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Fixing detailed balance in ancilla-based dissipative state engineering
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Dissipative state engineering is a general term for a protocol which prepares the ground state of a complex
many-body Hamiltonian using engineered dissipation or engineered environments. Recently, it was shown that
a version of this protocol, where the engineered environment consists of one or more dissipative qubit ancillas
tuned to be resonant with the low-energy transitions of a many-body system, resulted in the combined system
evolving to reasonable approximation to the ground state. This potentially broadens the applicability of the
method beyond nonfrustrated systems, to which it was previously restricted. Here we argue that this approach
has an intrinsic limitation because the ancillas, seen as an effective bath by the system in the weak-coupling limit,
do not give the detailed balance expected for a true zero-temperature environment. Our argument is based on the
study of a similar approach employing linear coupling to bosonic ancillas. We explore overcoming this limitation
using a recently developed open quantum systems technique called pseudomodes. With a simple example model
of a one-dimensional quantum Ising chain, we show that detailed balance can be fixed, and a more accurate
estimation of the ground state obtained, at the cost of two additional unphysical dissipative modes and the
extrapolation error of implementing those modes in physical systems.
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I. INTRODUCTION

Quantum computers are expected to be able to efficiently
simulate [1] the dynamics of complex many-body quantum
Hamiltonians. However, finding the ground state of such a
Hamiltonian is not so easy [2], and it is believed that even a
fully fault-tolerant quantum computer will not be able to find
the ground state of every arbitrary quantum, or even classical,
Hamiltonian in less than exponential time. Nevertheless, there
is the potential that a quantum algorithm can still perform
this task more efficiently than any known classical algorithms.
Such an algorithm would have important applications in topics
ranging from quantum chemistry and quantum materials to
classical optimization problems.

One approach for finding such ground states is that of
dissipative state engineering [3–5]. In this scenario, the many-
body Hamiltonian is encoded digitally on a universal quantum
computer, or engineered in some physical system in an
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analog form, and an artificial zero-temperature environment
is designed to simulate the cooling of this system to the
ground state (similar approaches have been developed that,
when combined with intrinsic symmetries, allow dissipation
to prepare complex entangled states [6]). Initial conceptu-
alizations of this method, in applications to finding ground
states, argued it could be useful also in nonerror corrected
quantum computers, as the dissipative process would be self-
correcting. However, the initial proposal [3] concentrated only
on frustration-free systems.

Recently, several new methods aiming to overcome this
limitation appeared in the literature, including an approach
based on weak measurement [2] and one using filter functions
and Lindbladian dissipation [7]. A more heuristic approach
using resonant ancillas as dissipative baths has been proposed
in Refs. [8–10], and was recently implemented experimentally
in [11]. In those works, one or more dissipative ancillas are
coupled to one or more parts of the many-body system and
the total new composite system is evolved until thermalization
occurs. Ideally, as the ancillas remove energy from the system,
the long time behavior of this composite system should push
the original many-body system close to its ground state, even
in the presence of frustration.

In Ref. [9], the authors found that a qubit ancilla was
efficient at cooling several many-body example systems close
to their ground state, in particular the quantum Ising model
and the Heisenberg model. Optimality was found by choosing
the energy of the ancilla close to the lowest energy transition
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of the system E01 = E1 − E0, where E0 is the ground-state
(manifold) energy and E1 the first excited state. In addition, as
one might intuitively expect, larger coupling and dissipation
made the cooling process faster. However, using too-large
values inevitably reduced the efficiency of the approach due
to hybridization and Zeno effects, respectively.

In optimal cases, for the examples studied therein, a fidelity
of around 90% was observed. What is the intrinsic limitation
at play? It is useful to explicitly look at the bosonic-ancilla
variant of this approach to understand what this limitation
might be, and to overcome it. The coherent dynamics of the
composite system and bosonic ancilla are given by a total
Hamiltonian

H = Hs + Hp + Hint, (1)

where Hs is the many-body system Hamiltonian, Hp = ω1a†
1a1

is the ancilla Hamiltonian which we write as a single bosonic
mode, Hint = λ1Q(a1 + a†

1) is the interaction involving an
operator Q on the space of the system, and λ1 is a coupling
strength. Note that our use of linear coupling to the bosonic
ancilla is not completely equivalent to the qubit-ancilla ap-
proach used in Ref. [9], even in the low-excitation limit
because of the more generalized bath-coupling operator they
employ therein.

The dissipative dynamics of the ancilla is given by a single
Lindblad dissipator which removes energy from the ancilla
mode at a rate γ1 using just local operators acting on the
ancilla itself,

L[ρ] = γ1
[
aρa† − 1

2 (a†aρ + ρa†a)
]
, (2)

such that the equation of motion of the composite system
is a standard “operator-local” Lindblad master equation ρ̇ =
−i[H, ρ] + L[ρ].

Returning to the question of what limits this kind of
dissipative-ancilla-based cooling, with this bosonic formula-
tion it is fairly straightforward to draw an analogy between
the dissipative ancilla and weak coupling to a structured envi-
ronment. The standard theory of open quantum systems tells
us that normally the steady state is determined by the detailed
balance condition [12–15], i.e., the balance between the power
spectrum of the environment at positive and negative frequen-
cies, S(ω) = exp[βω]S(−ω), where β = 1/kBT is the inverse
temperature (here we use kB = h̄ = 1 throughout).

The power spectrum of the ancilla presented above can be
found as S(ω) = ∫ ∞

−∞ eiωtC(t ) dt , where C(t ) = 〈X(t )X(0)〉
is the correlation function of the free-bath coupling operator
X = λ1(a + a†) around the free-bath steady state. For the
single damped bosonic mode defined above, the result is, at
zero temperature, simply a Lorentzian S(ω) = 2λ2

1γ1/[(ω −
ω1)2 + γ 2

1 ].
To achieve a steady state close to the ground state it is

required that

S(−ω) = 0, (3)

but this requirement is clearly not satisfied for this Lorentzian
power spectrum of the dissipative ancilla whose dissipative
dynamics is given by Eq. (2). Instead, the system sees an
effective frequency-dependent temperature

Teff (ω) = ω/log[S(ω)/S(−ω)] (4)

FIG. 1. The power spectrum of a zero-temperature dissipative
discrete quantum system does not directly correspond to that of a
true zero temperature environment. For the purposes of dissipative
state engineering, this limits its ability to bring a complex many-body
system to its ground state. To compensate, here we take advantage
of the ability of pseudomodes to contribute negative terms to an
effective total power spectrum and suppress the negative frequency
domain which causes unwanted heating. Here we show the target
power spectrum extracted from S(ω) = 2J (ω)[nth (ω) + 1], the three
effective power spectra of the ancillas, and sum of the three Sfit (ω) =
Sa1 (ω) + Sa2 (ω) + Sa3 (ω), giving the fit to S(ω). The inset shows a
zoom around zero frequency, and parameters are those used in Fig. 2.

Note, however, that with such a frequency-dependent effective
temperature, a Gibbs-like distribution is not guaranteed in
the steady state. Nevertheless, this effective temperature Teff

serves as a useful goal function to minimize when designing
a bath which will take a system close to its ground state.

II. FIXING DETAILED BALANCE

As discussed in Refs. [16–23], fixing this broken detailed
balance is difficult using additional dissipative ancillas alone,
as they essentially add more positive-valued Lorentzians to a
given power spectrum. In fact, fixing detailed balance requires
the addition of negative terms to the total power spectrum, not
more positive contributions. Fortunately, this is exactly what is
provided by the powerful pseudomode approach. This method
allows us to consider ancillas which generate negative valued
correlation functions, thereby adding Lorentzians with nega-
tive amplitude to the effective power spectrum. This allows
us to negate unwanted positive contributions as needed and
to generate a power spectrum that is as close as possible to
be zero valued at negative frequencies, as per Eq. (3) and as
demonstrated in Fig. 1.

The details of this method have been discussed elsewhere
[16,20,24,25], and we will just summarize the main results
needed for this work in Appendix B. We assume that the
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pseudomode method is attempting to model a true continuum
environment at zero temperature with a spectral density given
by

J (ω) = λ2γω/
[(

ω2 − ω2
0

)2 + γ 2ω2
]
. (5)

As shown in Ref. [16], this generates a bath correlation func-
tion composed of a resonant term and an infinite sum of
Matsubara frequencies which can either be fit by two expo-
nentials and represented by two additional ancillas or encoded
by an imaginary-valued stochastic field [24]. For simplicity,
here we focus on the former, but the latter approach can also
be applied, reducing the number of ancilla modes at the cost
of averaging over the classical noise.

Given the decomposition discussed in Ref. [16], we acquire
a pseudomode model of the original system coupled to three
ancillas,

Htot = Hs + Hpm + Hs−pm, (6)

where Hs is the many-body system Hamiltonian, Hpm =∑3
j=1 ω ja

†
j a j , and

Hs−pm = Q

⎡
⎣λ1(a1 + a†

1) + λ̄

3∑
j=2

λ j (a j + a†
j )

⎤
⎦ (7)

is the interaction between the system and pseudomodes. Here
Q is an operator on the space of the system and λ j is the
coupling strength between the system and pseudomode j.
The parameter λ̄ has the value i, causing the Hamiltonian to
be non-Hermitian. Later we will use this parameter to ana-
lytically continue results obtained using physical couplings
(λ̄ ∈ R) to the complex plane [26].

As before, the dissipative dynamics of the ancilla is based
on only local jump operators,

L[ρ] =
3∑

j=1

γ j

[
a jρa†

j − 1

2
(a†

j a jρ + ρa†
j a j )

]
. (8)

Now the equation of motion of the composite system ρtot is a
time-local and operator-local equation ρ̇tot = −i[Htot, ρtot] +
L[ρtot], but it is technically not a Lindblad master equation be-
cause λ̄ is evaluated at an imaginary value. In addition, it is
sometimes termed a pseudo-Lindblad equation to account for
the fact that complex conjugation of the complex Hamiltonian
is not performed.

Importantly, the bath spectral density is chosen so that the
first ancilla, a1, has properties akin to those of the qubit ancilla
defined in Ref. [9]. As discussed earlier, on its own, it would
induce an incorrect detailed balance and the system would see
a nonzero effective temperature. By introducing the additional
ancillas a2 and a3, detailed balance is (partially) restored and,
together, these modes can induce the system to relax to a state
closer to its true ground state.

However, several issues do remain that prevent this method
from obtaining perfect ground-state fidelity. First, the use of a
fit to obtain the properties of a2 and a3 necessarily induces a
residual error in the effective power spectrum. For our pur-
poses, this is detrimental, as it amounts to unwanted small
but nonzero values of S(ω) for ω < 0. This can be further

mitigated by the addition of more pseudomodes. The conver-
gence of this error, in the number of modes, depends on the
fitting approach employed [27], and the optimality of different
methods will be explored in future work. Second, these modes
do not act like a perfect weak-coupling bath, and hybridization
can still induce a finite error (we will explore an approach to
mitigate this later). Finally, while the operator-local nature of
Eq. (8) [compared to a global master equation, see Eq. (A1)] is
an important feature for its practical implementation [5,10,11]
in quantum hardware (e.g., by being emulated with additional
ancillas which are periodically reset [28,29]), a physical im-
plementation of the system’s interaction with the modes a2

and a3 cannot be done directly, since the interaction is unphys-
ical by definition. Fortunately, this issue can be circumvented
by analytical continuation of results obtained from purely
physical models [26,30,31].

To demonstrate the utility of this approach, we now focus
on the main example provided in Ref. [9]: An Ising spin chain
where the effective bath is coupled to a single spin at the end
of the chain. The Ising model, which constitutes the many-
body system, is given by,

Hs = g
N∑

j=1

σ ( j)
z − J

N−1∑
j=1

σ ( j)
x σ ( j+1)

x . (9)

In traditional terminology, g is the transverse field and J is the
coupling strength. A paramagnetic phase g > J is separated
from a ferromagnetic phase g < J by a critical point at g = J .
We couple this many-body system via one edge spin to the
pseudomode environment defined above, using the operator
Q = σ (N )

x + 1.1σ (N )
y + 0.9σ (N )

z (adapted from [9], where it
was chosen to break symmetries in the system), and compare
it to both the single-qubit ancilla results found in Ref. [9] and
the single bosonic ancilla, i.e., without the additional a2 and a3

modes. We focus on the J > g phase first, and use parameters
close to those outlined in Ref. [9], to find the dynamics and
steady-state properties of the average energy and ground-state
fidelity. As in that work, when the ground state is degenerate,
we consider a projection onto that subspace to define the
fidelity. Note that the symbol E01 in Figs. 2 and 3 and refers
to the gap between that subspace and the first excited state
relative to it.

First, in Fig. 1, we plot the target power spectrum S(ω)
and the effective power spectra generated by the three ancillas
used in the pseudomode model which together form Sfit (ω).
The two unphysical modes a2 and a3 contribute negative-
valued power spectra and thus correct the detailed balance of
the single resonant mode a1.

Next, in Fig. 2, we show the dynamics [32,33] of the single-
qubit ancilla model, single-bosonic ancilla model, and the full
pseudomode model. The steady state of the full pseudomode
model approximates the true ground-state energy more ac-
curately, with a fidelity of around 99%. This is shown more
clearly in Fig. 3, where we find optimal parameters very close
to those used for the single-qubit ancilla but at a bath reso-
nance frequency slightly higher than the system’s low-energy
gap E01.

As mentioned, residual deviations from the true steady
state can arise from hybridization and fitting errors. This
can be verified by comparing to a solution obtained by a
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FIG. 2. For the Ising model in Eq. (9) we show results for N = 5,
J = 5g, and total effective bath spectral density parameters ω0 =
1.2E01, γ = 3.8g, and λ = 1.15g

√
� with � = √

ω2
0 − (γ /2)2. We

see that the qubit ancilla model (with more generalized couplings, see
Ref. [9]) and the single bosonic ancilla model are both similarly lim-
ited in their ability to minimize the energy difference (〈HS〉 − EG)/g,
where EG is the ground-state energy of the of the Ising model. The
three-mode pseudomode model (solid turquoise curve) provides a
better result, and, for intermediate times, faster than the equiva-
lent Bloch-Redfield solution, Eq. (A1), using Sfit (ω) (dashed green
curve). The dark red, dashed curve shows the result of a simula-
tion using extrapolation from a purely physical pseudomode model.
This is based on fitting to solutions obtained using nine different
real values for the coupling λ̄, and extrapolation with an order-six
polynomial.

Bloch-Redfield master equation [34,35] as shown in Fig. 2
(see Fig. 4 in the Appendix for another example). Typi-
cally, the hybridization error can be seen in the difference
between the Bloch-Redfield and pseudomode steady-state re-
sults, while the fitting error is demonstrated by the difference
in the steady-state Bloch-Redfield and true ground-state en-
ergy. In Fig. 2, we see that the hybridization error dominates
[the Bloch-Redfield results saturate around t = 100 (1/g), at
(〈HS〉 − EG) ≈ 10−2g]. The hybridization can be minimized
by reducing λ at the cost of a longer cooling time, while the
fitting error can be reduced with additional ancillas.

The parameter regime used in Figs. 2 and 3 involves a
twofold degeneracy of the ground-state subspace of the Ising
model, and a very large energy gap to the first excited state.
A more challenging regime is for J = 1.4g, which is closer to
the critical point of this model, and where the energy gap is
much smaller.

If we still classify the two-lowest, now nondegenerate,
energy states as the target subspace, then we see results
comparable to Ref. [9]; but if we really want to distinguish
the two lowest-lying states, then it is more challenging. The
small gap limits the magnitude of bath couplings we can use
while avoiding hybridization. This means that we need a much
longer cooling time to achieve a high fidelity result. To avoid
this, we can take advantage of the controllable nature of the
artificial environment. In Fig. 4, an initially large coupling

FIG. 3. Here we show, for the full pseudomode model, the fi-
delity with respect to the ground state of the Ising model as a function
of time and bath resonance frequency ω0, using the same parameters
as in Fig. 2. The inset shows the fidelity at the maximum time evolved
for in the contour plot, tmax = 50 (1/g). In contrast to a single mode
(which reaches around 90% fidelity), the full model obtains high
fidelity for a range of ω0 around E01, reaching a maximum slightly
off-resonance due to the corresponding reduced hybridization (see
Fig. 6 for more details). For large detunings, it takes longer to reach
the same target fidelity due to the lower effective dissipation rates
induced by the ancillas.

strength is used to drive the system close the ground state.
Then, a secondary quench of the coupling strength to a much
weaker value is made, to eliminate residual excitations due
to hybridization with the bath. This suggests the combina-
tion of ancilla-based dissipative state-engineering with other
state-engineering approaches, like adiabatic methods [36], or
variational techniques [37,38], might also be viable.

III. ANALYTICAL CONTINUATION

To implement pseudomodes in real experiments, either via
analog systems or digitally with ancillas and measurements
[11,39], the pseudomodes themselves must have real physical
parameters. They demonstrably do not, so at first glance what
gives them their ability to efficiently represent a physical bath
also makes them fundamentally “unphysical” and unfit for this
purpose.

However, in a recent work [26] we demonstrated how the
results of the general unphysical pseudomode model could be
obtained from a physical model via analytical continuation
(see also Refs. [30,31]). In essence, this can be done by re-
peating the quantum simulation of our model with several (Ns)
different choices of only physical couplings. One then extracts
the observable of interest, such as the ground-state energy,
from these Ns simulations. From this data, the observable as a
function of the real-valued coupling parameters can be fitted
with an appropriate fitting function, and then extrapolated into
the complex-coupling domain.

How far one needs to extrapolate into the complex plane
determines the range of real values of couplings that one needs
to implement. In addition, the complexity of the functional
dependence of the desired observable on the coupling param-
eter determines the required order of the fitting polynomial M,
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FIG. 4. For the Ising model used in the main text, we present re-
sults for J = 1.4g, and total effective bath spectral density parameters
ω0 = 4E01, γ = E01. The curves labeled “strong-coupling” refer to
a coupling λ = 0.23g

√
�, where � = √

ω2 − (γ /2)2, while curves
labeled “weak coupling” use λ = 0.11g

√
�. The curve labeled time

dependent refers to a case where strong coupling is used up until
t = 800(1/g) and is then switched to weak coupling. The curves
labeled BR are obtained from a Bloch-Redfield master equation sim-
ulation Eq. (A1) using the same power spectrum fit used to inform the
pseudomode models. We see the steady state of both weak and strong
examples using the Bloch-Redfield approach demonstrate the same
residual error as the full pseudomode model, illustrating the origin of
this error is coming from the power spectrum fit, not hybridization
(which is not included in the Bloch-Redfield model, compare to
Fig. 6). This error can be further mitigated by including additional
pseudomode ancillas, to achieve a better fit.

which in turn determines how many (Ns > M) experiments
one must perform.

In Fig. 2, we demonstrate an extrapolation of the ground-
state energy as the observable of choice. In this example, we
solve the three-mode pseudomode model with purely real cou-
pling strengths between the system and modes 2 and 3 for a set

of Ns = 9 equally spaced values for the parameter λ̄ ∈ [0, 1]
in Eq. (7), and then extrapolate to the desired unphysical
pseudomode model at λ̄ → i using a sixth-order polynomial.
We note that this procedure is only possible because of
the unusual nature of the pseudo-Lindblad equation which
does not enforce Hermitian conjugation on its complex
parameters.

In Fig. 2, we see an almost perfect result for the extrapola-
tion. However, understanding the general errors that may arise
from this approach is not trivial. In Ref. [26], we found that
the total error of such an extrapolation consists of a bias error
(how precisely the polynomial of order M captures the true
functional form of the data), and a stability error (due to the
finite knowledge we can obtain about given observable in an
experiment, i.e., the measurement error). Importantly, the bias
error decreases with M, while the number of measurements
needed to suppress the stability error grows exponentially
in M, leading to an interesting trade-off between these two
quantities.

As a consequence, the general viability of this protocol
relies on how the polynomial order M (needed to obtain a
result with a particular accuracy) depends on the size N of
our system. Largely, this is determined by the complexity of
the extrapolated observable as a function of λ̄ and thus may
be problem dependent. For the example used in this work, we
demonstrate this dependence numerically in Fig. 5 and find
nonmonotonic behavior in the fitting error of the ground-state
energy as a function of N for larger values of M. Interestingly,
the relative error of the ground-state energy actually decreases
with N , suggesting that some extensive quantities are easy to
obtain with this fitting procedure.

In addition, Ref. [26] provides a loose upper bound on
the error of the fitting procedure in the limit of large Ns,
which scales linearly as a function of the system evolution
time (multiplied by the frequency

∑
j λ

2
j/γ j , see Appendix E1

in Ref. [26]). This result implies that in the worst case, if
the thermalization time is too long, then we need a more
complex fitting function (i.e., a higher-order polynomial M),
which then implies that we needed higher precision in the
measurements to obtain the data. In these cases, our method
of achieving faster thermalization using time-dependent cou-
plings may be employed to speed up the overall thermalization
time, see Fig. 4.

In addition to this extrapolation procedure, there is an ad-
ditional cost in digital simulations [40] that arises from using
bosonic instead of qubit ancillas due to the increased Hilbert
space size. In the examples we show here, the resonant (a1)
mode is truncated at three Fock states, while the unphysical
modes (a2 and a3) are truncated at just two Fock states, indi-
cating the demands in the weak-coupling regime are minimal.
The two modes truncated with two Fock states can be imple-
mented with additional single-qubit ancillas, while the mode
truncated with three Fock states can be implemented using the
symmetric subspace of two qubit ancillas.

For example, we can consider the correspondence |0〉 =
|00〉, |1〉 = [|01〉 + |10〉]/√2, and |2〉 = |11〉, where bare
states correspond to the original Fock states, and overbar
states belong to the qubits’ local basis. The Holstein-
Primakoff transformation provides a simple recipe for
equating operators in these two spaces. Evaluating it explicitly
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FIG. 5. For the Ising model defined in the main text with J = 5g, we show how the extrapolation process, for obtaining the full pseudomode
results from an ensemble of physical models, works as a function of system size N . Here we are using the same parameters as in Fig. 2 in
the main text: ω0 = 1.2E01 and λ = 1.15g

√
�, where � = √

ω2 − (γ /2)2. We choose γ = 0.37ω0 (which matches the value used in Fig. 2
of the main text when N = 5). The top left figure (a) shows the deviation of the extrapolated total system energy from the desired value
given by the full unphysical pseudomode model |δ〈H (N )

S 〉| for different values of N and order of fitting polynomial M. Similarly, the top-right
figure (b) shows the same quantity scaled by the total energy. In the unscaled quantity, (a) we see a nonmonotonic trend, implying the required
polynomial, and hence the error, does not increase indefinitely with N . Similarly, for the rescaled extensive energy, (b) the relative error
generally diminishes with N . To show this in more detail, in the bottom left (c) we show the actual fitting process as a function of λ̄, M, and N ,
while in the bottom right (d) we show the error in the fitting function as a function. In (c) all fitting curves overlap (so the legend only indicates
the original data curves, not the fits), but we do see an increase in curvature of the ground-state energy as N is increased. In (d), importantly,
while for M = 3, the size N = 3 has a clearly lower fitting error than N = 6; for M = 6 they essentially have the same order error (see inset).

for this case allows us to approximate the bosonic annihilation
operator as

a1 =
[

1√
2
|0〉〈0| + |1〉〈1|

](
σ

(1)
− + σ

(2)
−

)

= 1√
2
|00〉(〈01| + 〈10|) + (|01〉 + |10〉)〈11|. (10)

The interaction term we need to implement in a quantum
simulation is our system coupled to a quadrature of this mode,
X = a1 + a†

1. In a digital simulation, where Hamiltonian dy-
namics are implemented with Troterrization, this term will
involve three-qubit gates, whose ease of implementation de-
pends on the underlying hardware [41].

Finally, the optimal parameters found in Figs. 2 and 3
indicate that we need coupling strengths smaller than the
system’s low-energy gap, and a spectral density peak slightly
off-resonant from the that same gap. To find this optimal
choice of resonance frequency, following Ref. [9], one can
take advantage of the fact that this choice also gives the fastest
cooling time (see Fig. 3), implying that a simple optimization
procedure can be applied to find this parameter.

IV. DISCUSSION AND CONCLUSIONS

The potential use of artificial environments in quantum in-
formation is becoming a new avenue of research, allowing for
novel approaches to state engineering [9] and error correction
[42]. Here we showed that the use of a single bosonic ancilla is
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FIG. 6. (a) shows the fidelity for the same system parameters
as in Fig. 2 of the main text, but with a resonant spectral density
ω0 = E01 to enhance the hybridization effect, lowering the over-
all fidelity found in the steady state. The solid turquoise curve is
the result for the full pseudomode model, while the dashed yellow
curve is the result found when using just the single pseudomode
a1. We see here clearly two sources of error: nonzero temperature
in the single pseudomode case and hybridization error in both the
full pseudomode model and the single pseudomode case. This can
be verified by plotting the Bloch-Redfield result using Sfit (ω) =
Sa1 (ω) + Sa2 (ω) + Sa3 (ω) (green dots) and Sa1 (ω) (blue dots). Fur-
thermore, the red dashed line shows the prediction of a Gibbs thermal
state for Teff (ω = E01) (but one which does not include states not
connected to the groundstate by the bath coupling operator). The
black dotted line shows the fidelity of the ground state of a mod-
ified system Hamiltonian which includes just the a1 mode [i.e.,
Eq. (1) in the main text], verifying that the dominant error in the
full pseudomode is hybridization with that resonant mode. Panel
(b) shows the effective frequency dependent temperature of just the
single resonant mode (see main text), Ta1 (ω) and that of the full fit
Tfit (ω) = ω[log(Sfit (ω)/Sfit (−ω))]−1 The blue vertical line marks the
ground-state energy gap E01.

fundamentally limited by its broken detailed balance, but this
can be corrected by the use of additional unphysical ancillas
without needing knowledge of the system eigenstates. We
demonstrated this with a standard quantum Ising model and
verified that it can be implemented with real physical systems
and extrapolation.

There remain open questions regarding the limits of what
local coupling to an ancilla can achieve [39,43–48] (e.g.,
systems which obey the eigenstate-thermalization-hypothesis
are hypothesized to have local operators whose off-diagonal
matrix elements are exponentially suppressed [44,49], see
Appendix A for more details), and about the growth of errors
in the extrapolation technique for general problems. The latter
adds to the resource cost of implementing this method on
actual quantum hardware. For the example studied here, we
showed that the error in fitting the ground-state energy showed
nonmonotonic behavior in N , potentially limiting the required
polynomial degree M and thus limiting the measurement over-
head in a given experiment.

However, in general, the feasibility of the extrapolation
procedure ultimately depends on the functional form of
the observable. In addition, extracting many observables,
like those defining the full quantum state [50,51], is much
more challenging than a single extensive observable like the
ground-state energy. On the other hand, if the purpose of
the dissipative protocol is to generate highly entangled states
as input for some other algorithm, then one could consider
incorporating that algorithm into the ensemble of physical
simulations, and only perform analytical continuation on the
final outputs, when needed.
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APPENDIX A: BORN-MARKOV-SECULAR MASTER
EQUATION

In the limit of very weak coupling, we expect the effective
environment described by the pseudomodes to be equivalent
to that describable by a Born-Markov-secular (BMS) mas-
ter equation. Typically, in deriving such a master equation,
one must take a secular Bloch-Redfield like approach, also
sometimes termed a “global master equation” approach, that
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relies on diagonalizing Hs and defining collapse operators that
connect eigenstates with rates proportional to the bath power
spectrum [34,35],

ρ̇s(t ) = −i[Hs, ρs(t )]

+
∑
i, j>i

S(
 j,i )ci, jL[di j]ρs(t )

+
∑
i, j>i

S(−
 j,i )ci, jL[d†
i j]ρs(t ), (A1)

where, for simplicity, we have assumed no degeneracies in
the eigenstates of Hs (this can be generalized easily to factor
in degenerate subspaces, but leads to a more opaque notation,
so we omit it here) and neglect the Lamb-shift term (which
we verified has little influence) and the zero-frequency de-
phasing term. Also, di j = |ψi〉〈ψ j | is an annihilation operator
connecting eigenstates of Hs; ci, j = |〈ψi|Q|ψ j〉|2 is the matrix
element connecting states i and j through the system operator,
Q, that couples to the bath; and 
i, j = Ej − Ei. Moreover,
L[x]ρ = xρx† − 1

2 [x†xρ + ρx†x] is the standard Lindbladian.
For a physical environment, one typically has S(ω) =

2J (ω)[nth(ω) + 1], where J (ω) is the bath spectral density
(assumed antisymmetric in ω) and nth(ω) is the Bose-Einstein
distribution 1/[exp(βω) − 1]. Together with the detailed-
balance condition, these imply that the steady state is the
thermal Gibbs distribution ρ = exp(−βHs )/Z , where Z is the
partition function which gives normalization.

This BMS master equation on its own does not help us
construct a practical protocol, as we need to diagonalize Hs to
construct the collapse operators, which defeats the point of a
dissipative state engineering algorithm. Hence, initial attempts
were restricted to frustration-free problems, where one only
needed to diagonalize small local Hamiltonians to obtain a
dissipator that guarantees the global ground state as the steady
state [3].

Nevertheless, understanding the limitations of cooling pro-
cesses as described by this master equation can be useful
to understand some of the limitations of methods like the
pseudomode approach. For example, in correcting detailed
balance the pseudomode ancilla-based approach is attempting
to mimic this Bloch-Redfield global BMS master equation de-
scription of an environment and evolve the system to its
ground state [but without the need to know the system’s eigen-
states that a direct implementation of Eq. (A1) would need].

In practice, pseudomodes are not doing this exactly, as in
the parameter regimes we employ the BMS approximation is
partially violated, and we see faster cooling rates, at inter-
mediate times, than a BMS alone would imply (see Fig. 2
in main text). However, it is useful to consider the limits of
the Bloch-Redfield master equation itself. The cooling rates
of such an equation are set by the power spectrum of the
effective environment and the matrix elements of the local
operators that couple to the environment. The overlap between
local operators and energy eigenstates is typically expected
to diminish with increasing N , reducing the speed at which
cooling occurs [43], or causing cooling protocols to get stuck
in local minima [39].

For example, systems obeying the eigenstate-
thermalization-hypothesis may have local operators whose

off-diagonal matrix elements are exponentially suppressed
[44,49],

ci, j = |〈ψi|Q|ψ j〉|2 ∝ �(E )−1/2, (A2)

where �(E ) is the density of states at energy E = (Ej +
Ei )/2. This quantity can potentially scale as a function of
the size of the Hilbert space 2N in the middle of the system
spectrum, implying, in the worst case, an exponential sup-
pression of the timescale of the cooling process relying on
coupling to local operators for some classes of Hamiltonians
[45–48]. Whether this directly affects ancilla-based cooling
schemes, which is more influenced by band-edges and for
which the Born and Markov approximations do not directly
hold, remains an interesting avenue for extending this type of
approach.

APPENDIX B: THE PSEUDOMODE METHOD AND
FITTING BATH PROPERTIES

The pseudomode method was originally discussed in the
context of cavity-QED by Garraway [17]. It was recently
extended and generalized by ourselves and others [16,18–
22] to deal with general bosonic and fermionic continuum
environments. The derivation of this approach, largely done
in the context of modeling non-Markovian and nonperturba-
tive environments, relies on several simple assumptions: the
original free environment is Gaussian, the coupling between
system and environment is linear in bath operators, and the
system and environment are initially in a product state.

The pseudomodes themselves are designed to produce the
same free bath correlation functions (or, equivalently, the
same free-bath power spectrum, see Fig. 1 in the main text),
as some predefined continuum environment one is attempting
to model. With the above assumptions in place, the method is
only limited in accuracy by the ability of a finite number of
pseudomodes to accurately reproduce some given continuum-
bath correlation functions.

Here we are not directly concerned with their ability to
mimic nonperturbative effects, as we want to minimize effects
related to coherent system-environment hybridization, which
may reduce the ground-state fidelity. For the implementation
here, we are also less constrained than when attempting to
replicate the effects of some true environment with a given,
physically relevant, spectral density. Instead, we just want to
make sure that the positive-frequency part of the bath power
spectrum has appropriate properties that can drive the system
close to its ground state and the negative-frequency part has a
magnitude that is as close to zero as we can make it.

Nevertheless, it is convenient to start with what might be
thought of as a physical spectral density, as it makes our
general analysis and control of the optimal bath properties a
little easier. It also allows us to compare how well the full
method works to that with just a single ancilla, similarly to
the approach in Ref. [9]. Therefore, we take the initial bath to
be described by an underdamped Brownian-motion spectral
density,

J (ω) = λ2γω[(
ω2 − ω2

0

)2 + γ 2ω2
] . (B1)

043229-8



FIXING DETAILED BALANCE IN ANCILLA-BASED … PHYSICAL REVIEW RESEARCH 6, 043229 (2024)

This has the convenient property that at zero tempera-
ture we can decompose the power spectrum into S(ω) =
Sa1(ω) + M(ω), where the first contribution is a large positive
Lorentzian term,

Sa1 (ω) = λ2�

�[(ω − �)2 + �2]
, (B2)

with � = γ /2 and � =
√

ω2
0 − �2. The second term, M(ω), is

an infinite series of Matsubara terms, with negative amplitude.
These latter terms do directly what we need them to do: They
pull the zero-frequency part of the total power spectrum to
zero. At zero temperature these latter terms become

M(ω) =
∫ ∞

−∞
dteiωt M(t )

M(t ) = −γ λ2

π

∫ ∞

0
dx

xe−xt

[(� + i�)2 + x2][(� − i�)2 + x2]
.

(B3)

To be able to represent this with finite number of
Lorentzians, and hence finite number of pseudomodes, we
resort to fitting. In practice one can either fit the total S(ω)
with said Lorentzians, just the M(ω) component, or fit M(t )
with a set of exponentials. Here we do the latter, but in more
general cases there maybe some advantage to alternative fit-
ting procedures [52].

For practical purposes here we restrict ourselves to just two
fitting terms,

Mfit (t ) ≡ Ma2 (t ) + Ma3 (t ) = λ2
2e−γ2|t | + λ2

3e−γ3|t |

� |M(t )| , (B4)

which in this form directly gives us the parameters used in the
pseudomode master equation in the main text which encodes
the extra sign of the Matsubara contribution M(t ) thanks to the
parameter λ̄ → i. These also give rise to the two contributions
plotted in the power spectrum in Fig. 1 of the main text as

Saj (ω) = λ̄2
∫ ∞

−∞
eiωt Maj (t ) dt, (B5)

for j = 2, 3.
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