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Diffusion transients in motility-induced phase separation
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We numerically investigate normal diffusion in a two-dimensional athermal suspension of active particles
undergoing motility-induced phase separation. The particles are modeled as achiral Janus disks with fixed
self-propulsion speed and weakly fluctuating orientation. When plotted versus the overall suspension packing
fraction, the relevant diffusion constant traces a hysteresis loop with sharp jumps in correspondence with the
binodal and spinodal of the gaseous phase. No hysteresis loop is observed between the spinodal and binodal
of the dense phase, as they appear to overlap. Moreover, even under steady-state phase separation, the particle
displacement distributions exhibit non-Gaussian normal diffusion with transient fat (thin) tails in the presence
(absence) of phase separation.
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I. INTRODUCTION

The normal diffusion of an ideal massless Brownian par-
ticle is usually associated with the Gaussian distribution of
its spatial displacements. However, there are no fundamen-
tal reasons why the diffusion of a physical Brownian tracer
should be of the Fickian type [1–4]. For instance, displace-
ment distributions in real biophysical systems appear to retain
prominent exponential tails, even after the tracer has attained
the condition of normal diffusion. Such an effect, often termed
non-Gaussian normal diffusion (NGND), disappears only for
exceedingly long observation times (possibly inaccessible to
real experiments [1]), when the tracer’s displacement distribu-
tion eventually turns Gaussian, as dictated by the central limit
theorem [5]. Persistent diffusive transients of this type have
been detected in experimental and numerical setups [6–10].
The signature of NGND, along with a non-Gaussian velocity
distribution, has been previously reported in systems with spa-
tial heterogeneity [11–13]. The current interpretation of such
diverse NGND manifestations as transient effects postulates
the existence of one or more slowly fluctuating processes
affecting composition, geometry, and dynamics of the tracer’s
environment [14–20].
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In this paper we report the conspicuous manifestation
of NGND in a one-component suspension of identical
micro-swimmers undergoing phase separation. The term
micro-swimmers refers to either motile micro-organisms, like
bacteria, or their synthetic counterparts, typically two-faced
colloidal particles [for this reason called Janus particles (JP)],
both capable of self-propulsion under nonequilibrium con-
ditions [21–24]. Artificial swimmers are a topic of current
research as these can be designed and operated as microrobots
for specific applications [25,26].

When investigated collectively, a suspension of active par-
ticles may undergo phase separation even in the absence
of cohesive forces [27–29]. The ensuing motility-induced
phase separation (MIPS) is arguably the simplest nontrivial
collective feature that distinguishes active from passive parti-
cles [30]. MIPS involves the coexistence of two active phases
of different densities, similarly to what happens in a binary
fluid mixture below its critical temperature. It occurs as a com-
bined effect of steric interactions and self-propulsion, even
in the absence of pair alignment, interactions with solid sub-
strates, or thermal fluctuations [27,28]. Experimental evidence
of MIPS has been obtained both in biological and synthetic
systems, despite numerous technical difficulties [30].

Inspired by its similarity with equilibrium phase decom-
position, much effort has been made to describe MIPS in
terms of a nonequilibrium phase transition theory [30–32].
In particular, numerical observations [29] and field theory
arguments [33] confirm that the phase diagram of an active
suspension exhibits distinct binodal and spinodal lines: in
the binodal region enclosed between them, the suspension is
in a metastable homogeneous phase, which undergoes slow
phase separation through delayed nucleation and fast growth,
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while near and inside the spinodal region it separates by fast
coarsening.

Among the quantitative tools employed to numerically
characterize MIPS, diffusivity offers arguably the most direct
access to the microscopic dynamics underlying phase sepa-
ration. The asymptotic diffusion constant has been computed
as an overall indicator of both gas-liquid [27] and liquid-solid
separation [34]. Diffusivity was utilized also to analyze the
inner structure of the separating clusters [28].

In this paper we show that diffusion in an athermal active
suspension under MIPS may provide a more predictive tool
than previously reported. To avoid more complex phase di-
agrams [35,36], we restrict this report to a two-dimensional
(2D) suspension of active hard disks. Such disks undergo
normal diffusion no matter what the suspension phase. Upon
increasing the suspension packing fraction with uniform ini-
tial particle distribution, the diffusion constant exhibits a
sharp drop, which we interpret as the gaseous phase spinodal.
However, slowly ramping up and down the overall packing
fraction, produces a robust hysteresis loop delimited by the
binodal and spinodal of the gaseous phase. Vice versa, within
our numerical accuracy, the binodal region of the dense phase
appears to collapse, so that no hysteretic diffusion loop was
observed. Moreover, in the presence of MIPS, the corre-
sponding particle displacement distributions are leptokurtic
for extended time transients (i.e., tend to zero slower than a
Gaussian function), a clear-cut NGND manifestation.

II. MODEL

We simulated a two-dimensional suspension of N identical
achiral active JP’s modeled as disks of radius r0 and constant
self-propulsion speed v0, in a square box of size L with pe-
riodic boundary conditions. The dynamics of a single JP of
coordinates r = (x, y) obeys the simple Langevin equations,

ṙ = v0, θ̇ =
√

Dθ ξθ (t ). (1)

Here the orientation of the self-propulsion vector v0 =
v0(cos θ, sin θ ), measured with respect to the longitudinal x
axis, fluctuates subjected to the stationary, delta-correlated
noise source ξθ (t ), with 〈ξθ (t )ξθ (0)〉 = 2δ(t ). Following
Ref. [27], the suspension is assumed to be athermal, that is, we
neglect thermal fluctuations against the angular noise intrinsic
to the self-propulsion mechanism [37,38]. The reciprocal of
Dθ defines the correlation time, τθ , and the persistence length
lθ = v0/Dθ of a free self-propelled JP. For t � τθ , a free
JP would undergo normal diffusion with diffusion constant
Ds = v2

0/2Dθ , but non-Gaussian statistics.
At short distances the disks repel each other via the pair

potential [39],

Vi j = 4ε[(σ/ri j )
12 − (σ/ri j )

6 + 1/4] if ri j � rm

= 0 otherwise, (2)

where i, j = 1, . . . N are the pair labels, rm = 21/6σ , ε = 1,
and σ = 2r0 represents the “nominal” disk diameter. The
steric interactions of Eq. (2) are not corrected for hydrody-
namic effects [23,40]. To save computer time, the suspension
packing fraction, φ̄ = πr2

0N/L2, was varied by changing
the box size, while keeping the number and radius of the

disks fixed. The stochastic differential Eqs. (1) were inte-
grated numerically by means of a standard Euler-Maruyama
scheme [41].

As illustrated in Secs. III and IV the MIPS phenomenon
was readily reproduced at fixed v0 by increasing φ̄. Upon
approaching the MIPS onset at φ̄ = φ̄∗, short-lived aggregates
in the homogeneous phase anticipate the separation into a
gaseous (or dilute) and a dense phase: for φ̄ < 0.5 (φ̄ > 0.5)
a single large cluster (cavity) forms in the simulation box.
Most notably, tagged particles diffuse homogeneously across
the simulation box also in the presence of phase separation,
i.e., for φ̄ > φ̄∗, no matter what the cluster size.

A JP of speed v0 and persistence time τθ is characterized
by a mean ballistic path, or persistence length, lθ = v0τθ .
This dynamical length should be compared with the other
characteristic length scales in the homogeneous phase. As
known from the classical kinetic gas theory, they are (i) the
average particle distance, lL =

√
L2/N , and (ii) the mean-free

path between pair collisions, lc = L2/Nσ . We ignore here the
particle diameter, σ = 2r0, as we kept it comparatively small
throughout our numerical investigation. When expressed in
terms of the overall suspension packing fraction φ̄, the lengths
above read respectively

lL =
√

πr2
0/φ̄ and lc = πr0/2φ̄.

This implies that, if we keep φ̄ fixed and vary the particle
number N , the ratios lL/lθ and lc/lθ do not change.

Being MIPS a collisional mechanism [42], we limited
our investigation to suspension densities with lc � lL, that
is, on φ̄ values not exceeding the close-collision packing
fraction φcc = π/4, an upper bound slightly smaller than the
close packing fraction φcp = 2

√
3/π , often mentioned in the

literature.

III. PARTICLE SELF-DIFFUSION
AND MOTILITY-INDUCED PHASE SEPARATION

To characterize the particle diffusivity in the suspension,
we monitored two quantities. (i) The first is the particle mean-
square displacement (MSD), say, in the x direction, 〈
x2(t )〉,
with 
x(t ) = x(t ) − x(0). In view of the established ergodic
character of the diffusive process, ensemble averages, 〈· · · 〉,
were taken over all N suspension particles [40]. (ii) The sec-
ond quantity is the probability density function (pdf) of the
particle displacement 
x at time t , P(
x, t ). Both quantities
were computed after the suspension had reached an apparently
steady-state configuration. Note that P(
x, t ) displays a small
periodic oscillatory pattern due to the periodic boundary con-
ditions applied in our simulation. However, this effect does
not affect the findings reported in this paper.

Our numerical data [Fig. 1(a)] clearly show that for suf-
ficiently large observation times, typically t � τθ , the MSD
grows according to the Stokes-Einstein law, 〈
x2(t )〉 = 2Dt ,
which defines the particle self-diffusion constant in the sus-
pension, D. This constant is a function of φ̄: A sudden
diffusivity drop marks phase separation. This MIPS signature
is sharp enough to determine φ̄∗ as a function of v0. As
apparent in Figs. 1(b), 1(c), 2(c), and 2(d), no MIPS occurs
for v0 below a critical value, v∗

0 � 0.25, while for v0 > v∗
0 the
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FIG. 1. Particle mean-square displacement (MSD) in a suspen-
sions of N active JP’s of radius r0 = 1 and persistence time τθ = 100;
N = 9, 120. Packing fraction φ̄ was varied by tuning simulation box
size at fixed N . If not stated otherwise, the suspension was initially
randomly uniform. (a) MSD, 〈
x2(t )〉, vs t for v0 = 1 and different
φ̄. The short-time ballistic and the asymptotic diffusive branches
are fitted respectively by quadratic, Bt2, and linear, 2Dt , functions.
The fitting parameters D (in units of Ds = v2

0/2Dθ ) are plotted in
(b) vs φ̄. The fitting parameters B (in units of Bs = v2

0/2) vs φ̄ with
different v0 (see legend) are plotted in (c). The dashed lines in (b) and
(c) depicting the φ̄ dependence of D/Ds and B/Bs (for v0 = 1) are
fitted by the functions in the legends. Crosses in (b) display Eq. (4)
[see text for details].

dependence of φ̄∗ on v0 is rather weak. Similarly, Fig. 2(d)
shows that for a given v0 there exists an upper bound for the

FIG. 2. Gaseous and dense phases (denoted respectively by the
indices i = g, c): φ̄ dependence of (a) the phase number, ηi, and
volume, αi, fractions and (b) the phase packing fractions, φi, for
N = 104, v0 = 1, τθ = 100, and random uniform initial conditions.
As a consistency test, we fitted the data for αi and φi with straight
lines [dashed lines respectively in (a) and (b)] and made use of the
identity φi = φ̄ηi/αi (see text) to reproduce the φ̄ dependence of ηi in
(a). Fitting functions: αc = 1.5φ̄ − 0.14, φc = 0.75, and φg = 0.09.
Recall that αg + αc = 1 and ηg + ηc = 1. (c) Cluster, φc, gaseous
phase, φg, and MIPS onset, φ̄∗ and φ̄∗∗, packing fractions vs v0

for φ̄ = 0.45. For v0 < v∗
0 MIPS never occurs, while for v0 > v∗

0

our data suggest that φ (s)
g + φ (s)

c = 1. (d) Gaseous and cluster phase
binodal, φg and φc, vs Pe = 3v0/(2r0Dθ ) for N = 9, 120, v0 = 1
(blue symbols), and Dθ = 10−2 (red symbols).

angular diffusion constant Dθ , above which MIPS does not
occur.

In the homogeneous phase, the fitting ballistic, B, and
diffusion, D, constants of Fig. 1(a) appear to slowly decrease
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with increasing φ̄ up to the MIPS onset, φ̄ = φ̄∗. Standard
stoichiometric arguments suggest polynomial fitting laws,

D = Ds(1 − λDφ̄)2 and B = Bs(1 − λBφ̄), (3)

with Ds = v2
0τθ/2 and Bs = v2

0/2. Both fitting parameters λB

[in Fig. 1(c)] and λD [in Fig. 1(b)] are larger than the re-
ciprocal of the close-collisional packing fraction, φcp = π/4,
introduced in Sec. II, and λB > λD. We attribute this behavior
to the residual softness of the repulsive WCA potential. Simi-
larly to the diffusivity curves, MIPS drops of the curves B(φ̄)
are apparent, in quantitative agreement with the existence of a
critical value v∗

0 , below which MIPS is ruled out [see Figs. 2(c)
and 2(d)]. These findings are consistent with the conventional
analysis of the stationary local packing fraction distribution.

To analyze the tails of D(φ̄) for φ̄ > φ̄∗, we had recourse to
the two-phase characterization of Figs. 2(a) and 2(b) (also for
v0 = 1). After exceedingly long simulation runs, t = 105, the
dense and dilute phases of the suspension appear to be well
separated. We computed the volume, αi, and number, ηi, frac-
tions of both phases and the resulting phase packing fractions,
φi (i = g, c denoting, respectively, the gaseous and the dense
phases). To this purpose we first computed the corresponding
phase densities ρi, by selecting rectangular regions (as large
as possible) within either phases and then counting particles in
there. This procedure was repeated 10 times for different “tra-
jectories,” namely initial configurations and random number
sequences. This way we estimated the phase mean densities
as well as their standard deviations (under the simplifying
assumption that both phases were homogeneous). Finally, we
computed the phase areas, Ai, by imposing the two normaliza-
tion conditions ρcAc + ρgAg = N and Ac + Ag = L2.

By definition, φi = φ̄ηi/αi, as numerically checked in
Fig. 2(a). The densities of the two phases are confirmed to
be independent of φ̄ [28]. On neglecting the contribution from
the particles trapped in the cluster, the self-diffusion constant
for φ̄ > φ̄∗ can be approximated to

DMIPS(φ̄) = αgηgDs(1 − λDφg)2. (4)

Here, we made use of the fact that the gaseous phase rep-
resents a fraction ηg of the suspension and behaves as a
homogeneous phase with low packing fraction φg and frac-
tional volume αg. A comparison with the actual D data for
v0 = 1 is displayed in Fig. 1(b).

IV. HYSTERESIS LOOPS AND BINODAL POINTS

In order to clarify the meaning of φ̄∗, we notice that for
φ̄ > φ̄∗ the cluster volume fraction αc grows linearly with
the overall packing fraction. Our simulation results for αc(φ̄)
fit well (within numerical error) with the following empirical
relation,

αc(φ̄) = (φ̄ − φg)/(φc − φg), (5)

where φc(φg) is the packing fraction of a dense (dilute) one-
phase suspension, i.e., for αc = 1 [αc = 0, out of range in
Fig. 2(a)]. This simple graphical construction allows one to
quickly determine both binodal points, φg and φc, at fixed
v0, in good agreement with the simulation of Fig. 2(b). Their
dependence on v0, displayed in Fig. 2(c) for φ̄ = 0.45, qual-
itatively agrees with the simulation results of Refs. [28,29].

Note that we never increased v0 large enough to explore either
the full phase diagram [43,44] and/or the reentrant MIPS [45].
Furthermore, the spinodal curves displayed in Fig. 2(c) remain
unchanged as the system size increases up to N = 50 000.
For this large system size, we conducted simulations with a
duration of t = 20 000. However, these results may vary for
significantly larger system sizes and longer simulation runs,
which lie beyond our computational capabilities.

A. The gaseous phase spinodal and binodal

In contrast with Refs. [27,28], by starting with a uniform
particle distribution we never observed MIPS in the range
φ̄ ∈ [φg, φ̄∗], regardless of the (accessible) running time. The
outcome changed when we slowly increased (decreased) φ̄

over time. We did so by keeping N fixed and decreasing
(increasing) L stepwise after a fixed long running time 
t
(typically 
t = 5 × 104). Upon varying L, we rescaled the
suspension configuration accordingly. This produced the hys-
teresis loops of Fig. 3(a), which, for large N , approach the
ideal loop obtained by connecting the fitting functions of D
vs φ̄ in Fig. 1(b) [also see Eqs. (3) and (4)]. On increasing
φ̄, MIPS occurs, as anticipated above, at φ̄∗ (signaled by a D
drop), but upon decreasing φ̄ it only disappears for φ̄ � φg

(signaled by a fast D rise).
The reference or ideal hysteresis loop in Fig. 3(a) (blue

dashed lines) was obtained by extending the φ̄-function DMIPS

[see Eq. (4)] to φ̄ values below the MIPS threshold φ̄∗. On
making use of Eq. (5), the MIPS branch of the loop can be
written as

DMIPS

Ds
=

(
φc − φ̄

φc − φg

)2
φg

φ̄
(1 − λDφg)2, (6)

hence DMIPS(φg) = D(φc).
To check robustness of the hysteretic effect toward trans-

lational noises, we simulate Eq. (1) after adding a 2D
translational Gaussian noise term with strength D0, ξ(t ) =
(ξx(t ), ξy(t )) with 〈ξi(t )〉 = 0 and 〈ξi(t )ξ j (0)〉 = 2D0δ(t ) for
i, j = x, y, to Eq. (1). The hysteresis loop of Fig. 3(a) there
turned out to be quite robust; indeed, it appeared to vanish
only for D0 of the order of Ds. Vice versa, its area may be
quite sensitive to the suspension size, N .

Recall that our hysteresis protocol φ̄ was
increased/decreased stepwise at regular time intervals

t . Of course, we cannot rule out the possibility that the
resulting hysteresis loop shrinks and finally disappears
for exceedingly large 
t (in any case, well beyond our
computing capabilities). Similar remarks apply to even
simpler dynamically bistable systems, such as the motility
of a weakly damped, driven Brownian particle confined to a
one-dimensional washboard potential [46]. For the suspension
of Fig. 3(a), we repeatedly looped φ̄ in the range (0.05, 0.30),
that is, across the relevant binodal and spinodal of the gaseous
phase.

As we verified that the hysteretic effect is robust toward
translational noises, it has also been noticed that hysteresis
loops become sharper upon increasing the suspension size,
N , and the observation time, t . In conclusion, accurate data
for the D(φ) hysteresis loop suffice to self-consistently char-
acterize the gaseous binodal region at fixed v0. Further, the
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FIG. 3. (a) Hysteresis loop obtained by slowly ramping φ̄ up
and down across the gaseous binodal-spinodal range for v0 = 1 with
different N (see legends). The reference hysteresis loop (dashed
blue curve) has been closed by extending the lower fitting curve,
DMIPS(φ̄), in Fig. 1(b) down to φ̄ = φg. (b) D vs φ̄ in the upper
binodal region for different v0 and N = 20 000. For v0 = 1, D was
determined as in (a), by ramping φ̄ up (dots) and down (crosses); no
hysteresis loop was detected, as the upper binodal region appears to
collapse.

persistence of uniformly distributed short-time aggregates in
the suspensions with φ̄ � φ̄∗, suggests interpreting φ̄∗ as the
gaseous phase spinodal [28,29], φ̄∗ = φ(s)

g .

B. The cluster spinodal and binodal

A similar approach was adopted by simulating initially
homogeneous, dense suspensions and decreasing φ̄ below φc:
at a sufficiently low value of the overall packing fraction,
φ̄ = φ̄∗∗ < φc, the dense suspension developed coalescing
gaseous bubbles. Therefore, the curve φ̄∗∗ versus v0 displayed
in Fig. 2(c) is our best estimate of the cluster spinodal, φ(s)

c .
As illustrated in Fig. 3(b), at φ̄ = φ(s)

c , the curves D versus φ̄

exhibit a second drop, though not as sharp as at φ̄ = φ(s)
g , but

no hysteretic loop. In fact, cluster binodal and spinodal curves

run so close to one another that we could hardly separate them;
the upper binodal region appears to collapse (see Ref. [33] for
an analytical treatment). Remarkably enough, our numerical
data suggest that φ(s)

g + φ(s)
c = 1. As v0 approaches v∗

0 (from
above), both upper and lower pairs of binodal and spinodal
curves overlap.

V. NON-GAUSSIAN NORMAL DIFFUSION
AND PHASE SEPARATION

So far we have characterized MIPS in terms of particle
self-diffusion under the condition of normal diffusion, i.e.,
for t � τθ . The question now arises whether this criterion
suffices to define the relaxational properties of the suspension
steadystate. To address this issue we computed the particle
displacement distributions, P(
x, t ), at increasing time in-
tervals t . Examples are reported in Fig. 4, for noninteracting
particles [panel (a)], interacting particles with φ̄ < φ̄∗ [panels
(b) and (c)] and φ̄ > φ̄∗ [panel (d)]. In all cases, the dis-
placement pdf’s keep changing over time even in the normal
diffusion regime of Fig. 1(a), which implies that the particle
dynamics in large steady-state active suspensions involves
long transients, largely ignored in previous investigations.
Stationary Gaussian distributions were obtained, indeed, but
only for exceedingly long simulation runs. More remarkably,
when plotted versus 
x in the normal diffusion regime, the
transient 
x pdfs are platykurtic in the homogeneous phase
and leptokurtic under phase separation. With this notation
we mean that, in the presence (absence) of phase separation,
the 
x pdf’s have thinner (fatter) tails than the corresponding
asymptotic Gaussian distributions. It should be remarked that
the transition from platy- to leptokurtic transients is as not
much a signature of the gaseous spinodal crossing, φ(s)

g , as
a property of the cluster phase itself. Indeed, it has been
observed all along the lower (MIPS) branch of the hysteresis
loop for φg < φ̄ < φ(s)

g [compare Figs. 4(b) and 4(c)].

A. Heuristic fitting function bridging Gaussian
and non-Gaussian displacement distribution

For a more quantitative analysis of the transient 
x dis-
tributions, we had recourse to the heuristic fitting function,
P(
x/

√
t, β ), first introduced in Ref. [20] to bridge Gauss

(β = 2) and Laplace (i.e., exponential, β = 1) pdfs with the
same MSD, 2Dt , namely,

PG(
x, t ; D) = 1√
4πDt

exp

[
−
x2

4Dt

]
and

PL(
x, t ; D) = 1√
Dt

exp

[
− 
x√

Dt

]
.

In contrast to the diffusing diffusivity model [14], where the
limiting Laplace and Gaussian distributions are functions of
the sole diffusion constant D, a more realistic fitting procedure
needs at least one additional t-dependent parameter, β, to
capture the transient character of the displacement pdfs. To
this purpose, in Ref. [20], we started from the compressed
exponential function

p(δt ) = p0 exp [−(δt/δ0)β], (7)
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FIG. 4. Non-Gaussian normal diffusion as a MIPS signature.
(a) Particle diffusion in an active suspension of non-interacting JPs,
ε = 0, at different times t (see legend). The transient (platykurtic)
fitting curves, P(
x/

√
t, β ) with β = 3.6, 2.6, and 2.16, appear to

fit well the numerical data. As to be expected, the fitting parameters
B and D in the inset coincide with Bs = v2

0/2 and Ds = v2
0/2Dθ .

(b) 
x pdf for increasing t values and φ̄ > φ̄∗ (see legend); the
Gaussian (β = 2, solid) and Laplace distributions (β = 1, dashed)
for the D value fitting the corresponding data in Fig. 1(a) are drawn
for reference. In (c) and (d), 
x pdf’s are displayed for suspension
configurations with the same φ̄, but resting respectively on the up-

where δt = 
x/
√

t and β � 1. The scaling factor δ0 and the
normalization constant p0 were computed by imposing the
conditions∫ ∞

0
p(δt )dδt = 1,

∫ ∞

0
δ2

t p(δt )dδt = 2D (8)

to obtain the one-parameter ad hoc fitting function

P(δt , β ) = β

�
(

1
β

) 3
2

[
�

(
3
β

)
2D

] 1
2

exp

[
−

(
δ2

t

2D

�
(

3
β

)
�

(
1
β

)
) β

2
]
. (9)

This is the definition of the fitting functions, P(
x/
√

t, β ),
plotted in Fig. 4. The fitting parameter β is allowed to vary
with t ; it assumes values in the range 1 � β � 2 for lep-
tokurtic distributions (positive excess kurtosis) and β � 2 for
platykurtic distributions (negative excess kurtosis).

The β values displayed in Fig. 5 have been generated from
Eq. (9) by setting D equal to the diffusion constants that best
fitted the large-t diffusion data in Fig. 1(b) and then computing
β to get the best fit of the 
x/

√
t distributions at different t .

The numerical transients of a suspension of non-interacting
active particles for t � τθ , displayed here in Fig. 4(a), are well
reproduced by this fitting function. The P(
x/

√
t, β ) spikes

at short times, t < τθ , are centered around v0
√

t , as expected
in the ballistic regime.

We recall that when taking into account steric effects, all
distributions P(
x, t ) were computed after the active sus-
pension had reached its stationary state. This means that for
φ̄ > φ̄∗ we started counting t only after MIPS had occurred.
Leptokurtic transients with t-dependent β are a defining MIPS
property, as proven by the fact that NGND was observed along
the entire lower branch of the hysteresis loops of Fig. 3(a). An
example is illustrated in Figs. 4(b) and 4(c).

The transient character of the 
x distributions was thus
quantified by the t-dependent fitting parameter β. In Figs. 5(a)
and 5(b) we display β vs t for v0 = 1, randomly uniform
initial conditions and increasing values of φ̄. All curves ap-
proach the horizontal asymptote, β = 2, as expected; more
importantly, they do so from above for φ̄ < φ̄∗ and from below
for φ̄ > φ̄∗. The transition from platy- to leptokurtic transient
pdfs is the sharpest at short normal diffusion times. This
property provides an alternative but consistent signature of the
MIPS threshold (φ̄∗ = 0.245 ± 0.005 for v0 = 1). It should
be remarked that the transition from platy- to leptokurtic tran-
sients is not much a signature of the gaseous phase spinodal,
φ̄ = φ(s)

g , as a property of the cluster phase itself. Indeed, it
has been observed also along the lower (MIPS) branch of the
hysteresis loop for φg < φ̄ < φ(s)

g .
The transient displacement distributions, P(
x, t ), in a

low-density active suspension are governed solely by dif-
fusion in a homogeneous phase, whence their platykurtic
character [20]. Vice versa, under phase separation the JPs
tend to cluster in compact structures made of hexatic domains

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
per (β > 2) and lower (β < 2) branches of the hysteresis loop of
Fig. 3(a). Other simulation parameters are τθ = 100, v0 = 1, and
N = 9120. The estimated NGND transient time is τNGND ∼ 7.5 ×
105 (see text).
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FIG. 5. Non-Gaussian normal diffusion as a MIPS signature.
(a) NGND parameter β vs t for increasing values of φ̄. Phase co-
existence is clearly characterized by leptokurtic transient P(
x, t )
with fat tails (β < 2). (b) β vs t with φ̄ = 0.45 and increasing Dθ

(see legends). All simulations were performed assuming a randomly
uniform initial particle distribution. Other simulation parameters are:
τθ = 100, v0 = 1, and N = 9120. The estimated NGND transient
time is τNGND ∼ 7.5 × 105 (see text).

of different sizes. Due to simultaneous multiple collisions,
the instantaneous particle diffusion in such aggregates is
Gaussian, with diffusion constant in the range [0, Ds]. As
discussed in Ref. [20], correlations of the instantaneous diffu-
sion constant on a suitably long timescale suffice to produce
leptokurtic profiles of P(
x, t ) with 1 < β < 2. Here, such
correlations are related to the ultraslow particle diffusion in
the dense phase [28].

B. In-cluster diffusion constant and non-Gaussian
normal diffusion transient time

The NGND mechanism assumes that the suspension has
reached a (quasi)stationary state characterized by a normal
average MSD. In view of the ergodic property, the particle
diffusivity was averaged over the entire suspension, with the
corresponding self-diffusion constant D of Fig. 1(b) making
no difference between diffusion in the dilute phase and in the

FIG. 6. In-cluster diffusion in a suspension of N = 9120 active
JP’s with φ̄ = 0.60. All remaining simulation parameters are as in
Fig. 1. (a) Randomly selected particles (black dots) inside the steady-
state dense phase at t = 104; (b) MSD vs t of the selected particles
diffusing along the x axis without leaving the dense phase. The cor-
responding asymptotic in-cluster diffusion constant, Dc ∼ 10−3Ds.

dense phase. The structure of the dense phase, in particular,
is far from homogeneous [28] and keeps varying slowly with
time. As a consequence, the diffusion of a single particle may
appear normal over relatively short time intervals, but is in
fact time modulated on longer timescales. To this purpose,
we numerically estimated the asymptotic in-cluster diffusion
constant Dc by monitoring the spatial diffusion of a number of
particles randomly selected inside a steady-state cluster with
φ̄ > φ̄∗. Only trajectories of particles not leaving the cluster
during the entire simulation run were averaged to compute the
in-cluster MSD versus t (an example is displayed in Fig. 6).
The resulting diffusion constant, Dc ∼ 10−3Ds, weakly de-
pends on φ̄ and defines a characteristic NGND transient time,
τNGND ∼ αcL2/8Dc (α1/2

c L being the average cluster diame-
ter), in good agreement with the numerical data of Fig. 5.

VI. CONCLUSION

We characterized MIPS of an athermal, achiral active
suspension by looking at the particle diffusivity under
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steady-state conditions. The choice of using the overall sus-
pension packing fraction as tunable parameter has a practical
motivation, as in most applications the particle motility cannot
be varied at will, while their density can. Particle diffusion
under phase separation has been proven to show hysteretic and
NGND properties. Our main conclusions are

(1) The hysteresis loop of the curve D(φ) in the lower
binodal region, which allows a direct measure of φg and φ(s)

g .
(2) The peculiar properties of the upper binodal and

spinodal curves, which appear to overlap, thus suppressing
hysteresis in the upper binodal region. Our numerical data
also suggest a mirror symmetry of the spinodal curves with
φ(s)

g + φ(s)
c = 1.

(3) Non-Gaussian normal diffusion characterized motility
induced phase separation with leptokurtic transient distribu-
tions of displacements 
x. The associated NGND transient
time is almost four orders of magnitude larger than the ro-

tational relaxation time of a free JP. Further, we show that
NGND characterized MIPS also in the presence of hysteresis.
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