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In this Supplemental Material, we describe in more detail our experimental techniques used. Moreover, we also16

provide a detailed theoretical analysis of quantum temporal correlations (QTCs) in our parity-time (PT )-symmetric17

model.18

I. EXPERIMENTAL TECHNIQUES19

A. Initial state preparation and evolution operator decomposition20

A constant magnetic field of 5.3 G splits the adjacent Zeeman sublevels of S1/2 and D5/2 by 2π× 14.8 MHz and21

2π× 8.9 MHz, respectively, making the different S-D transitions frequency selective. A narrow linewidth, linearly22

polarized 729 nm laser is used to coherently drive the trapped ion, with a 45◦ angle between the laser wave vector k⃗23

and the magnetic field B⃗. The polarization direction of the laser forms a 65◦ angle with the k⃗-B⃗ plane. The target24

S-D transition can be addressed by adjusting the detuning between the laser frequency and the atomic frequency to25

zero. The associated Rabi frequency, ΩR, is set to about 2π× 10 KHz, which can be calibrated by experimentally26

fitting the Rabi oscillation. Then, the resonant coupling between each pair of the four Zeeman sublevels can be27

described by the equatorial rotations28

Rij(θ, ϕ) = exp
{
− iθ[cos(ϕ)σm

x + sin(ϕ)σm
y ]/2

}
, (S1)

where i and j indicate the addressed transition, σm
x , σm

y are the Pauli x, y matrices in the representation of σ̂z, and29

θ = ΩRt is the rotation angle. The rotation phase ϕ is the laser phase when |i⟩ is in the S manifold, but we need to30

add a negative sign when |j⟩ is in the S state.31

Taking advantage of the above elementary operations and the decomposition method described in Ref. [1], the initial32

state preparation and unitary evolutionary operation in our experiment can be realized by applying an appropriate33

series of S-D equatorial rotations. All the state preparation starts from the same state |1⟩ = (1, 0, 0, 0)T . We introduce34

the metric operator η = 1
Ω [J,−iΓ; iΓ, J ] for ĤPT [2], where J and Γ are the coupling and loss (gain) rates of our35

PT -symmetric system, and Ω =
√
J2 − Γ2 denotes the effective oscillation frequency. To simplify the mathematical36

expressions, we define the parameter sin(α) = Γ/J . The initial states used in our experiment and their preparation37

sequences are summarized in Table I, where η means the metric operator we have introduced.38

The dynamic evolution after the state preparation is described by a unitary operator U(α, τ), which can be decom-39

posed into four equatorial rotations in the experiment. The concrete form and experimental execution sequence of40

U(α, τ) can be written as41
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U(α, τ) =

 cos(τ) −i cos(α) sin(τ) sin(τ) sin(α) 0
−i cos(α) sin(τ) cos(τ) 0 − sin(τ) sin(α)
− sin(τ) sin(α) 0 cos(τ) −i cos(α) sin(τ)

0 sin(τ) sin(α) −i cos(α) sin(τ) cos(τ)

 (S2)

= R23(2α, 0)R12(2τ, 0)R34(2τ, 0)R23(2α, π),

where τ = Ωt is the scaled time. For different ratios of Γ/J , we can achieve the corresponding U(α, τ) by choosing42

the appropriate rotation angles and rotation phases for the sequence of equatorial rotations given in Eq. (S2).43

B. State detection and population normalization44

In the detection process, we only need to extract the populations of the states |1⟩ and |2⟩, which are labeled45

as p1 and p2. However, the populations may be distributed in the four states during the evolution. Two equatorial46

rotations and two fluorescence detection processes are employed to distinguish the states |1⟩ and |2⟩ from the subspace47

consisting of |3⟩ and |4⟩. The first step includes a π-pulse rotation R14(π, 0) and a subsequent fluorescence detection;48

then another R14(π, 0) is used to swap the states back and the fluorescence detection is applied again in the second49

step. Regarding the results obtained in above steps, the bright state in the first step denotes the population out of50

the subspace HS = {|1⟩ , |2⟩}, the dark state in the first step combined with the bright state in the second step gives51

the population p1, and the dark states in both steps give the result for p2.52

In the experiment, the total population p = p1+p2 for HS exhibits periodic oscillatory behavior, which is a quantum53

version of the power oscillation phenomenon in classical PT -symmetric system. By introducing the normalized54

populations pn1 = p1

p1+p2
and pn2 = p2

p1+p2
, we can experimentally obtain the normalized dynamics of a PT -symmetric55

qubit described by Eq. (3) of the main text.56

TABLE I. Target initial states and the corresponding preparation sequences.

Unnormalized target initial state Preparation sequence State in figures

 0

1

 ⊕ η

 0

1


R34(θ2, π) · R23(θ1, 0) · R12(π, 0)

θ2 = 2 arccos

(
tan(α)√

sec(α)2+tan(α)2

)
θ1 = 2 arccos

(
cos(α)√

2

)
 1

−i

 ⊕ η

 1

−i


R34(θ2, π) · R12(θ1, 0) · R14(θ0, 0)

θ2 = π/2

θ1 = π/2

θ0 = 2 arcsec
(√

1 + (sec(α) − tan(α))2
)

Fig. 3

Fig. 4(a-d)

 1

i

 ⊕ η

 1

i


R34(θ2, 0) · R12(θ1, π) · R14(θ0, π)

θ2 = π/2

θ1 = π/2

θ0 = 2 arctan(tan(α) + sec(α))

Fig. 4(a-d)

 cos(γ) − sin(γ)

−i cos(γ) − i sin(γ)

 ⊕ η

 cos(γ) − sin(γ)

−i cos(γ) − i sin(γ)



R34(θ2, π) · R12(θ1, 0) · R14(θ0, 0)

θ2 = 2 arcsin

(
cos(γ)−sin(γ)−sin(α)(cos(γ)+sin(γ))√

3−cos(2α)−4 cos(2γ) sin(α)

)
θ1 = 2 arccos

(
cos(γ)−sin(γ)√

2

)
θ0 = 2 arccos

(
cos(α)√

2−2 cos(2γ) sin(α)

)
γ = arcsin

(√
J−Γ
2J

)
Fig. 4(f)
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C. Quantum state tomography57

To study the accelerated dynamics shown in Fig. 3, a quantum state tomography technique is used to study58

the dynamic evolution of the PT -symmetric qubit, which can obtain the full information of the Bloch vector at59

each moment. The z component of the Bloch vector, denoted as ⟨σ̂z⟩, can be directly extracted by experimentally60

measuring the difference of the normalized populations pn1 and pn2 . The x (y) component, denoted as ⟨σ̂x⟩ (⟨σ̂y⟩),61

can be obtained by the combination of an extra equatorial rotation R12(3π/2, π/2) [R12(π/2, 0)] and the following62

detection procedure of ⟨σ̂z⟩. Finally, the maximum likelihood estimation method is utilized to reduce the statistical63

and systematic errors.64

II. MEASUREMENT OF THE CORRELATION FUNCTIONS65

A. Prepare-and-measure scenario66

In our experiments, we use the “prepare-and-measure scenario” [3] to obtain the QTCs, which has been employed67

before for studying the Leggett-Garg inequalities (LGIs) in nitrogen-vacancy (NV) centers [4], ions [5], and supercon-68

ducting qubits [3]. In the following, we explain in detail this widely used method.69

When the projection measurement is non-destructive, i. e., the system is left in the eigenstate corresponding to the70

measurement outcome, we use consecutive measurements to obtain two-time correlators (such procedure was named71

as “direct-measure scenario” in Ref. [3]). However, in practice, the projective measurements are usually destructive,72

failing to leave the system in the ideal eigenstate. Examples include fluorescence readout of the qubits encoded in73

NV centers [6] or in energy level of trapped ions [7], free induction decay in nuclear magnetic resonance (NMR) [8],74

as well as absorptive detection of photons [9]. To circumvent this obstacle, the prepare-and-measure scenario can be75

implemented in two equivalent procedures [3, 10, 11], see Fig. S1.76

 
FIG. S1. The prepare-and-measure scenario.

First procedure: prepare the initial state |ψ0⟩ → perform the evolution for a period T → implement the intermediate77

destructive measurement, obtaining a measurement outcome but destroying the corresponding eigenstate→ re-prepare78

the eigenstate corresponding to the outcome → continue to evolve for a period T → implement the second destructive79

measurement → repeat all the previous steps many times, then compute a desired two-time correlator.80

Second equivalent procedure consists of three steps:81

Step 1 : prepare the initial state |ψ0⟩ → perform the evolution for a period T → implement the destructive mea-82

surement → repeat all the previous steps many times, then compute the conditional probabilities p(− | ψ0) and83
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p(+ | ψ0).84

Step 2 : prepare the system in eigenstate |−⟩ (|+⟩) → perform the evolution for a period T → implement the85

destructive measurement → repeat all the previous steps many times, then compute the conditional probabilities86

p(− | −) and p(+ | −) [p(− | +) and p(+ | +)].87

Step 3 : calculate the two-time correlator by combining these conditional probabilities.88

The experimental scheme to obtain the two-time correlators in this work [i. e., Eq. (5) in main text] was designed89

according to the second procedure of the “prepare-and-measure scenario”. It should be noted that, whether the90

studied system is classical or quantum, the “prepare-and-measure scenario” holds only on the premise of an “ideal-91

state preparation” (Fig. S1) [i. e. the re-prepared state is the same as the state left by measuring the system using an92

imaginary non-destructive measurement, more technical details can be found in Refs. [3, 10]].93

The system considered in our experiment is a simple two-level system, which only consists of two distinguishable94

states, with the one-to-one correspondence between the measurement outcomes (− and +) and the distinguishable95

states. Therefore, the premise of an “ideal-state preparation” is satisfied in our model, and the experimental method96

for obtaining the two-time correlators in this work is robust.97

B. Experimental procedure for obtaining the quantum correlation functions98

Our test of the LGI chooses three scaled time instants, labeled as τ1 = 0, τ2 = T and τ3 = 2T . The two-time99

correlation functions, C12, C13, and C23, can be indirectly measured via the conditional probability pτ (Q
′ |Q), for100

observing the measurement outcome Q
′
at the scaled time τ given that we deterministically initialize the qubit in101

the eigenstate |Q⟩. In the experiment, p
T
(+|−) [p

2T
(+|−)] is measured by preparing the initial state in |−⟩y, then102

applying the evolution operation U(α, T ) [U(α, 2T )], and finally measuring the probability distribution of the physical103

observable σ̂y. The conditional probabilities p
T
(−|−) and p

2T
(−|−) can be obtained by the normalization relations104

p
T
(+|−) + p

T
(−|−) = 1 and p

2T
(+|−) + p

2T
(−|−) = 1, respectively. Similar procedure is performed to obtain the105

conditional probabilities p
T
(+|+) and p

T
(−|+). Based on the above experimental data, C12, C13, and C23 can be106

obtained using Eq. (5) in the main text. In Fig. S2, we show our experimental results for the obtained conditional107

probabilities and the correlation functions, and the error bars are calculated by the binomial distributions of pn1 and108

pn2 .109

III. MEASUREMENT OF THE QUANTUM WITNESS W110

To measure the quantum witness111

W = |p′(Q)− p(Q)| (S3)

experimentally, p′(Q) and p(Q) should be addressed separately. The probability p(Q), which indicates the probability112

for observing the outcome Q without earlier measurement, can be obtained by preparing the initial state113

|ψ⟩0 = −
√
J − Γ√
2J

|+⟩y +
√
J + Γ√
2J

|−⟩y , (S4)

then applying the evolution operation U(α, τ = π/4), and finally measuring the normalized population pny+ =
⟨σ̂y⟩+1

2 ,114

where we have chosen Q = 1. However, obtaining the probability115

p′(Q) =
∑

Q0=±1

p(Q|Q0)p(Q0) (S5)

with an earlier measurement applied to the initial state requires several different measurement processes. The prob-116

ability p(Q0 = +1) [p(Q0 = −1)] is obtained by measuring pny+ =
⟨σ̂y⟩+1

2 (pny− =
1−⟨σ̂y⟩

2 ) right after the initial state117

|ψ⟩0 is prepared. The conditional probability p(Q = 1|Q0 = +1) [p(Q = 1|Q0 = −1)] requires the measurement of118

pny+ for the initial state |+⟩y (|−⟩y) followed by the unitary evolution operator U(α, τ = π/4). Experimental results119

for p(Q), p(Q0) = ±1, and p(Q = 1|Q0 = ±1) are shown in Fig. S3. The quantum witness W can be obtained using120

the definition of W in the main text.121
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FIG. S2. (color online). Conditional probabilities and two-time correlation functions. [(a)-(c)] Measurement results of the
conditional probabilities pT (+|+) (a), pT (+|−) (b), and p2T (+|−) (c) versus the measurement time interval T for Γ/J = 0, 0.6
and 0.95. [(d)-(f)] Correlation functions C12 (d), C23 (e), and C13 (f) versus the measurement time interval T for Γ/J = 0, 0.6
and 0.95. Error bars represent the standard deviation.

IV. CONSTRUCTION OF THE PT -SYMMETRIC SYSTEM122

A. Theoretical construction of the unitary operator U(α, τ)123

According to the theory in Ref. [2], a PT -symmetric system can be reinterpreted as a subsystem of a Hermitian124

system with higher dimension. In our experiment, we use two 2D subsystems HS and HA, which are expanded by125

{|1⟩ , |2⟩} and {|3⟩ , |4⟩} to construct a 4-dimensional Hilbert space HS⊕HA. The unitary operator U(α, τ) in Eq. (S2)126

for the 4-dimensional space can be constructed by the Naimark dilation method [2] as127

U =

(
F G
−G F

)
, (S6)

where128

F = cos(τ)Im2 − i
Ω

J
sin(τ)σm

x , (S7)

129

G =
Γ

J
sin(τ)σm

z , (S8)

Im2 denotes the 2D identity matrix, and σm
x,y,z are the Pauli matrices.130
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FIG. S3. (color online). Probabilities for obtaining the quantum witness. [(a)-(d)] Measurement results of the probabilities:
p(Q = 1) (a), p(Q0 = ±1) (b), p(Q = 1|Q0 = 1) (c), and p(Q = 1|Q0 = −1) (d) as a function of Γ/J . Error bars represent the
standard deviation.

B. Theoretical construction of the metric operator η131

Based on the definition of the metric operator η, it should meet the condition132

ηĤPT − Ĥ†
PTη = 0, (S9)

where Ĥ†
PT is the self-adjoint Hamiltonian of ĤPT in Eq. (2) of the main text. According to Refs. [2, 12], the metric133

operator can be easily constructed by taking advantage of the eigenvectors (labeled as |E+⟩ and |E−⟩) of ĤPT and134

has the form of η = (ΨΨ†)−1, where Ψ = [|E+⟩ , |E−⟩] is the constructed matrix by arranging the two eigenvectors as135

columns.136

C. Choice of the initial state and the measurement observable137

The Hamiltonian we choose is the most typical form for studying quantum PT dynamics, with which previous138

works [13–15] have shown the nonuniform dynamics of skewed Rabi oscillations with the choice of the loss or gain139

state as the initial state, i. e.,140

|2⟩ fast evolution−−−−−−−−−−→ |1⟩ slow evolution−−−−−−−−−−→ |2⟩ fast evolution−−−−−−−−−−→ |1⟩ · · · (S10)

To enhance QTCs, we require accelerated dynamics in one-way flip, i. e., a state |ψ0⟩ evolves first slow, then fast to its141

orthogonal state
∣∣ψ⊥〉. As seen from Eq. (S10), one process that can meet our requirements is: initially prepared as142

the intermediate state of the |1⟩ → |2⟩ flip, after that the system evolves first slow, then fast to the intermediate state143

of the |2⟩ → |1⟩ flip. By calculations, we can obtain the required initial and final states as |1⟩ − i |2⟩ and |1⟩ + i |2⟩,144

respectively. Correspondingly, the measurement observable can be chosen as σ̂y. Then, the enhancement of QTCs145

based on these choices can be further analyzed.146

V. THEORETICAL DERIVATION OF THE EVOLUTION SPEED AND THE CORRELATION147

FUNCTIONS148

A. Dynamics of the nonlinear von Neumann equation149

Non-Hermitian systems have exhibited excellent ability of the acceleration of the quantum state evolution [16]. Such150
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acceleration effect can be theoretically explored using the Bloch equations. Consider a two-level system governed by151

the PT -symmetric Hamiltonian,152

ĤPT = Jσ̂x + iΓσ̂z, (S11)

where J > Γ refers to the PT -symmetric unbroken region. Starting from an initial state, the dynamics of the153

normalized density matrix ρ̂ can be described by the following nonlinear von Neumann equation [17]154

˙̂ρ = −iJ [σ̂x, ρ̂] + Γ{σ̂z, ρ̂} − 2Γρ̂[Tr(σ̂z ρ̂)]. (S12)

The density matrix ρ̂ is ρ̂ = (Î + r⃗ · ˆ⃗σ)/2, where the Bloch vector r⃗ = (rx, ry, rz) = (⟨σ̂x⟩ , ⟨σ̂y⟩ , ⟨σ̂z⟩). Then based on155

Eq. (S12), the Bloch equations can be derived as:156

ṙx = −2Γrxrz,

ṙy = −2(Jrz + Γryrz),

ṙz = 2(Jry − Γr2z + Γ).

(S13)

In the PT -symmetric unbroken region, when the initial state is chosen as |−⟩y, the analytical solution for the above157

Bloch equations can be found as:158

rx = 0,

ry = −Γ + J cos(2τ)

J + Γcos(2τ)
,

rz = −
√
J − Γ

√
J + Γ sin(2τ)

J + Γcos(2τ)
,

(S14)

where τ = t
√
J2 − Γ2 is the scaled time. And when the initial state is |+⟩y, the analytical solution has the form of:159

rx = 0,

ry =
Γ− J cos(2τ)

−J + Γcos(2τ)
,

rz =

√
J − Γ

√
J + Γ sin(2τ)

J − Γ cos(2τ)
.

(S15)

The dynamics of the Bloch vector described by Eq. (S14) manifests the acceleration effect of the PT -symmetric qubit160

as shown in Fig. 3.161

B. Evolution speed of the PT -symmetric qubit162

For two pure qubit states |ψ⟩ and |ϕ⟩, the Fubini-Study metric is defined as163

s = arccos(|⟨ψ|ϕ⟩|). (S16)

When preparing the initial state in |−⟩y, the normalized quantum state governed by the PT -symmetric Hamiltonian164

ĤPT can be written as165

|ψ(τ)⟩ = −
√
J − Γ sin(τ)√
J + Γcos(2τ)

|+⟩y +
√
J + Γcos(τ)√
J + Γcos(2τ)

|−⟩y . (S17)

Using s = arccos(|⟨ψ(τ)|−⟩y|), the evolution speed can be derived as166

v =
ds

dτ
=

∣∣J2 − Γ2
∣∣∣∣√J2 − Γ2(J + Γcos(2τ))

∣∣ . (S18)

In the experiment, the states obtained are usually mixed. In this case, the Fubini-Study metric for two density167

matrices ρ1 and ρ2 are computed as168
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s = arccos

(
Tr

√√
ρ1ρ2

√
ρ1

)
. (S19)

In Fig. 3(d) of the main text, s is indirectly obtained from the data of the Bloch vectors (rx, ry, rz) [as shown in169

Figs. 3(a)-3(c)] via Eq. (S19). The error propagation formula can be calculated as170

∆s =
∆ry

2
√

1− |ry|2
. (S20)

Because ry(τ → 0) = −1, the coefficient 1

2
√

1−|ry|2
is very large in this limit. Thus, a significant deviation from the171

theory appear for τ → 0 in Fig. 3(d).172

C. Analytical forms of the correlation functions173

Using the results of Eqs. (S14) and (S15), the analytical forms for the conditional probabilities can be expressed as:174

p
T
(+|+) =

(J − Γ) cos2(τ)

J − Γ cos(2τ)
,

p
T
(−|+) =

(J + Γ) sin2(τ)

J − Γ cos(2τ)
,

p
T
(+|−) =

(J − Γ) sin2(τ)

J + Γcos(2τ)
,

p
T
(−|−) =

(J + Γ) cos2(τ)

J + Γcos(2τ)
,

p
2T
(+|−) =

(J − Γ) sin2(2τ)

J + Γcos(4τ)
,

p
2T
(−|−) =

(J + Γ) cos2(2τ)

J + Γcos(4τ)
.

(S21)

Then the two-time correlation functions can be obtained as175

C12 = p
T
(−|−)− p

T
(+|−) =

Γ + J cos(2τ)

J + Γcos(2τ)
,

C13 = p
2T
(−|−)− p

2T
(+|−) =

Γ + J cos(4τ)

J + Γcos(4τ)
,

C23 = p
T
(+|−)p

T
(+|+)− p

T
(+|−)p

T
(−|+)− p

T
(−|−)p

T
(+|−) + p

T
(−|−)p

T
(−|−)

=
JΓ2 + cos(2τ)

{
J(J2 + JΓ− Γ2)− Γ cos(2τ)

[
− J2 + JΓ + Γ2 + J2 cos(2τ)

]}
[
J − Γ cos(2τ)

][
J + Γcos(2τ)

]2 .

(S22)

Finally, the Leggett-Garg parameter is computed as176

K3 = C12 + C23 − C13. (S23)

The results of Eq. (S22) apply to the PT -symmetric unbroken region. In the broken region, by solving the Bloch177

equations Eq. (S13), under the condition J ≤ Γ, we can obtain the analytical two-time correlation functions as:178

C12 =
Γ + J cosh(2τ)

J + Γcosh(2τ)
,

C13 =
Γ + J cosh(4τ)

J + Γcosh(4τ)
,

C23 =
JΓ2 + cosh(2τ)

{
J(J2 + JΓ− Γ2)− Γ cosh(2τ)

[
− J2 + JΓ + Γ2 + J2 cosh(2τ)

]}
[
J − Γ cosh(2τ)

][
J + Γcosh(2τ)

]2 .

(S24)
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The maximal QTC in our model can be found by numerically maximizing K3 when varying the measurement interval179

τ in both the PT -symmetric unbroken and broken regions, as shown in Fig. 4(e) of the main text.180

Besides the above results, based on Eqs. (S14) and (S15), we can also derive the analytical form of the quantum181

witness in the unbroken region,182

W =
J + Γ

2J
, (S25)

which is shown in Fig. 4(f) of the main text.183
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