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Long-range four-body interactions in structured nonlinear photonic waveguides
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Multiphoton dynamics beyond linear optical materials are of significant fundamental and technological
importance in quantum information processing. However, it remains largely unexplored in nonlinear waveguide
QED. In this work, we theoretically propose a structured nonlinear waveguide in the presence of staggered
photon-photon interactions, which supports two branches of gaped bands for doublons (i.e., spatially bound-
photon-pair states). In contrast to linear waveguide QED systems, we identify two important contributions
to its dynamical evolution, i.e., single-photon bound states (SPBSs) and doublon bound states (DBSs). Most
remarkably, the nonlinear waveguide can mediate the long-range four-body interactions between two emitter
pairs, even in the presence of disturbance from SPBSs. By appropriately designing system’s parameters, we can
achieve high-fidelity four-body Rabi oscillations mediated only by virtual doublons in DBSs. Our findings pave
the way for applying structured nonlinear waveguide QED in multi-body quantum information processing and
quantum simulations among remote sites.

DOI: 10.1103/PhysRevResearch.6.043226

I. INTRODUCTION

The past few years have witnessed a surge of interest
in the field of waveguide quantum electrodynamics (QED)
in structured linear optical materials without photon-photon
interactions, leading to intriguing phenomena such as un-
conventional bound states, non-Markovian evolution and
chiral emissions [1–15]. In these linear optical waveguides,
dynamical properties are governed and investigated at the
single-photon level [16–23]. However, once quantum many-
body interactions between individual .photons are introduced,
standard descriptions based on single-photon properties are
inadequate [24–36]. These nonlinear quantum optics phe-
nomena can find important applications in fields of quantum
information and metrology [32,37–41].

In artificial platforms, such as nanophotonic structures and
circuit-QED, strong nonlinear interactions can be experimen-
tally realized [42–47], providing ideal platforms for exploring
quantum effects at the level of few photons and effects of
many-body statistics on waveguide QED [48–61]. Recently,
a remarkable supercorrelated radiance phenomenon, beyond
the conventional super- and subradiance, was reported in a
nonlinear waveguide QED system with nonstructured bath
[62]. Until now, in spite of potentiallyinteresting physics
hidden behind it, the field of nonlinear waveguide QED
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remains largely unexplored. Along previous works in this field
[62–65], a natural question arises: How does the structured
nonlinear waveguide QED system influence the dynamics in
the presence of a strong photon-photon interaction.

Here we consider emitter pairs interacting with a structured
nonlinear waveguide by designing a staggered onsite photon-
photon interaction. In contrast to previous work [62–65],
we find the formation of gaped bands for doublons, i.e.,
spatially bound-photon-pair states [66–79]. We reveal the ef-
fects of both doublon bound states (DBSs) and single-photon
bound states (SPBSs) on the evolution dynamics of the hy-
brid system. Most remarkably, we demonstrate long-range
four-body interactions, mediated by DBSs, between distant
emitter pairs. We find that a high-fidelity four-body interaction
requires two emitter pairs for a separation larger than the
size of the SPBS to prevent undesired single-photon-mediated
transitions. Our study shows a remarkable different physics in
the nonlinear waveguide QED regime in contrast with conven-
tional linear systems.

II. DOUBLON ENERGY BANDS

We consider a nonlinear waveguide constructed by an array
of coupled cavities in the presence of strong photon-photon
interactions (see Fig. 1). In the rotating frame of the cavity
frequency, the Hamiltonian of the waveguide is written as

Hw = −J
∑

n

(a†
nan+1 + H.c.) − 1

2

∑
n

Una†
na†

nanan, (1)

where J is the bosonic hopping strength, Un denotes the
Kerr nonlinearity at site n, and a†

n is the annihilation op-
erator of nth cavity. To realize a structured environment,
we introduce the staggered photon-photon interaction with
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FIG. 1. Schematic of the nonlinear QED setup, with a waveguide consisting of coupled cavity arrays in the presence of a Kerr nonlinearity.
Here J is the photonic hopping strength, and U± = Uc ± Um denotes the staggered onsite photon-photon interaction. The emitter pair e1,2 is
separated from the pair e3,4 by a distance Dq, while de

1 and de
2 are the distance of each emitter pair. In the dynamical evolution, a doublon

bound state (DBS), corresponding to a virtual exchange process of two photons with correlated length Lc, is considered, accompanied by
single-photon bound state (SPBSs) due to the virtual exchange of a single photon.

Un = Uc + (−1)nUm (where Uc ± Um is the staggered inter-
action strength). We numerically calculate the two-photon
spectrum as a function of Uc for N = 100 with periodic
boundary condition (by setting J = 1), as shown in Fig. 2(a).
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FIG. 2. (a) Two-excitation spectrum of the Hamiltonian Hw ver-
sus the mean value Uc. The curves represent the upper and lower
bounds of the doublon energy bands in Eq. (23). (b) Doublon’s
spectrum for Uc = 4J and Um = 0.05Uc. The emitter-pair frequency
2ωq lies inside the doublon band gap with a detuning δII (2δI ) to the
lower band (scattering states). The cyan (pink) region corresponds to
the scattering states (doublon band gap).

Besides continuum scattering states, there exist discrete dou-
blon energy bands with bound photon pairs. In addition, the
doublon bands become distinctly separated from the scatter-
ing states for Uc > 4J .

The doublon spectrum can be analytically solved by defin-
ing the center-of-mass and relative coordinates, i.e., xc =
(m + n)/2 and r = m − n, with m and n representing the
positions of the two photons. Given that the Hilbert space is
confined to a two-photon subspace, the nonlinear term can be
expressed as

HU = V (xc, r) = [Uc + Um cos (πxc)]δr0, (2)

where δr0 is a delta function that is nonzero solely when r = 0
and xc is restricted to be integers. It is important to mention
that HU is modulated periodically in the xc direction. Applying
the Bloch theorem, the eigen wave function of the doublon can
be written as

�(m, n) = 1√
N

exp(iKxc)uK (xc, r), (3)

where uK (xc, r) is a periodic function satisfying uK (xc, r) =
uK (xc + 2, r). In our study, the nonlinearity varies between
nearest-neighbor sites, which results in the Fourier series
having only two terms in the xc direction. We utilize a wave-
function ansatz in a separable variable form,

uK (xc, r) = ψ
(0)
K (r) + eiπxcψ

(1)
K (r). (4)

The dispersion relation and wave functions are derived by
solving the Schrödinger equation

[H0 + δr0HU ]

[
ψ

(0)
K

ψ
(1)
K

]
= E

[
ψ

(0)
K

ψ
(1)
K

]
. (5)

First, we start from the nonperturbation part, ignoring HU . The
first term in Eq. (4) is

H0eiK m+n
2 ψ

(0)
K (m − n) = −J

∑
±

[
eiK m±1+n

2 ψ
(0)
K (m ± 1 − n)

+ eiK m+n±1
2 ψ

(0)
K (m − n ∓ 1)

]
, (6)

043226-2



LONG-RANGE FOUR-BODY INTERACTIONS IN … PHYSICAL REVIEW RESEARCH 6, 043226 (2024)

which can be simplified as

H0ψ
(0)
K (r) = −2J cos

(
K

2

) ∑
±

ψ
(0)
K (r ± 1). (7)

Similarly, the second term in Eq. (4) is

H0ψ
(1)
K (r) = −2J cos

(
K + π

2

) ∑
±

ψ
(1)
K (r ± 1). (8)

Then H0 is rewritten as

H0 =
∣∣∣∣∣H00 H10

H01 H11

∣∣∣∣∣
=

∣∣∣∣∣−2J cos
(

K
2

)
�†(r) 0

0 −2J cos
(

K+π
2

)
�†(r)

∣∣∣∣∣, (9)

with

�†(r)ψ i
K (r) = [

ψ
(i)
K (r + 1) + ψ

(i)
K (r − 1)

]
.

The photon-photon interaction term HU is written as

HU =
∣∣∣∣∣U00 U10

U01 U01

∣∣∣∣∣, (10)

where the matrix elements are respectively derived as:

U00 = 1

N

∑
xc∈Z

e−iKxc HU eiKxc = Uc, (11)

U01 = U ∗
10 = 1

N

∑
xc∈Z

e−iKxc HU eiKxc eiπxc = Um, (12)

U11 = 1

N

∑
xc∈Z

e−iKxc e−iπxc HU eiKxc eiπxc = Uc, (13)

where HU = Uc + Um cos(πxc). By defining the Green func-
tion as

(E − H0)GK (E , r) = δr0, (14)

we obtain the Lippmann-Schwinger equation for the doublon
states

�K (r) = �0(r) +
∫

GK (E , r − r′) δr0 HU �(r′) dr′,

�K (r) =
[
ψ

(0)
K (r)

ψ
(1)
K (r)

]
, (15)

where �0(r) is the solution satisfying the noninteracting
Hamiltonian H0. Employing the properties of the δ function,
we obtain

�K (r) = �0(r) + GK (E , r)HU �K (r = 0). (16)

Finally, the wave function at r = 0 is derived as

[1 − GK (E , r = 0)HU ]�K (r = 0) = �0(r = 0). (17)

The probability of the scattering state, where the two pho-
tons are not bound together, is zero; which corresponds to
�0(r) ≡ 0. Consequently, the doublon state corresponds to

the nontrivial solution of the linear homogeneous equations in
Eq. (17),

det [1 − GK (E , r = 0)HU ] = 0, (18)

from which the dispersive relation of the doublon spectrum is
obtained. The Green function in momentum space reads

GK (E , r) = 1

2π

∫ π

−π

dq GK (E , q) eiqr . (19)

By substituting Eq. (19) into Eq. (14) and employing the
properties of the δ function, we obtain

GK (E , q) = 1

(E − H0)

=
∣∣∣∣∣∣

1
E+4J cos ( K

2 ) cos q
0

0 1
E−4J sin ( K

2 ) cos q

∣∣∣∣∣∣. (20)

Consequently, the Green function in real space is derived as

GK (E , r) =
∣∣∣∣ f (0)

K (E , r) 0
0 f (1)

K (E , r)

∣∣∣∣,
f (0)
K (E , r) =

∫ π

−π

eiqr

E + 4J cos
(

K
2

)
cos q

dq,

f (1)
K (E , r) =

∫ π

−π

eiqr

E − 4J sin
(

K
2

)
cos q

dq. (21)

By setting r = 0, we write Eq. (17) as

1 − GK (E , r = 0)HU =
∣∣∣∣∣

Uc
Ucos

− 1 Um
Ucos

Um
Usin

Uc
Usin

− 1

∣∣∣∣∣, (22)

where

Ucos =
√

E2 − 16[J cos (K/2)]2,

Usin =
√

E2 − 16[J sin (K/2)]2.

Altogether, the eigenenergy E and the momentum of
center-of-mass K satisfy the following relationship:

det

∣∣∣∣∣
Uc

Ucos
− 1 Um

Ucos
Um
Usin

Uc
Usin

− 1

∣∣∣∣∣ = 0. (23)

We plot two branches of the doublon bands in Fig. 2(b) ac-
cording to Eq. (23), where a band gap exists.

Moreover, the amplitudes ψ
(1,2)
K (r = 0) correspond to the

nontrivial solution of the linear homogeneous equations in
Eq. (17). Therefore

[1 − GK (E , r = 0)HU ]

[
ψ

(0)
K (r = 0)

ψ
(1)
K (r = 0)

]
=

[
0
0

]

−→ ψ
(0)
K (r = 0)

ψ
(1)
K (r = 0)

= UmUsin

UsinUcos − UcUcos
. (24)
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By substituting Eq. (24) into Eq. (16), we derive the wave
functions for the doublon eigenstates as

�(r) =
[
ψ

(0)
K (r)

ψ
(1)
K (r)

]
= G(E , r)HU

[
ψ

(0)
K (r = 0)

ψ
(1)
K (r = 0)

]

=
∣∣∣∣∣ f (0)

K (E , r) 0

0 f (1)
K (E , r)

∣∣∣∣∣
∣∣∣∣∣Uc Um

Um Uc

∣∣∣∣∣
[
ψ

(0)
K (r = 0)

ψ
(1)
K (r = 0)

]
,

(25)

where we have employed the condition �0(r) ≡ 0. Via anal-
ysis the integral Eq. (21), we obtain the formal solution of the
wave function

�K (xc, r) ∝ exp

[
− |r|

Lc(K )

]
, (26)

which Lc(K ) is the correlated length of the photon pair. In
particular, at the band edge with zero group velocity, the wave
functions �±

K at K0 = π/2 of the upper and lower bands can
be analytically obtained as (see Appendix A)

�∓
K0

(xc, r) = eiK0xc (1 ± eiπxc )√
Nψ0

exp

[
− |r|

L∓
c (K0)

]
, (27)

where ψ0 is the normalization factor, and the correlated length
is

L∓
c (K0) =

⎛
⎜⎝ln

2
√

2J

−E∓ −
√

E2∓ − 8J2

⎞
⎟⎠

−1

.

A strong on-site nonlinear interaction results in supercorre-
lated doublon modes. According to Eq. (27), L∓

c (K0) ∼ 1 for
Uc � 4J , indicating that the two photons are strongly bunched
in space.

III. DYNAMICS AND BOUND STATES

A. Dynamics evolution

We consider two emitters e1 and e2, which are separated
by a distance de

1 , interacting with the nonlinear waveguide at
points n1 and n2 (see Fig. 1). The hybrid system’s Hamiltonian
is

H = Hw + ωq

2

2∑
i=1

σ z
i + g

2∑
i=1

(σ+
i ani + H.c.), (28)

where a†
ni

is the annihilation operator of the bosonic mode
interacting with the ith emitter, ωq is the emitter frequency,
and g is the coupling strength between each emitter and the
waveguide. When the two-emitter excitation frequency 2ωq is
set in the band gap between the doublon bands [see Fig. 2(b)],
the evolution becomes highly non-Markovian owing to the
van Hove singularity in the density of states [3], which is
different from the case of unstructured nonlinear waveguides
[62].

We now proceed to calculate the dynamics in the double-
excitation subspace. We assume two emitters initially in their
excited states, and their frequencies are chosen to be close
to the lower band edge, with frequency detuning δII = 2ωq −
E−(K0) � 0 [see Fig. 2(b)]. Since H in Eq. (28) conserves the

excitation number, in the double-excitation subspace, the state
|ψ2(t )〉 is

|ψ2(t )〉 = ce(t )|ee, vac〉 +
∑

K

cK (t )|gg, �−
K 〉

+
∑

k

[c1k (t )|eg〉 + c2k (t )|ge〉]a†
k |vac〉, (29)

where ce(t ) [cK (t )] is the probability amplitude for two emit-
ters (doublon states |�−

K 〉) being excited, a†
k = ∑

n eikna†
n/

√
N

is the single-photon creation operator in momentum space,
and cik is the probability amplitude for the emitter i and the
mode k being simultaneously excited. Because ωq is signif-
icantly detuned from the scattering states (i.e., δI = |ωq −
2J| 
 g), we have neglected their contributions in Eq. (29),
and the one-photon state can also be adiabatically eliminated.
Hence, we obtain the evolution equation (more detain in
Appendix B 1)

iċe(t ) = − 1√
N

∑
K

GK (n1, n2)cK (t ), (30)

iċK (t ) = �K cK − 1√
N
G∗

K (n1, n2)ce(t ), (31)

where the emitter pair couples to the doublon mode K with an
effective transition rate

GK (n1, n2) = g2
i �= j∑

i, j=1,2

∑
k

eikn j

δk
M(K, k, ni ), (32)

where M(K, k, ni ) = 〈k, ni|�−
K 〉 denotes the process which

annihilating one photon at position ni and another photon with
mode k to create a doublon mode K . Hence, we can simplify
Eq. (32) as

GK (n1, n2) ∝
i �= j∑

i, j=1,2

∑
n

�−
K

(
n + n j

2
, n j − n

)
ψi(n), (33)

which is proportional to the overlap between the doublon
mode �−

K and a SPBS ψi(n). This quantity implies the
following dual processes: the emitter i( j) excites a SPBS, dis-
tributing in the waveguide around the site ni(n j ); meanwhile,
the emitter j(i) excites another photon at nj (ni ). The overlap
between this two photon pairs and the doublon state �−

K will
excite the doublon mode K . As discussed in Appendix B 2,
the formula of SPBS is

ψi(n) � As exp

(
−|n − ni|

LB
I

)
,

1

LB
I

= ln
2J

|ωq| −
√

ω2
q − 4J2

, As = gJ√
ω2

q − 4J2
, (34)

where LB
I (As) is the decay length (amplitude) of the SPBS.

Note that GK can be simplified further as

GK (ni, n j ) ∝
∑

n

exp

[
−|n − n j |

L−
c (K )

]
exp

(
−|n − ni|

LB
I

)
, (35)

which is decided by the decay length of double mode and
SPBS, i.e., {L−

c (K ), LB
I } [62]. If |ni − n j | 
 max{L−

c (K ), LB
I },

then GK (n1, n2) decreases to zero, which implies the emitter
pair decouples to the doublon mode.
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FIG. 3. (a) Time-dependent probability of the two-emitter excitations |ce(t )|2, and single- and two-photon excitations P1,2(t ) for initially
two-emitter excitation. The coupling points are set at n1,2 = 0. (b) The squared modulus of wave-function profile of the SPBS and DBS
(by restricting r = 0) obtained via numerical simulations up to t = 103. (c) Two-dimensional field distribution for the DBS. (d) Two-point
correlation function G2(r) for the field in (c). Here we set J = 1, g = 0.1,Uc = 4,Um = 0.05Uc, α � 2, and δII = 0.03.

B. Doublon bound state

As shown in Fig. 2 the pink region, due to the nonlinear
periodic structure Un = Uc + (−1)nUm, energy gap emerges
in the band. Basis on this band gap, we realize DBSs, a new
bound states which contains two supercorrelated photons. By
setting the two-emitter excitation frequency 2ωq lies inside
the doublon, the emitter pair is prevented from radiating dou-
blons. Part of their excitation is trapped in the form of DBS.
In Fig. 3(a), we plot the dynamic evolution in a finite-size
waveguide with N = 1000, which is long enough to avoid the
field being reflected by the open boundaries of the waveguide.
By approximating the dispersion relation around E−(K0) as
a quadratic form with curvature α, i.e., �K � δII + α(K −
K0)2, the analytical wave function of the DBS is derived as
(more detail in Appendix B 3)

�d (xc, r) � Ad (1 + eiπxc ) exp

(
− r

Lc

)
exp

(
−|xc − xm|

LB
II

)
,

Ad = G∗
K0

(n1, n2)

ψ0
√

δIIα
, LB

II =
√

α

δII
, (36)

where xm = n1 + n2. It shows that the decay length LB
II of the

DBS is determined by the detuning δII and the band curvature.
Given the proximity of 2ωq to the band edge, the stationary
DBS can extend a considerable distance from the coupling
points. Because only the modes around K0 are excited with
high probabilities, the correlation length is approximated as
L−

c (K0). Note that, due to the DBSs, a new decay length LB
II

emerges in the xc direction.
In Figs. 3(b) and 3(c), we plot the squared modulus of

long-time field distribution for single- and two-photon states,
corresponding to SPBS and DBS described in Eqs. (34) and
(36). Owing to LB

I and LB
II is inversely proportional to δI and

δII , respectively. Hence, under the setup of Fig. 2, both the
amplitude and decay length of the DBS can be considerably
larger than for the SPBS, i.e., Ad > As and LB

II 
 LB
I . This is

also manifested in Fig. 3(a), where the single-photon probabil-
ity P1 = ∑

i,k |cik (t )|2, which is obtained numerically, is much
lower than the two-photon probability P2 = ∑

K |cK (t )|2 after
a long-time evolution. In the DBS, the two virtual photon
are strongly bound with a correlation length L−

c (K0) � 1, as
shown in the r direction of Fig. 3(c). To quantify this scale,

we introduce the two-point correlation function for the DBS

G2(r) =
∑

n

〈a†
na†

n+ran+ran〉
〈a†

n+ran+r〉〈a†
nan〉

. (37)

As shown in Fig. 3(d), the decay length of G2(r) is of the
same order as L−

c (K0) � 1, and the two photons are strongly
bunched in space. Therefore, we realize two photons bound
state with supercorrelated photon pair, which two photons
can’t be separated and are jointly located around the coupling
points.

IV. FOUR-BODY INTERACTIONS

Via the nonlinear potential, the waveguide can mediate
four-body interactions. To demonstrate this, we consider two
emitter pairs coupled to the common nonlinear waveguide, as
depicted in Fig. 1. The separation distance between the center
of each pair is set as Dq. In the nonlinear waveguide, there
are two kinds of virtual processes due to the wave-function
overlaps of DBSs for two emitter pairs and SPBSs for emitters

FIG. 4. Illustration of the transitions mediated by the SPBSs
and DBSs, respectively. To enhance the fidelity of four-body Rabi
oscillations, the unwanted single-photon transition processes (dash
lines) should be suppressed.
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FIG. 5. [(a)–(c)] Four-body Rabi oscillations between two emitter pairs under different distance conditions. The amplitude of the four-body
Rabi oscillation (single-photon transitions) is denoted as ARS (Aμ). Same parameters as in Fig. 3.

in different pairs. For the former case, the virtual exchange
between two-doublon states leads to a four-body interaction
associated with the transition |ee, gg〉 ↔ |gg, ee〉, as shown
in Fig. 4. The four-body transition is a band-gap interaction
which can avoid dissipations led by the doublon continuous
modes.

For the latter case, the virtual exchange of a single photon
induced a conventional two-body interaction. For instance, as
shown in Fig. 4, the overlap between two SPBSs of emitters
1 and 3 cause a two-body interaction associated with the
transition |ee, gg〉 and |ge, eg〉. There exist four distinct single-
photon transition paths (see Fig. 4), and the total oscillating
amplitude is Pμ = ∑

i j �=12,34 |ce
i j (t )|2, where ce

i j (t ) denotes the
probability for emitters, labeled by i, j, in the excited states.

For realizing high-fidelity four-body Rabi oscillations, the
distance Dq is set as 
 LB

I , which prevents any overlap be-
tween the SPBSs of emitters in different pairs and suppress the
single-photon transition. Under the appropriate parameters,
Pμ � 0, as shown in Fig. 5(a). With Pμ � 0, the system can be
described by an effective four-body interaction Hamiltonian

HRS = �S1σ
+
1 σ+

2 σ−
1 σ−

2 + �S2σ
+
3 σ+

4 σ−
3 σ−

4

+ (JRSσ
−
1 σ−

2 σ+
3 σ+

4 + H.c.), (38)

where

�Si = 1

N

∑
K

|GiK |2
�K

, JRS = − 1

π

∫ π

0

G1KG∗
2K

�K
dK, (39)

G1K = GK (n1, n2), G2K = GK (n3, n4). (40)

The first two term in Eqs. (38) correspond to dynamical Stark
shifts, and �S1 = �S2 given that the frequencies of two pairs
are identical. The latter terms denote the interaction between
emitter pairs, and JRS is the effective four-body Rabi oscil-
lation rate. Similarly to the discussion for the DBS, only the
modes around K0 = ±π/2 are excited with high probabilities.
Therefore, we can simplify JSR as

JRS � GK0 (n1, n2)G∗
K0

(n3, n4)√
δIIα

exp

(
− Dq

LB
II

)
, (41)

which exponentially decreases as Dq, the same decay length
as the DBS. In addition, emitters within the same pair are

required to emit or absorb virtual photons concurrently, i.e.,
GiK �= 0. Therefore, de

1,2 should be considerably smaller than
the correlation length max{L−

c (K0), LB
I }. Eventually, we sum-

marize the parameter regimes, where the four-body Rabi
oscillations occur with a high fidelity:

1. de
1,2 � max

{
L−

c (K0), LB
I

}
,

2. LB
I < Dq ∼ LB

II .
(42)

By considering the parameters in Fig. 3, the length scales
can be computed as follows: LB

II � 9, LB
I � 1.6, and L−

c (K0) �
1.4. When Dq and de

1,2 satisfy the conditions in Eq. (42), the
four-body Rabi oscillation happens with a high fidelity, which
amplitude is ARS � 1, as shown in Fig. 5(a). Once de

2 > 2,
i.e., G2K = 0, the second emitter pair decouple to the doublon
mode, which cannot simultaneously absorb two virtual pho-
tons in the DBS. Consequently, the exchange process vanishes
[see Fig. 5(b)]. Specifically, it is crucial to maintain a certain
separation between the two pairs of emitters. When Dq ≈
LB

I , the undesired transitions mediated by the SPBSs will
disrupt the four-body Rabi oscillations, and the single-photon
transition amplitude Aμ cannot be neglected, which can be
confirmed by the evolution in Fig. 5(c). In Figs. 6(a) and 6(b),
we plot Aμ and JRS versus Dq. When two emitter pairs are
separated Dq > 4, the single-photon transitions are supersup-
press, and the SPBSs are negligible Aμ � 0. Moreover, owing
to the van Hove singularity at doublon band edges, the DBSs
can distribute over a distance of tens of unit cells, and the
four-body Rabi oscillation occurs when two emitter pairs are
separated a long distance. Even when Dq > 10, JRS is nonzero
[see Fig. 6(b)].

When the coupling layout of second pair is changed, the
four-body interaction vanishes. However, this four-body in-
teraction has a special robustness against the frequency shift.
In Fig. 6(c), we plot ARS versus the frequency detuning of the
second pair, i.e., δ3,4 = ω3,4 − ωq by fixing the frequency of
the first pair as ωq1,q2 = ωq. Notably, when the summation
frequency of the pair is fixed (i.e., δ3 + δ4 = 0), the detuning
of each emitters hardly affects the four-body Rabi oscillation.
For detunings {δ3, δ4} far away from the anticorrealtion line
δ3 + δ4 = 0, the oscillation amplitude ARS quickly vanishes to
zero. Those phenomena indicate that two photons are jointly
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FIG. 6. (a) The single-photon transition amplitude Aμ versus Dq. (b) The four-body interaction strength JRS versus Dq. The curve marked
with symbols is obtained through numerical simulation, while the solid curve is plotted according to Eq. (41). (c) Amplitude of the four-body
Rabi oscillation ARS versus δ3,4. Same parameters as in Fig. 4(a).

emitted or absorbed and behave as a single quasiparticle.
Therefore, we realize the four-body Rabi oscillations between
two emitter pairs via the doublon bound state. With appro-
priate parameters, the fidelity of the oscillations can reach
100% and the distance between two pairs can reach tens of
unit cells with still maintaining a high-fidelity. Therefore, our
proposal exhibits the potential to realize multibody interac-
tions between distant sites.

V. CONCLUSION

Here we have shown that both DBSs and SPBSs can be ob-
served in a hybrid system of nonlinear waveguide and emitter
pairs. By appropriately tuning the system parameters, we can
control the relative amplitude, for contributing to the system
dynamics, of DBS and SPBS. Moreover, a simplified form of
the four-body interaction can only be realized via mediation
of DBSs. We analyze the conditions for realizing high-fidelity
four-body Rabi oscillations between two remote emitter pairs.
Our proposal can be extended to a lattice chain with emitter
pairs hopping together via the four-body interactions, which
have potential applications in, for example, lattice-gauge the-
ory simulations [80,81].

The coupled transmon array, which has been experi-
mentally studied in quantum simulations [82–84], can be
configured as a nonlinear waveguide in this study. The hop-
ping strength J in circuit-QED can be engineering into strong
coupling regime with J � 500 MHz [85–87]. As indicated
in Fig. 4, the four-body interaction strength can be around
JSR � 0.5 ∼ 1 MHz. In current circuit-QED experimental se-
tups, the intrinsic dissipation rate of an individual transmon is
around γ /(2π ) � 5 KHz [88,89], which is much weaker than
JRS. Additionally, theoretical study in Ref. [62] also showed
the slow dissipation of the waveguide has little effect on the
quantum phenomena with doublons. Therefore, we believe
that the predicted four-body interaction is possible to observe
in circuit-QED setups. Therefore, the observation of the pre-
dicted novel mechanisms is within current experimental reach.
As an outlook, this study opens a new research direction in
exploring exotic phenomena in nonlinear waveguide QED. In
the future, it is intriguing to consider the coupling of emitter
pairs to topological waveguides [90] and investigate its non-
linear chiral quantum optics [91].
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APPENDIX A: PROPERTIES OF THE BAND-EDGE
MODES K = ±π/2

In Fig. 2 of the main text, by considering a finite waveguide
with periodic boundary conditions, we show the two-photon
spectrum obtained by diagonalizing a nonlinear waveguide.
Notably, we observe the emergence of a band gap within the
doublon spectrum, and its width increases proportionally to
the modulation strength Um. The situation is similar to a con-
ventional photonic crystal waveguide, where the eigen wave
function at the band edge of is localized on sites possessing
a low (high) refractive index. The distribution properties of
the field are led by the destructive interference resulting from
multiple reflections. Similarly, the behavior of doublons is
also influenced by the periodic nonlinearity, and the charac-
teristics of its wave function at the band edge resemble those
of a single-photon crystal waveguide.

To substantiate the above discussions, we proceed to ana-
lyze the characteristics of the modes at K0 = π/2. Concerning
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the down/up energy levels, the eigenenergy is

E∓ = −
√

(Uc ± Um)2 + 8J2,

and the ratio in Eq. (24) is derived as

ψ
(0)
K0

(r = 0)

ψ
(1)
K0

(r = 0)
=

Um
Uc±Um

1 − Uc
Uc±Um

= ±1. (A1)

Moreover, according to Eq. (21), the following relation is
valid:

f (0)
K (E∓, r) = f (1)

K (E∓, r). (A2)

For the down/up energy level at K0, f (0)
K (E∓, r) derived as

f (0)
K (E∓, r) =

∫
eiqr

E∓ + 4J cos
(

K
2

)
cos q

dq

∝
(√

(Uc ± Um)2 + 8J2 − (Uc ± Um)

2
√

2J

)r

= exp

[
− r

L∓
c (K0)

]
, (A3)

where

1

L∓
c (K0)

= ln
2
√

2J√
(Uc ± Um)2 + 8J2 − (Uc ± Um)

= ln
2
√

2J

−E∓ −
√

E2∓ − 8J2

is the decay length describing the joint probability of detecting
two photons at the positions separated a distance r.

Equation (A3) implies that the doublon wave-function
decays as the separation distance between two photons in-
creases. By substituting Eqs. (A1)–(A3) into Eq. (25), one can
find the wave functions at K0 = ±π/2 for the lower/upper
energy levels

�K0 (xc, r) = 1√
N

eiK0xc
[
ψ0

K0
(r) + e−iπxcψ1

K0
(r)

]

= 1√
Nψ0

eiK0xc (1 ± e−iπxc ) exp

[
− r

L∓
c (K0)

]
,

(A4)

where ψ0 is the normalized factor.
Now we summarize the characteristics of the doublon wave

function around the band edge: First, due to the localized
nature of the nonlinearity at each site, the maximum ampli-
tude of �(E∓, xc, r) occurs at r = 0 and rapidly diminishes
as r increases [along the diagonal in Fig. 7(b)]. Second, the
wave function exhibits periodic localization at sites with lower
(higher) nonlinearity owing to the destructive interference of
the multiple reflections. For the modes which are significantly
distant from the band gap, the interference effect is weak due
to the frequency and wave-vector mismatch, and the wave
function distributes on both even and odd sites [see Fig. 7(b)].

FIG. 7. Wave functions �(xc, r) of the modes in the lower band
at (a) K = π/2 and (b) K = 0, respectively. The waveguide parame-
ters are the same as those in Fig. 2 in the main text.

APPENDIX B: DYNAMICS FOR EMITTER PAIRS
INSIDE THE BAND GAP

1. Equations of motion

In this section, we derive the motion equation. By substi-
tuting Eqs. (28) and (29) into Schrödinger equation, we obtain
the following coupled differential equations:

i
dce(t )

dt
= g√

N

∑
k

[c1k (t )eikn2 + c2k (t )eikn1 ], (B1)

i
dc1k (t )

dt
= δkc1k (t ) + g√

N
ce(t )e−ikn2

+ g
∑

K

M(K, k, n1)cK (t ), (B2)

i
dc2k (t )

dt
= δkc2k (t ) + g√

N
ce(t )e−ikn1

+ g
∑

K

M(K, k, n2)cK (t ), (B3)

i
dcK (t )

dt
= �K cK (t ) + g

∑
k

M∗(K, k, n1)c1k (t )

+ g
∑

k

M∗(K, k, n2)c2k (t ), (B4)

M(K, k, n) = 〈k, n|�K 〉 = 〈0| 1√
N

∑
m

e−ikmaman

× �K (m′, n′)a†
m′a

†
n′ |0〉

=
√

2

N

∑
m

e−ikmeiK (n+m)/2 uK

(
m + n

2
, n − m

)
,

(B5)

where δk = ωk − ωq with ωk = −2J cos k being the single-
photon spectrum and �K = EK − 2ωq. In our discussion, cik

are the amplitudes of the single-photon intermediate states,
which are extremely small due to the large detuning relation
δk 
 g. Consequently, one can adiabatically eliminate cik (t )
by assuming its evolution to be time independent. By setting
ċik (t ) = 0, Eqs. (B2) and (B3) result in

c jk (t ) = − g

δk

[
e−ikn j

√
N

ce(t ) +
∑

K

M(K, k, n j )cK (t )

]
, (B6)
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where j = 1, 2. Altogether, by substituting Eq. (B6) into
Eqs. (B1) and (B4), we end up with the coupled equa-
tions Eq. (30), in the main text.

In our work, we assume that the nonlinearity Uc is large
and the doublon spectum is well separated from the scat-
tering state. When the frequency of the emitter pair resides
within the doublon band gap, both emitters are unable to com-
pletely release their energy into the nonlinear waveguide via
supercorrelated emission channels. The probability |ce(t )|2
undergoes a phenomenon known as fractional decay. In other
words, the excitation partially dissipates into the waveguide
while also remaining localized within the two emitters.

Moreover, compared with the single-photon case, the
field distribution on the waveguide is much more complex.
First, because the single-emitter frequency ωq lies outside of
the single-photon band structure, i.e., ωq < −2J , there are
SPBSs. Second, the coupled differential equations (30) and
(31) indicate that a DBS containing two strong-correlated
photons also exists in this system. In the following, we derive
the field distributions for these two kinds of bound states.

2. Single-photon bound state

There are SPBSs originating from individual emitters.
Their existences can be explicitly confirmed by analyzing
Eq. (B6), which approaches a steady state in the long-time
limit, leading to the generation of SPBSs. Considering the
example of SPBS seeded by emitter 2, the steady-state pop-
ulation of the photonic component becomes

lim
t→∞ c1k (t )

= − lim
t→∞

g

δk

[
1√
N

ce(t )e−ikn2 +
∑

K

M(K, k, n1)cK (t )

]

� − lim
t→∞

g

δk

1√
N

e−ikn2 ce(t ). (B7)

In our discussion, both the DBS and SPBS are only weakly
excited. The excitations are mostly trapped inside the emitters,
and we can approximate cK (t ) � ce(t ) � 1. Therefore, the
SPBS wave function is

ψ2(n) = 1

2π

∫ π

−π

g

we + 2J cos (k)
eikne−ikn2 dk

� g

2π

∫ π

−π

eik(n−n2 )

we + 2J cos (k)
dk. (B8)

The SPBS produced by the emitter 1, i.e., ψ1(n), can also
obtained by replacing n2 → n1 in Eq. (B8). The SPBS for the
emitter i can be written as

ψi(n) � gJ√
(we)2 − 4J2

exp

(
−|n − ni|

LB
I

)
, (B9)

where the decay length LB
I is

LB
I = −

(
ln

−we − √
w2

e − 4J2

2J

)−1

. (B10)

In Fig. 8, we plot LB
I as a function of the single emitter

frequency ωq, which shows that with increasing ωq, the decay

FIG. 8. Decay length LB
I of the SPBS (the correlation length

L−
c (K0) for the DBS mode K0), versus the emitter frequency ωq

(mode frequency E−/2). The waveguide parameters are the same as
those in Fig. 3 in the main text.

length of the SPBS decreases rapidly. At ωq = −2.5J , the
decay length is approximately LB

I � 1. Therefore, when δI

is large, the SPBS is strongly localized around the coupling
point.

3. Doublon bound state

We derive the DBS wave function. Given that two emit-
ters are initially excited, we rewrite the coupled differential
Eqs. (30) and (31) in the Laplace space, i.e.,

sc̃e(s) − 1 = i
1√
N

∑
K

GK (n1, n2)c̃K (s), (B11)

(s + i�K )c̃K (s) = i
1√
N
G∗

K (n1, n2)c̃e(s). (B12)

The above equations give

c̃e(s) = 1

s + �e(s)
,

�e(s) = 1

N

∑
K

|GK (n1, n2)|2 1

(s + i�K )
, (B13)

where �e(s) can be interpreted as the self-energy. The real-
time evolution is recovered as

ce(t ) = 1

2π i
lim

E→∞

∫ ε+iE

ε−iE

1

s + �e(s)
est ds, ε > 0. (B14)

Note that the emitter-pair frequency is quite close to the lower
band edge of the doublon. Therefore, only the modes around
K0 = π/2 are excited with high probabilities.

Before moving forward, we conduct a numerical analysis
of the properties of the coefficient GK (ni, n j ). As depicted in
Fig. 9, where 1.75 < |GK (ni, n j )| < 1.95 (ni = n j = 0), we
observe that GK (ni, n j ) varies within a narrow range ver-
sus K . Therefore, we can approximate it independent of K
with GK (n1, n2) � GK0 (n1, n2). Moreover, we assume that the
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FIG. 9. Amplitude of the coefficient GK (ni, nj ) versus the wave
vector K with g = 1. Here we set ni = nj = 0. The parameters are
the same as those in Fig. 3 used in the main text.

dispersion relation around the edge of the lower band is de-
scribed by a quadratic form, i.e., �K � δII + α(K − π/2)2

around K = π/2. By replacing the summation over K with
an integral, the self energy can be written as

�e(s) �
∣∣GK0 (n1, n2)

∣∣2

π

∫ π

0
dK

1

s + i[δII + α(K − π/2)2]

� ∣∣GK0 (n1, n2)
∣∣2 1√

(is − δII )α
, (B15)

where we have extended the integral bound to infinity. By
substituting Eq. (B15) into Eq. (B14), we derive the steady-
state population for ce(t ) via the residue theorem, i.e.,

lim
t→∞ |ce(t )|2 = |Res(s0)|2, (B16)

where s0 is the unique pure imaginary pole for the denomina-
tor of c̃e(s), i.e., s0 + �e(s0) = 0, and

Res(s0) = 1

1 + ∂s�e(s)

∣∣∣∣
s=s0

= 1

1 − α
2

∣∣GK0 (n1, n2)
∣∣2

[(s0 + iδII )α]−
3
2

. (B17)

By following the process of evaluating non-Markovian dy-
namics in Sec. II, one can also analysis non-Markovian to
Markovian transition for this supercorrelated decay process.
Now we derive the steady field distribution in the waveguide,
i.e., the DBS. In the long-time limit t → ∞, we set ċK (t ) = 0
in Eq. (31). The steady amplitude for mode K is

lim
t→∞ cK (t ) = 1√

N�K

G∗
K (n1, n2)Res(s0). (B18)

Be denoting xm = (n1 + n2)/2 as the center position of the
two emitters, the wave function of the DBS can be expressed

as follows:

�d (xc, r)

=
∑

K

cK (t∞)
1√

Nψ0

eiKxc uK (xc, r)

= Res(s0)

πψ0

∫ π

0
G∗

K (n1, n2)uK (xc, r)
eiK (xc−xm )

�K
dK

� Res(s0)

πψ0
G∗

K0
(n1, n2)uK0 (xc, r)

∫ ∞

−∞

eiδK (xc−xm )

δII + αδK2
dδK,

(B19)

where we assume that uK (xc, r) is also independent of K since
only the modes around K0 = π/2 are excited with high prob-
abilities. Moreover, we approximate GK (n1, n2) � GK0 (n1, n2)
as a constant in Eq. (B19). Finally, the wave function for the
DBS is derived as

�d (xc, r) = Ad Res(s0)uK0 (xc, r)e
− |xc−xm |

LB
II ,

Ad = G∗
K0

(n1, n2)

ψ0
√

δIIα
, LB

II =
√

α

δII
. (B20)

Given that the largest fraction of the energy is still trapped in-
side the emitters, we approximate |Res(s0)| � 1 and Eq. (B20)
is simplified as Eq. (36), in the main text.

APPENDIX C: FOUR-BODY INTERACTIONS
BY EXCHANGING DOUBLONS

Let us now consider a scenario involving four emitters,
forming two pairs that couple to the same waveguide (refer
to Fig. 1 in the main text). We assume that the initial two ex-
citations are localized within emitter 1 and 2, i.e., ce

12(t0) = 1,
and the corresponding state is denoted as |eegg〉. In principle,
the populations ce

13(t ), ce
23(t ), ce

24(t ), and ce
14(t ) are nonzero

due to exchanging a single photon when the SPBSs in dif-
ferent pairs overlap. For instance, through the exchange of
one photon between the emitters 1 and 3, the single-photon
transition |eegg〉 → |egeg〉 occurs. To observe high-fidelity
four-body Rabi oscillations between ce

12(t ) and ce
34(t ), it is

crucial to suppress undesired single-photon processes. This
can be achieved by positioning the emitter pairs at a distance
significantly greater than the decay length of SPBS, i.e.,

Dq = (n3 + n4 − n1 − n2)/2 
 LB
I .

Under these conditions, the populations

ce
13(t ), ce

23(t ), ce
24(t ), ce

14(t ) � 0,

and the system evolution is reduced to

iċe
12(t ) = − 1√

N

∑
K

G1K cK (t ), (C1)

iċe
34(t ) = − 1√

N

∑
K

G2K cK (t ), (C2)

iċK (t ) = �Kd cK (t ) − 1√
N

[
G∗

1K ce
12(t ) + G∗

2K ce
34(t )

]
, (C3)

where

G1K = GK (n1, n2), G2K = GK (n3, n4).
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The doublon mode K can mediate the coherent exchange of
excitations between the two emitters. In our analysis, the dou-
blon is virtually excited, allowing us to adiabatically eliminate
its degree of freedom by assuming ċK (t ) = 0. Finally, the
coupled differential equations are reduced to

iċe
12(t ) = − 1

N

∑
K

[|G1K |2ce
12(t ) + G1KG∗

2K ce
34(t )

]
�K

, (C4)

iċe
34(t ) = − 1

N

∑
K

[|G2K |2ce
34(t ) + G2KG∗

1K ce
12(t )

]
�K

. (C5)

One can find that Eqs. (C4) and (C5) correspond to an effec-
tive Hamiltonian Eq. (38), in the main text.
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