in the system (corresponding to
a low average excitation per site), we can expand the radicals
in Eqs. (B12) and (B13) and retain only the lowest power term
in each expression, which yields

S−(+)
α ≈ h̄b(†)

α . (B15)

Finally, we consider a collection of N spin- 1
2 identical

systems and construct collective operators in the three-
dimensional k space. In particular, labeling with bn,α the

bosonic operator associated with the nth site, we define the
collective bosonic operators bk,α as

bk,α = 1√
N

∑
n

e−ik·Rn bn,α. (B16)

It can be readily verified that these operators obey the commu-
tation relations [bk,α, bk′,β] = δkk′δαβ . In the derivation of the
Hamiltonians, we will make use of the relation

∑
n b†

n,αbn,α =∑
k b†

k,αbk,α , which can be easily demonstrated. Furthermore,
using Eqs. (B15) and (B16), we derive the relations for the
low-excitation regime:

N∑
n=1

e−(+)ik·Rn S−(+)
n,α = h̄

√
Nb(†)

k,α
. (B17)

APPENDIX C: DIPOLE-DIPOLE INTERACTIONS

The electrostatic dipole-dipole interaction between two lo-
calized charges is expressed by

Vdip(R1, R2) = 1

4πε0εm

d1 · d2 − 3(d1 · r̂12)(d2 · r̂12)

r3
12

. (C1)

Therefore, the dipole-dipole Hamiltonian contribution for a
system of localized particles is given by

Hdip = 1

2

∑
n �=m

Vdip(Rn, Rm), (C2)

which, upon the introduction of the definition Eq. (C1), co-
incides with Eq. (3) of the main text. We can now perform
the two-level approximation (A8) and successively proceed
to the bosonization of the system in the thermodynamic limit
through the use of the generalized Holstein-Primakoff trans-
formations (see Sec. B). In the following, we will investigate
separately the cases of 3D and 2D lattices.

1. 3D lattice dipole-dipole interactions

For a 3D ordered lattice, in the long-wavelength approxi-
mation, we can express the matter field in terms of collective
bosonic operators bk,α . Therefore, after the bosonization, the
dipole-dipole term in Eq. (C2) is given by

Hdip =
∑
α,β,k

Fk,α,β (bk,α + b†
−k,α )(b−k,β + b†

k,β ), (C3)

where we have defined structure-dependent factor Fk,α,β as

Fk,α,β = d2

8πε0εm

∑
l �=0

cos k · rl

r3
l

[δα,β − 3(êα · r̂l )(êβ · r̂l )],

(C4)
and we used the translational symmetry of the system. rl ≡ r0l

is the distance of the lth site from the origin, which is the only
point excluded in the summation (l �= 0). Such a factor can be
approximated, in the long-wavelength limit (corresponding to
the neighborhood of the � point in the crystal), as [34]∑

l �=0

cos k · rl

r3
l

[δα,β − 3(êα · r̂l )(êβ · r̂l )]

≈ 4π

3v
ρ[3(k̂ · êα )(k̂ · êβ ) − δαβ], (C5)
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where the factor v depends on the lattice structure and it is
equal to v = 1 for sc, v = 2−1/2 for fcc, and v = 4 × 3−3/2

for bcc lattices. Thus, we can define the factor fk,α,β ≈ [3(k̂ ·
êα )(k̂ · êα ) − δαβ]/3, which directly follows from the form of
Fk,α,β . Hence, we have for a three-dimensional lattice in the
long-wavelength approximation,

Fk,α,β = d2ρ

2ε0εm

3(k̂ · êα )(k̂ · êβ ) − δαβ

3

= h̄χ2ω0 fk,α,β = h̄η2ω0 fk,α,β , (C6)

where we used the relation χ2ω0 = d2ρ/2h̄ε0εm and the
equality χ = η, valid only in the three-dimensional case.

2. 2D lattice dipole-dipole interactions

We repeat the previous procedure for a square (bidi-
mensional) lattice. The main difference from the three-
dimensional case is that the system has not any discrete
translational invariance along the z axis, given that the charges
are ordered in a planar structure on the xy plane. Hence, the
mode decomposition (and thus the matter bosonic operators
bk‖,α) only depends on k‖. Therefore, for incidence orthogonal
to the plane surface (k‖ = 0), Eq. (C3) becomes

Hdip =
∑
α,β

Fα,β (bα + b†
α )(bβ + b†

β ), (C7)

where the factor Fα,β reduces to

Fα,β = d2

8πε0εm

∑
l �=0

1

r3
l

[δα,β − 3(êα · r̂l )(êβ · r̂l )]. (C8)

In particular, this expression is independent of the wave
vector and, thus, it does not rely on the limit of long wave-
length to be evaluated. In fact, a being the lattice constant,
Eq. (C8) can be evaluated as

Fα,β = d2μ

ε0εma3

3(ẑ · êα )(ẑ · êβ ) − δαβ

3
= h̄χ2ω0 fz,α,β , (C9)

where we defined for the 2D lattice

χ =
√

d2μ

h̄ε0εma3ω0
, (C10)

μ = 3

4π

⎡
⎣∑

nx>0

n−3
x +

∑
nx,ny>0

(
n2

x + n2
y

)−3/2

⎤
⎦ ≈ 6.78

4π
. (C11)

As pointed out in the main text, the crucial difference
between the two-dimensional and three-dimensional cases is
the dependence of the light-matter coupling on the lattice
constant a. First, we notice that the factor Fk,α,β ∝ χ2 has the
same dependence on the lattice constant a in both cases, i.e.,
χ2 ∝ a−3. On the other hand, in the 3D case we can associate
the light-matter coupling to the volumetric density ρ, which

in turn is related to the lattice constant through ρ ∝ a−3. In
contrast, in the 2D lattice we have a light-matter constant
dependent on a superficial density σ ∝ a−2 (it also depends on
the cavity length L, which in contrast does not play any role in
the dipole-dipole interaction term as expected). Therefore, for
the 2D system, it can be clearly understood that the eventual
softening of the transverse matter frequency is purely due to
the dipolar interactions, independent of the coupling with the
radiation field, which depends also on other parameters.

APPENDIX D: DERIVATION OF THE FULL
HAMILTONIANS

In this section, we present the derivation of the full light-
matter Hamiltonians in the 3D and 2D lattice, Eqs. (8) and
(16) of the main text, respectively. In Appendix F, we pro-
ceed to introduce the diagonalization procedure for the full
Hamiltonians and compare the results obtained with the re-
sults presented in the main paper, which instead follow a
two-step Bogoliubov transformation (first on the matter sub-
system and successively considering the interaction with the
radiation field), thus demonstrating the equivalence of the two
procedures.

1. 3D lattice

Let us consider the first system, which is composed of a
three-dimensional bulk of atoms interacting with a quantized
electromagnetic field. As usual, the vector potential A(r) and
the bare photonic Hamiltonian Hph are given by introducing
radiation bosonic operators ak,λ for each mode k and polar-
ization λ, leading to the plane-wave decomposition

A(r) =
∑

λ

∑
k

Ekeik·rak,λêλ + H.c., (D1)

Hph =
∑
λ,k

h̄ωka†
k,λak,λ, (D2)

corresponding to Eqs. (1) and (2) of the main text.
We now can derive the full light-matter Hamiltonian in

the multipolar gauge [49]. To this end, we apply to the
Hamiltonian of the free electromagnetic field (D2) the unitary
transformation U [21], defined in Eq. (7) of the main text as

U = exp

(
i

h̄

∫
A(r) · P(r)d3r

)
. (D3)

As will be discussed below, this procedure ensures the gauge
invariance of the treatment, according to the generalized
definition of gauge invariance, consistent also for truncated
Hilbert spaces [37]. For example, applying the transforma-
tion U to the matter Hamiltonian instead would recover the
standard Coulomb gauge Hamiltonian within this bosonized
framework [21]. Inserting the previous definitions for the
vector potential Eq. (D1) and for the polarization density,
P(r) =∑n dnδ(r − Rn), in this last equation, we obtain the
transformation

U = exp

⎡
⎣ i

h̄

∑
λ,k,n

Ek
(
eik·Rn ak,λ + e−ik·Rn a†

k,λ

)
êλ · dn

⎤
⎦. (D4)
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A direct application of the transformation (D4) to the photonic Hamiltonian (D2) yields

U †HphU =
∑
λ,k

h̄ωk

⎡
⎣a†

k,λak,λ − i

h̄

∑
n

Ek
(
eik·Rn ak,λ − e−ik·Rn a†

k,λ

)
êλ · dn + 1

h̄2

∑
n,m

E2
k eik·(Rn−Rm ) êλ · dn êλ · dm

⎤
⎦. (D5)

We can now apply the two-level approximation (see Appendix A) and bosonize the system through the use of general-
ized Holstein-Primakoff transformations (see Appendix B), leading to the atomic and transformed photonic Hamiltonians,
respectively:

HA = h̄ω0

∑
α,k

b†
k,α

bk,α, (D6)

U †HphU = h̄
∑
λ,k

ωka†
k,λ

ak,λ − ih̄
∑
α,λ,k

gkωk (ak,λ − a†
−k,λ

)(b−k,α + b†
k,α

)eλα

+ h̄
∑

α,β,λ,k

g2
kωk (b−k,α + b†

k,α )(bk,β + b†
−k,β )eλα

eλβ
, (D7)

where gk = Ekd
√

N/h̄ =
√

d2N/2h̄ε0εmV ωk and the êα are a generic set of orthonormal basis vectors used as a basis for the
decomposition of the dipole moments. Furthermore, we indicated for notation convenience eλα

≡ êλ · êα . The additional term
describing the dipole-dipole interactions can be expressed (see Appendix C) in the thermodynamic limit as

Hdip = h̄
∑
α,β,k

χ2ω0 fk,α,β (b−k,α + b†
k,α

)(bk,β + b†
−k,β

). (D8)

Thus, the resulting bosonized matter Hamiltonian [Eq. (6) of the main paper] is given by

Hmat = HA + Hdip = h̄ω0

∑
α,k

b†
k,αbk,α + h̄

∑
α,β,k

χ2ω0 fk,α,β (b−k,α + b†
k,α )(bk,β + b†

−k,β ). (D9)

The total Hamiltonian in the multipolar gauge is then given by

H = h̄
∑
λ,k

ωka†
k,λ

ak,λ + h̄ω0

∑
α,k

b†
k,α

bk,α − ih̄
∑
α,λ,k

gkωk (ak,λ − a†
−k,λ

)(b−k,α + b†
k,α

)eλα

+ h̄
∑

α,β,λ,k

g2
kωk (b−k,α + b†

k,α )(bk,β + b†
−k,β )eλα

eλβ
+ h̄
∑
α,β,k

χ2ω0 fk,α,β (b−k,α + b†
k,α )(bk,β + b†

−k,β ). (D10)

The first two terms in Eq. (D10) represent the free radiation
and matter fields, the third and the fourth are the transverse
interactions between light and matter, while the last one rep-
resents the dipole-dipole electrostatic interactions. Performing
a Bogoliubov diagonalization on the matter subsystem (see
Appendix E), Eq. (D10) reduces to Eq. (8) of the main text.

We observe that, in the previous calculations, from
Eq. (D3) to Eq. (D7), we first performed the transformation
U and subsequently the two-level approximation, followed by
the bosonization procedure, as made clear by the presence
of the full dipoles dn (no two-level approximation has been
performed yet) in Eq. (D2). On the other hand, consistent
results in the multipolar gauge can also be derived if we first
perform the two-level approximation and the bosonization
directly in the definition of U in Eq. (D3), and after apply this
transformation to the photonic Hamiltonian Eq. (D2) [21]. In
fact, after some algebraic manipulations, Eq. (D3) in terms of
the bosonic operators becomes

U = exp

⎡
⎣i
∑
α,λ,k

gk (ak,λ + a†
−k,λ)(b−k,α + b†

k,α )eλα

⎤
⎦.

(D11)

Applying such a transformation to the photonic Hamiltonian
Eq. (D2), then the same Hamiltonian Eq. (D7) is reached, thus
demonstrating the equivalence of the two approaches.

One advantage of the latter approach is that the result-
ing total light-matter Hamiltonian in the multipolar gauge H
[Eq. (D10)] is related to the corresponding Coulomb gauge
Hamiltonian HC by the very same unitary transformation U as
HC = UHU † (see Ref. [21]), ensuring the gauge invariance of
the treatment. Hence, we have

HC = U (HA + U †HphU + Hdip)U †

= UHAU † + Hph + Hdip, (D12)

where in the last equality we utilized the property [U, Hdip] =
0, which aligns with the physical interpretation that the
electrostatic contribution remains unchanged across different
gauges. The term UHAU † recovers the usual minimal cou-
pling replacement, typical of the Coulomb gauge light-matter
Hamiltonian. Equations (D12) and (D10), being related by the
unitary transformation U , yield identical dispersion relations
for both the longitudinal and transverse sectors. This consis-
tency highlights the gauge invariance of our results.

2. 2D lattice

Let us now consider the 2D system, composed of a
two-dimensional layer of atoms, identified as the xy plane,
embedded in an ideal cavity. This planar configuration
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naturally induces a decomposition of the vector potential as

A(r)=
∑
λ,k‖

∑
kz>0

Ekeik‖·r‖
(
eikzzal,k‖,kz,λ+e−ikzzar,k‖,kz,λ

)
êλ+H.c.,

(D13)

where k‖ is the in-plane discrete component of the wave
vector, S being the corresponding quantization surface, while
kz is its orthogonal component quantized by the length of the
cavity L, as already stated in the main text. In this expression,
Ek = √

h̄/2ε0εmωkSL and ωk = v
√

k‖2 + k2
z . Moreover, we

introduced the left and right creation operators al (r),k‖,kz,λ ≡
ak‖,±kz,λ, where the index l (r) is associated with the +(−)
sign. If we consider the case of normal incidence k‖ = 0, and
thus k = kzẑ, Eq. (D13) considerably simplifies given that the
two polarization vectors êλ now lie in the xy plane and the
bosonic operators become independent on k‖, i.e., al (r),kz,λ ≡
al (r),k‖=0,kz,λ. Defining even and odd radiation modes opera-
tors, ae(o),kz,λ = (al,kz,λ ± ar,kz,λ)/

√
2, the Hamiltonian of the

free electromagnetic field can be written as in Eq. (14) of the
main text:

Hph =
∑

λ

∑
j=e,o

∑
kz>0

h̄ωkz a
†
j,kz,λ

a j,kz,λ. (D14)

For the matter subsystem, we follow an analogous pro-
cedure to the 3D lattice of dipoles. We first perform the
two-level approximation, taking into account the dipole orien-
tations, and successively construct two-dimensional collective
bosonic operators bk‖ . Considering only radiation modes with
wave vectors orthogonal to the 2D lattice surface (normal
incidence), implying k‖ = 0, the final atomic Hamiltonian
reads

HA = h̄ω0

∑
α

b†
αbα. (D15)

We now calculate the transformation U , analogous to
Eq. (D3), for such a system, yielding

U = exp

⎡
⎣ i

h̄

∑
λ,n

∑
kz>0

√
2Ekz

(
ae,kz,λ + a†

e,kz,λ

)
êλ · dn

⎤
⎦,

(D16)

where, again, only modes perpendicular to the planar surface
have been considered. Applying this transformation to the
photonic Hamiltonian Eq. (D14), we obtain

U †HphU =
∑

λ,kz>0

h̄ωkz

⎡
⎣∑

j=e,o

a†
j,kz,λ

a j,kz,λ

− i

h̄

∑
n

√
2Ekz

(
ae,kz,λ − a†

e,kz,λ

)
êλ · dn

+ 1

h̄2

∑
n,m

2E2
kz

êλ · dn êλ · dm

⎤
⎦. (D17)

Therefore, after the bosonization in the thermodynamic
limit, the full light-matter Hamiltonian, considering the ad-

dition of the dipole-dipole interactions in a planar layer
Eq. (C9), is given by

H = h̄
∑

λ,kz>0

ωkz

(
a†

e,kz,λ
ae,kz,λ + a†

o,kz,λ
ao,kz,λ

)+ h̄ω0

∑
α

b†
αbα

− ih̄
∑

α,λ,kz>0

gkzωkz

(
ae,kz,λ − a†

e,kz,λ

)
(bα + b†

α )eλα

+ h̄
∑

α,β,λ,kz>0

g2
kz
ωkz (bα + b†

α )(bβ + b†
β )eλα

eλβ

+ h̄
∑
α,β

χ2ω0 fz,α,β (bα + b†
α )(bβ + b†

β ), (D18)

where gk = √d2N/h̄ε0εmSLωkz . Equation (D18) is the same
as Eq. (16) of the main text.

APPENDIX E: BOGOLIUBOV DIAGONALIZATION OF
THE MATTER HAMILTONIAN

As discussed in the main paper, we can first diagonalize
the matter Hamiltonian Hmat using the Bogoliubov diagonal-
ization procedure. In particular, the Hamiltonian that we wish
to diagonalize is of the form given by Eq. (D9). The resulting
Bogoliubov matrix associated to mode k and orientation α, in
the basis bk,α, b†

−k,α , is

(
ω0 + 2χ2ω0 fk,α,β 2χ2ω0 fk,α,β

−2χ2ω0 fk,α,β −ω0 − 2χ2ω0 fk,α,β

)
. (E1)

The resulting eigenvalues are ω̃k,α = ω0

√
1 + 4η2 fk,α,α ,

and the corresponding eigenvectors are

ck,α = 2χ2ω0 fk,α,α√
N

bk,α − ω̃k,α − ω0 − 2χ2ω0 fk,α,α√
N

b†
−k,α,

(E2)

and its Hermitian conjugate (c†
k,α), where N = (ω̃k,α −

ω0)(ω0 + 2χ2ω0 fk,α,α − ω̃k,α ) is the normalization factor
such that [ck,α, c†

k′,α′ ] = δk,k′δα,α′ .

APPENDIX F: CALCULATION OF THE
DISPERSION RELATIONS

The dispersion relations can be calculated through the use
of a Hopfield-Bogoliubov diagonalization of the total system
Hamiltonian, e.g., Hamiltonian (D10) for the 3D lattice or
(D18) for the 2D case, or equivalently by a two-step diago-
nalization as presented in the main paper. In this section we
will follow the first procedure, and verify the equivalence of
the results derived by the two approaches.

1. Calculation of the dispersion relations for the 3D lattice

In this subsection we focus on the calculations regarding
the 3D arrangement. First, from Hamiltonian Eq. (D10), let us

013271-10
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evaluate the following commutators:

[ak,λ, H] = h̄ωkak,λ + ih̄gkωk

∑
α

(b†
−k,α + bk,α )eλα

, (F1)

[a†
k,λ, H] = −h̄ωka†

k,λ + ih̄gkωk

∑
α

(b†
k,α + b−k,α )eλα

, (F2)

[bk,α, H] = h̄ω0bk,α + ih̄gkωk

∑
λ

(a†
−k,λ − ak,λ)eλα

+ 2h̄g2
kωk

∑
β

[∑
λ

eλβ
eλα

+ fk,α,β

]
(b†

−k,β + bk,β ), (F3)

[b†
k,α

, H] = −h̄ω0b†
k,α

− ih̄gkωk

∑
λ

(a†
k,λ

− a−k,λ)eλα
− 2h̄g2

kωk

∑
β

[∑
λ

eλβ
eλα

+ fk,α,β

]
(b†

k,β
+ b−k,β ). (F4)

Thus, writing the Heisenberg equations and transforming to the frequency-domain Fourier space, we have

h̄(� − ωk )Ak,λ = ih̄gkωk

∑
α

(B†
−k,α + Bk,α )eλα

. (F5)

h̄(� + ωk )A†
−k,λ = ih̄gkωk

∑
α

(B†
−k,α + Bk,α )eλα

, (F6)

h̄(� − ω0)Bk,α = ih̄gkωk

∑
λ

(A†
−k,λ

− Ak,λ)eλα
+ 2h̄g2

kωk

∑
β

[∑
λ

eλβ
eλα

+ fk,α,β

]
(B†

−k,β
+ Bk,β ), (F7)

h̄(� + ω0)B†
−k,α = −ih̄gkωk

∑
λ

(A†
−k,λ − Ak,λ)eλα

− 2h̄g2
kωk

∑
β

[∑
λ

eλβ
eλα

+ fk,α,β

]
(B†

−k,β + Bk,β ), (F8)

where Ak,λ(�) and Bk,λ(�) are the Fourier transforms of the
operators ak,λ(t ) and bk,λ(t ), respectively (the dependencies
on time or frequency are omitted for simplicity).

Solving this system we can derive self-consistent equa-
tions for the transverse and longitudinal sectors. We consider
here for simplicity the dipole basis used for the decomposition
eα coincident with the basis induced by radiation field and suc-
cessively select the transverse and longitudinal components,
respectively, thus obtaining

ω2
k

�2
⊥

= 1 + 4g2
kωkω0

ω2
0 + 4g2

kωkω0 f ⊥
k − �2

⊥
, (F9)

�2
‖ = ω2

0 + 4g2
kωkω0 f ‖

k , (F10)

where f ⊥
k and f ‖

k represent the transverse and longitudinal
components of fk,α,β , respectively. For isotropic systems, in
the long-wavelength approximation f ⊥

k = − 1/3 and f ‖
k =2/3.

If we introduce a renormalized matter frequency defined,
as in the main paper, by ω̃k,α = ω0

√
1 + 4η2 fk,α,α , the disper-

sion relation for the transverse sector (F9) becomes equivalent
to the one derived by a Hopfield model with renormalized
factors

ω2
k

�2
⊥

= 1 + 4g′2
k ωkω̃

⊥
k

ω̃⊥2

k − �2
⊥

, (F11)

where g′
k = gk

√
ω0/ω̃

⊥
k is the normalized coupling and ω̃⊥

k =
ω0

√
1 + 4η2 f ⊥

k is the normalized transverse frequency. In-
troducing the coupling constant η =

√
d2N/2h̄εmV ω0, the

previous dispersion relation can be written as

ω2
k

�2
⊥

= 1 + 4η2ω2
0

ω2
0 + 4η2ω2

0 f ⊥
k − �2

⊥
= 1 + 4η′2ω̃⊥2

k

ω̃⊥2

k − �2
⊥

, (F12)

where we defined the renormalized coupling η′ = η ω0/ω̃
⊥
k in

order to reduce the dispersion relation to a Hopfield-like one.
Equation (F12) coincides with Eq. (10) of the main paper, thus
demonstrating the equivalence between this diagonalization
procedure of the full Hamiltonian and the two-step diagonal-
ization introduced in the main paper. The coupling constant
η is particularly useful in the evaluation of the experimental
results, since it corresponds to the ratio between the Rabi
frequency �R (which in turn is half the splitting between the
level anticrossing) and the matter frequency, i.e., η = �R/ω0.
Analogously, the normalized coupling constant η′ is related
to the normalized matter frequency through η′ = �R/ω̃⊥

k .
Figure 4 shows an example of typical dispersion curves, in
which all the main physical dispersions are illustrated.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
vk/ω0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ω
/ω

0

2ΩR

ωk

ω̃k,⊥

ω̃k,‖

UP

LP

FIG. 4. Dispersion curves of a renormalized Hopfield-like model
in Eq. (F12), calculated with η = 0.6.
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2. Calculation of the dispersion relations for the 2D lattice

In this subsection, we apply the same diagonalization procedure to the Hamiltonian of the 2D lattice Eq. (D18). Following
the same steps of the previous subsection, we can write the Heisenberg equations of motion in the Fourier space:

(� − ωk ) Ae,kz,λ = igkωk

∑
α

(B†
α + Bα )eλα

, (F13)

(� + ωk ) A†
e,kz,λ

= igkωk

∑
α

(B†
α + Bα )eλα

, (F14)

(� − ω0) Bα = igkωk

∑
λ,kz>0

(
A†

e,kz,λ
− Ae,kz,λ

)
eλα

+ 2
∑

β

⎡
⎣∑

λ

eλβ
eλα

∑
kz>0

g2
kωk + χ2ω0 fz,α,β

⎤
⎦(B†

β + Bβ ), (F15)

(� + ω0) B†
α = −igkωk

∑
λ,kz>0

(
A†

e,kz,λ
− Ae,kz,λ

)
eλα

− 2
∑

β

⎡
⎣∑

λ

eλβ
eλα

∑
kz>0

g2
kωk + χ2ω0 fz,α,β

⎤
⎦(B†

β + Bβ ), (F16)

where, as usual, Ae,kz,λ(�) and Bα (�) are the Fourier transforms of the operators ae,kz,λ(t ) and bα (t ). Notice that the odd-mode
radiation operators ao,kz,λ(t ) have a trivial dynamics, given that they do not couple with the radiation field, and thus are irrelevant
in this calculation.

Solving this system, we obtain the dispersion relations for the transverse sector reported in the main paper:

ω2
0 − �2

⊥
2ω0

= 2

⎡
⎣∑

kz>0

g2
kωk�

2
⊥

ω2
kz

− �2
⊥

− χ2ω0 f ⊥
z

⎤
⎦. (F17)

Introducing the coupling constant η = gk
√

ωk/ω0, and by defining the renormalized transverse matter frequency ω̃⊥ =
ω0

√
1 + 4χ2 f ⊥

z , as in the main paper, we can rewrite the dispersion relations as

�2
⊥ − ω̃⊥2

2ω̃⊥ + 2η′2ω̃⊥∑
kz>0

�2
⊥

ω2
kz

− �2
⊥

= 0, (F18)

which coincides with Eq. (18) of the main paper.

APPENDIX G: DISPERSION RELATIONS BEYOND THE PHASE TRANSITION

In this section we derive the dispersion relations for Hamiltonian (D10) beyond the phase transition. Such a Hamiltonian has
to be modified accordingly for coupling strength greater than the critical value ηc, given the predicted macroscopic occupation
of the fields in this new phase. In order to correctly describe this phenomenon, we shift the bosonic radiation and matter mode
operators as [32]

ak,λ = ãk,λ − iAk,λ, (G1)

bk,α = b̃k,α + Bk,α, (G2)

where the real parameters Ak,λ and Bk,α are linked to the macroscopic mean field mode occupation. Thus, we expect them to
be zero in the normal phase and of order O(

√
N ) beyond the phase transition. After substituting these relations into Eq. (D10),

expanding the square root contribution in the Holstein-Primakoff procedure, and retaining only the terms up to second order, the
resulting superradiant phase Hamiltonian in the multipolar gauge, in the thermodynamic limit, is given by

H = h̄
∑
λ,k

ωkã†
k,λãk,λ + h̄

∑
α,k

⎡
⎣ω0 + 2

g̃k

Ñk
ωk

∑
λ,β

Ak,λBk,βeλβ
− 4

g̃2
k

Ñk
ωk f̃k,β,γ

∑
β,γ

Bk,βBk,γ

⎤
⎦b̃†

k,α b̃k,α

− ih̄
∑
λ,k

[
2g̃kωk

∑
α

Bk,αeλα
− ωkAk,λ

]
(ãk,λ − ã†

−k,λ)

−h̄
∑
α,k

⎡
⎣2g̃kωk

∑
λ

Ak,λeλα
−
⎛
⎝ω0 + 2

g̃k

Ñk
ωk

∑
λ,β

Ak,λBk,βeλβ

⎞
⎠Bk,α
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+4g̃2
kωk

⎛
⎝Bk,α

Ñk

∑
β,γ

Bk,βBk,γ f̃k,β,γ −
∑

β

Bk,β f̃k,α,β

⎞
⎠
⎤
⎦(b̃k,α + b̃†

−k,α )

− ih̄
∑
α,λ,k

⎡
⎣ g̃k

Ñk
ωk

⎛
⎝Ñkeλα

− Bk,α

∑
β

Bk,βeλβ

⎞
⎠
⎤
⎦(ãk,λ − ã†

−k,λ)(b̃−k,α + b̃†
k,α )

+ h̄
∑

α,β,λ,k

⎡
⎣ g̃k

2Ñ2
k

ωkAk,λBk,α

⎛
⎝2Ñkeλβ

+ Bk,β

∑
γ

Bk,γ eλγ

⎞
⎠

+ g̃2
k

Ñk
ωk

⎛
⎝Ñk f̃k,α,β − 4Bk,α

∑
γ

f̃k,β,γ Bk,γ

⎞
⎠
⎤
⎦(b̃−k,α + b̃†

k,α )(b̃k,β + b̃†
−k,β ), (G3)

where g̃k = gk

√
Ñk/N , Ñk = N −∑α B2

k,α and f̃k,α,β =∑λ eλα
eλβ

+ fk,α,β . The parameters Ak,λ and Bk,α , at equilibrium, are
fixed by the stationary condition of the energy functional, which in turn is equivalent to imposing the vanishing of the linear terms
in the bosonic operators. Thus, for each mode k, we have the resulting system of two coupled equations in the two parameters
Ak,λ and Bk,α:

2g̃kωk

∑
α

Bk,αeλα
− ωkAk,λ = 0,

2g̃kωk

⎛
⎝∑

λ

Ak,λeλα
− Bk,α

Ñk

∑
λ,β

Ak,λBk,βeλβ

⎞
⎠+ 4g̃2

kωk

⎛
⎝Bk,α

Ñk

∑
β,γ

Bk,βBk,γ f̃k,β,γ −
∑

β

Bk,β f̃k,α,β

⎞
⎠− ω0Bk,α = 0.

(G4)

We now focus our attention on the transverse mode solutions, since those are the ones coupling with the radiation field. This
system of Eqs. (G4) admits, beside the trivial solution Ak,λ = Bk,α = 0 corresponding to the normal phase where no condensation
occurs, a nontrivial solution which is defined by the conditions for the parameters

∑
α

B2
k,α = N

2

(
1 + 1

4η2 f ⊥
k

)
, (G5)

Ak,λ = 2g̃k

∑
α

Bk,αeλα
. (G6)

Inserting these values of the parameters in (G3), we obtain the Hamiltonian describing the condensed phase:

HCP = h̄
∑
λ,k

ωkã†
k,λãk,λ + h̄

∑
α,k

ω0
1 − 4η2 f ⊥

k

2
b̃†

k,α b̃k,α

− ih̄
∑
α,λ,k

⎡
⎣ g̃k

Ñk
ωk

⎛
⎝Ñkeλα

− Bk,α

∑
β

Bk,βeλβ

⎞
⎠
⎤
⎦(ãk,λ − ã†

−k,λ)(b̃−k,α + b̃†
k,α )

+ h̄
∑
α,k

η2ω0(1 + f ⊥
k )

4η2 f ⊥
k − 1

8η2 f ⊥
k

(b̃−k,α + b̃†
k,α )(b̃k,α + b̃†

−k,α )

+ h̄
∑
α,β,k

η2ω0

N

[
12η2 f ⊥

k − 1

4η2 f ⊥
k − 1

− 4(1 + f ⊥
k )

]
Bk,αBk,β (b̃−k,α + b̃†

k,α )(b̃k,β + b̃†
−k,β ). (G7)

Calculating the dispersion relations induced by this Hamiltonian (G7) as outlined in Appendix F, we obtain the following
dispersion relation for the transverse mode solutions:

ω2
k

�2
⊥

= 1 + ω2
0/ f ⊥

k

ω2
0

(
1 − 16η4 f ⊥

k
2)+ �2

⊥
. (G8)
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Therefore, combining Eqs. (F12) and (G8) for the dispersion relations before and after the QPT, we obtain (see Fig. 5)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω2
k

�2
⊥

= 1 + 4η2ω2
0

ω2
0

(
1 + 4η2 f ⊥

k

)− �2
⊥

η < ηc,

ω2
k

�2
⊥

= 1 + ω2
0/ f ⊥

k

ω2
0

(
1 − 16η4 f ⊥

k
2)+ �2

⊥
η > ηc.

(G9)

We can now investigate the ground state condensation occurring after the QPT. This study can be conduced in terms of mean
mode occupation of the physical fields. In particular, the electric displacement field D(r) can be easily demonstrated to have a
mean mode occupation, 〈Dk〉, which equals to the mean transverse polarization field 〈P⊥

k 〉. In the multipolar gauge, we have the
radiation field canonical momentum �(r) = −D(r), which leads to

D(r) = −�(r) = iεm

∑
λ,k

√
h̄ωk

2εmV
(eik·rak,λ − e−ik·ra†

k,λ)eλ. (G10)

We can now insert the shifted bosonic operator ãk,λ, defined in Eq. (G1), into this equation, which physically represents the
fluctuations around the mean value Ak,λ. Therefore, the mean value of mode k of the displacement field is given by

〈Dk〉 = εm

∑
λ

√
h̄ωk

2εmV
(eik·r + e−ik·r )Ak,λeλ, (G11)

where we considered that, by definition, 〈ãk,λ〉 = 0. Using relation Eq. (G6), this mean value can be rewritten after some algebraic
manipulations as

〈Dk〉 = d
√

N

V

∑
α

√
1

2

(
1 − 1

4η2 f ⊥
k

)
(eik·r + e−ik·r )Bk,αeα, (G12)

where Bk,α is defined by Eq. (G5).
Analogously, we can write the polarization field in terms of the bosonic operators as

P(r) = d
√

N

V

∑
α,k

⎛
⎜⎝eik·r

√√√√1 − 1

N

∑
β

b†
k,βbk,β bk,α + e−ik·rbk,α

√√√√1 − 1

N

∑
β

b†
k,βbk,β

⎞
⎟⎠eα. (G13)

Using Eq. (G2) and taking the mean value of Eq. (G13), re-
calling that 〈b̃k,α〉 = 0, we obtain the mean mode occupation
of the transverse polarization field:

〈P⊥
k 〉 = d

√
N

V

∑
α

(eik·r + e−ik·r )Bk,α

√√√√1 − 1

N

∑
β

Bk,β eα

= d
√

N

V

∑
α

√
1

2

(
1 − 1

4η2 f ⊥
k

)
(eik·r + e−ik·r )Bk,αeα.

(G14)

Thus, given the definition of the displacement field D(r) =
εmE⊥(r) + P⊥(r), the equality 〈Dk〉 = 〈P⊥

k 〉 implies that the
mean mode occupation of the electric field, 〈E⊥

k 〉, is zero.
Moreover, we remark that the same mean field mode oc-
cupations are predicted even in the two-step Bogoliubov
diagonalization, further confirming the ferroelectricity of the
QPT. In fact, the mean occupation of the matter field is
dictated only by the strength of dipolar interactions and not
on the interaction with the radiation field.

As a final note, it is instructive to point out that if the factor
fk,α,β is regarded as a free parameter, we can recover from
Hamiltonians (D10) and (G3) relevant known models and

their behaviors near phase transitions. For instance, the Dicke
model can be recovered by restricting the study only to the
transverse modes and considering f ⊥

k,α,β = −δαβ (implying

f̃ ⊥
k,α,β = 0). As a consequence, relation (G8) reduces to the

FIG. 5. Upper and lower polaritons as functions of η for different
modes: ωk/ω0 = 0.6 (red), 0.8 (blue), 1 (green), 1.2 (purple), and
1.5 (yellow). The polaritons in the condensed ferroelectric phase are
calculated by Eq. (G8).
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FIG. 6. Comparison between the theoretical models and experimental data in Ref. [39]: (a) region near the experimental data and
(b) broader view including the upper polariton. As shown, the theoretical dispersion relation derived from the Hopfield-like model including the
dipole-dipole interactions (solid blue) perfectly fits the experimental data (black dots). In contrast, the curves derived from the Dicke-like model
(dashed green) and from the Hopfield model neglecting the dipolar interaction (red dash-dotted) significantly differ from the experimental data.
The relevant parameters are η′ = 1.83, ω0 = 1.83 eV, and εm = 1.96, while the full set of parameters for the experimental curves is found in
Ref. [39].

already known Dicke dispersion relation beyond the SPT [32].
Another notable case is f ⊥

k,α,β = 0, corresponding to a pure
Hopfield model, neglecting the dipole-dipole interactions. For
such a model, the system of equations (G4) admits only the
trivial solution, which is consistent with the well-known im-
possibility for a pure Hopfield Hamiltonian to undergo a phase
transition.

APPENDIX H: CONNECTION TO EXPERIMENTAL DATA

In this final section, we further analyze and discuss the dif-
ferences in the models, comparing them with the experimental
data presented in Ref. [39], which refer to gold nanoparticle
crystals with normalized light-matter coupling strength in the
deep-strong coupling regime. Such a system falls under the
model described in the main text, given the highly local-
ized particles the polarization fields of which can be safely
considered nonoverlapping. In Fig. 6, we present the compar-

ison between the dispersion relations derived by a Dicke-like
model, a Hopfield-like model including the dipole-dipole
interactions, and a Hopfield-like model neglecting these inter-
actions. These data are referred to a renormalized light-matter
coupling η′ = 1.83, corresponding to η = 0.78. The disper-
sion curves differ substantially for such high couplings: while
the Hopfield model neglecting the dipolar interactions does
not predict any QPT, the Hopfield-like model including this
term is in the neighborhood of the ferroelectric QPT, whereas
in the Dicke-like model the SPT has already taken place.
Experimental measurements regarding the lower polariton are
reported in the figure (black dots), which perfectly fits the
theoretical predictions of the Hopfield-like model including
the dipolar interactions, thus demonstrating its validity. On
the other hand, these measurements are incompatible with
the predictions of the other models. No data are available for
the upper polariton given its high energy, which collocates it
above the onset of the gold interband transitions.
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