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The pseudomode framework provides an exact description of the dynamics of an open quantum system
coupled to a non-Markovian environment. Using this framework, the influence of the environment on the
system is studied in an equivalent model, where the open system is coupled to a finite number of unphysical
pseudomodes that follow a time-local master equation. Building on the insight that this master equation does
not need to conserve the hermiticity of the pseudomode state, we here ask for the most general conditions on
the master equation that guarantee the correct reproduction of the system’s original dynamics. We demonstrate
that our generalized approach decreases the number of pseudomodes that are required to model, for example,
underdamped environments at finite temperature. We also provide an unraveling of the master equation into
quantum jump trajectories of non-Hermitian states, which further facilitates the utilization of the pseudomode
technique for numerical calculations by enabling the use of easily parallelizable Monte Carlo simulations.
Finally, we show that pseudomodes, despite their unphysical nature, provide a natural picture in which physical
processes, such as the creation of system-bath correlations or the exchange of heat, can be studied. Hence,
our results pave the way for future investigations of the system-environment interaction leading to a better
understanding of open quantum systems far from the Markovian weak-coupling limit.
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I. INTRODUCTION

To fully develop modern applications of quantum physics
like quantum computers [1–3], quantum simulators [4,5], or
quantum thermal machines [6–9], it is necessary to understand
the behavior of the involved quantum systems accurately.
Such systems unavoidably interact with their macroscopic
environments, which are not fully controllable. Any realistic
model must therefore treat these systems as open; that is, it
must include the influence of the environment as a stochastic
force [10,11].

Until recently, studies of open quantum systems have often
focused on the Markovian weak-coupling regime, where it
is assumed that the characteristic time scales of system and
environment are clearly separated and that their interaction is
weak [12–14]. Under these assumptions, the dynamics of the
open quantum system takes the universal shape of a Lindblad
master equation [15,16], which is mathematically well under-
stood and easy to work with both numerically and analytically.
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New developments in a variety of research fields (in-
cluding quantum thermodynamics [17–25], quantum transport
[26–30], and quantum biology [31–34]) make it necessary to
leave these assumptions behind. A cornerstone of the theory of
open quantum systems beyond the Markovian weak-coupling
regime is the Caldeira-Leggett model [35]. Despite its con-
ceptual simplicity, this model enjoys a wide applicability and
there exist many techniques that can be used to study it; we
refer to Ref. [36] for an overview. This paper focuses on the
pseudomode technique [37–41], where the Caldeira-Leggett
model is mapped to a mathematically equivalent Lindblad
master equation on an auxiliary Hilbert space. The auxiliary
space comprises the open quantum system and a number of
additional “pseudomodes,” which are calibrated to mimic the
behavior of the original Caldeira-Leggett environment, see
Fig. 1.

Even though the pseudomode technique formally uses a
Lindblad equation, it involves no approximations and can be
applied out of equilibrium, far from the weak-coupling limit,
and in the presence of time-dependent driving. In practice,
it is often desirable to use only a (small) finite number of
pseudomodes. The technique then requires the environment
auto-correlation function to be written as a finite sum of
exponential terms. This requirement might introduce an ap-
proximation, where the true correlation functions are replaced
by a finite series expansion or a multiexponential fit.

We focus on the pseudomode approach due to the fol-
lowing two key advantages. First, it enables us to transfer
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FIG. 1. Illustration of the pseudomode technique. In (a), the open system in the middle is directly and strongly coupled to many environ-
ment modes. (b) depicts an extended system consisting of the open system and two strongly coupled pseudomodes. This extended system
undergoes a nonunitary and nonpositive time evolution, which is represented in the illustration by a weakly coupled residual environment
(gray). The effects of the environment in (a) and the pseudomodes in (b) on the open system are equivalent.

tools that have already been developed for Lindblad equations
to our strongly coupled setting. It is therefore comparatively
easy to implement in practice. Second, since environmental
degrees of freedom are encoded in the pseudomodes and
directly accessible, it provides new insight into the physics
of the system-environment interaction.

The method of pseudomodes dates back at least to Gar-
raway’s seminal 1997 publication [37]. However, some key
ideas were known in the community already before that,
see for example Ref. [42]. In Garraway’s paper, pseudo-
modes were used to find the exact dynamics of an atom
interacting with a continuum of electromagnetic field modes
under the rotating wave approximation. More recently, the
technique was extended to general Caldeira-Leggett models
without the rotating wave approximation, going beyond the
single-excitation sector [38]. It was then generalized to better
allow for arbitrary spectral densities by allowing the fitting of
generic environment spectral densities [39,40,43].

The idea of fitting the environment correlation functions
or, equivalently, spectral densities with a number of effective
modes has recently seen applications in a variety of com-
munities. Within the field of nanophotonics, for example,
this approach is now known as few-mode field quantization
[44–46]. The approach was also applied to fermionic en-
vironments [41,47], where it was demonstrated that it can
fully capture the nontrivial physics of the Kondo resonance.
In the context of fermionic environments, it has also been
called the mesoscopic leads technique [48] and applied to
thermodynamical questions [49,50]. Another related approach
is approximating the continuous environment by a finite num-
ber of modes, following unitary closed-system dynamics [51],
where optimal fitting procedures have recently been discussed
in Refs. [52,53]. Finally, we mention the quantized quasinor-
mal mode technique [54] which is enjoying popularity in the
field of cavity QED and can be seen as an approximate way
of constructing pseudomodes, and we will show in this paper
that also the dissipaton framework [55,56] is closely related

to pseudomodes. There are other approaches that are less
directly related, including process tensors [57,58], the quasia-
diabatic path integral [59], and second-quantized Feshbach
projections [60].

Already in his original publication, Garraway noticed that
it may be useful to introduce an effective non-Hermitian
Hamiltonian on the atom-pseudomode space by choosing
the coupling constants to be complex-valued [37]. The time
evolution on this space then does not keep the full atom-
pseudomode state Hermitian, but it still generates the correct
physical state of the atom after taking the partial trace over
the pseudomode subspace. The appearance of non-Hermitian
pseudomode states thus only highlights their unphysical
nature without impacting the usefulness of the method
itself.

Recently, in extending the technique to allow for the fit-
ting of generic environments, non-Hermitian couplings have
been reintroduced, see for example Refs. [39–41,61]. Further,
it has been recognized that the introduction of additional
complex-valued parameters—such as complex damping rates
[62] or even temperatures [63]—may allow one to reduce the
number of required pseudomodes and thus the computational
complexity. To the authors’ knowledge, a systematic analysis
of the requirements for the applicability of the pseudomode
method is however still missing from the literature, at least for
the general case of bosonic pseudomodes involving complex-
valued parameters.

Hence, the first goal of this paper is to clarify the conditions
that the pseudomode Lindblad equation must satisfy to repro-
duce the system evolution exactly. To this end, we extend the
Feynman-Vernon influence functional formalism, which was
originally applied to Caldeira-Leggett environments obeying
unitary time evolution [10,64], to general master equations
on the auxiliary system-pseudomode space. This formalism
allows us to establish a rigorous mathematical foundation
for the pseudomode framework. Furthermore, we develop a
straightforward recipe that can be used to determine a set
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of pseudomodes that are equivalent to any given bosonic
environment, given a multiexponential decomposition of the
environment’s autocorrelation functions.

The second part of this paper aims to demonstrate the
strengths of this framework and contains two more main re-
sults. The first of these results shows how observables related
to the system-environment interaction can be mathematically
represented on the auxiliary space. This result makes it possi-
ble to study quantities such as multitime correlation functions,
the system-environment interaction energy or the heat flow
from the system to the environments in the pseudomode
picture. This technique is thus able to give insight into the
thermodynamics of quantum systems—a topic that has at-
tracted great interest recently, since its study promises to be
useful for a range of topics, from fundamental questions in
quantum theory to cutting-edge applications in quantum engi-
neering [65,66].

For our final main result, we then turn our attention to
the study of quantum jump trajectories. In the case of regu-
lar Lindblad equations, quantum jump trajectories represent
single experimental realizations, somewhat analogous to, e.g.,
the stochastic trajectories underlying classical diffusive pro-
cesses. They provide access to the full statistics of fluctuating
quantities and have thus been studied intensively for a long
time, see for example Refs. [10,11,67–75]. Furthermore, they
are a valuable tool for numerical calculations because single
trajectories can all be simulated independently in parallel,
each at a lower computational cost than that of integrating
the full Lindblad equation. In this paper, we study how the
quantum jump trajectory framework can be extended from
regular Lindblad equations to the pseudomode framework.
We focus on unravelings of the pseudo-Lindblad equations
with complex-valued parameters that can be encountered in
the study of pseudomodes, but our discussion in principle
also applies to more generalized time-local quantum master
equations.

Our results are illustrated using the example of a qubit
thermalizing with a strongly coupled thermal environment.
We study its time evolution and the accompanying heat cur-
rent using pseudomodes and quantum jump trajectories, and
benchmark our results against a simulation based on the hier-
archical equations of motion (HEOM) [76–78]. The HEOM
technique can be viewed as formally equivalent to pseudo-
modes [79], but enjoys a wealth of well-established numerical
implementations such as introduced in Ref. [80]. Furthermore,
as a second example, we consider a qubit that is not only cou-
pled to a thermal environment but also subject to an external
driving force. The external driving regularly applies π -pulses
to the system with the effect of reversing the thermalization
of the qubit, thus dynamically decoupling it from the envi-
ronment [81]. The example shows how correlations between
qubit and environment behave during this process, and that
the pseudomode description can be used to understand them
qualitatively.

Our paper is organized as follows. In Sec. II, we intro-
duce our general setup and prove our generalized version of
the pseudomode equivalence. Section III introduces the main
results discussed above, which are then illustrated using our
examples in Sec. IV. We conclude in Sec. V and provide
perspectives for future research.

II. THE PSEUDOMODE FRAMEWORK

A. Setup

For our general theory, we consider an open quantum sys-
tem that is coupled to one or more thermal environments. The
pseudomode approach applies to both bosonic and fermionic
environments. To simplify the technical complexity, we only
focus only on bosonic environments in this text. For a discus-
sion of pseudomodes for fermionic environments, we refer to
Ref. [41].

We describe the system and the environments in a gen-
eralized Caldeira-Leggett model, where each environment is
represented by a continuum of mutually noninteracting har-
monic modes [10,35,82]. The Hamiltonian of the total setup
therefore has the form

HCL(t ) = Hs(t ) +
∑

μ

[
Hμ

e + Hμ

i (t )
]
. (1)

We do not make any assumptions about the dimensionality of
the system or the shape of the system Hamiltonian Hs(t ).

The terms Hμ
e and Hμ

i (t ) in the total Hamiltonian re-
spectively denote the free Hamiltonian and the interaction
Hamiltonian corresponding to the μth environment. They are
given by

Hμ
e ≡

∑
k

ω
μ

k aμ†
k aμ

k , (2)

where ω
μ

k is the frequency of the kth mode of this environment
and aμ

k the corresponding annihilation operator, and

Hμ

i (t ) ≡ Qμ(t )X μ
, (3)

where Qμ(t ) is a dimensionless coupling operator on the
system Hilbert space and X μ ≡∑k gμ

k /
√

2ω
μ

k (aμ

k + aμ†
k ) the

bath coordinate. We note that, in principle, our results are not
restricted to environment Hamiltonians of this exact form as
long as certain basic Gaussianity assumptions are satisfied,
see Sec. II B.

The coupling coefficients gμ

k are typically specified in the
form of a spectral density

Gμ(ω) ≡ π
∑

k

(
gμ

k

)2
2ω

μ

k

δ
(
ω − ω

μ

k

)
. (4)

Note that we set h̄ to one throughout this text, and that we
allow the system Hamiltonian and the system coupling op-
erators to explicitly depend on the time t in order to model
time-dependent driving. We denote the state of the total setup
by ρCL(t ); it follows the unitary time evolution

∂tρCL(t ) = −i[HCL(t ), ρCL(t )]. (5)

A central quantity characterizing the environments is their
free two-time correlation functions Cμ(t ). We make the as-
sumption that the state of the system and environments
factorizes at the initial time t = 0 and that each environment
starts in a canonical equilibrium state

ρμ
eq ∝ exp

(−βμHμ
e

)
. (6)

The case of nonequilibrium initial states will also be dis-
cussed later. Here, βμ denotes the inverse temperature of the

033237-3



MENCZEL, FUNO, CIRIO, LAMBERT, AND NORI PHYSICAL REVIEW RESEARCH 6, 033237 (2024)

environment and the proportionality factor is fixed by the nor-
malization of the state. A short calculation shows that under
these assumptions, the correlation functions are given by

Cμ(t ) ≡ tr
[
X μ(t )X μρμ

eq

]
=
∫ ∞

−∞

dω

π
Gμ(ω)

[
coth

(
βμω

2

)
cos(ωt ) − i sin(ωt )

]
,

(7)

where X μ(t ) ≡ eiHμ
e t X μ e−iHμ

e t denotes the Heisenberg pic-
ture operator. For later reference, we note that Cμ(−t ) =
Cμ(t )∗ is the complex conjugate and that

[X μ(t ), X μ(t ′)] = 2i Im[Cμ(t − t ′)] (8)

holds for any two times t and t ′, with Im being the imaginary
part. This equation follows immediately from the fact that the
commutator of X μ(t ) and X μ(t ′) is always a scalar.

The Fourier transform of the correlation functions,∫ ∞

−∞
dt Cμ(t ) eiωt

= [Gμ(ω) − Gμ(−ω)]

[
1 + coth

(
βμω

2

)]
, (9)

reveals that they contain combined information about the bath
temperatures and spectral densities. Neither of these quan-
tities can be independently recovered from the correlation
functions. Nevertheless, the specification of these correlation
functions alone already fully determines the dynamics of the
open system [10]. That is, aside from the system operators
Hs(t ) and Qμ(t ), the reduced state

ρs(t ) ≡ treρCL(t ) (10)

of the system depends only on the functions Cμ(t ). Here, tre

denotes the partial trace over all environments.
Different environments with identical free correlation

functions are thus equivalent from the open system’s point of
view. The core idea of the pseudomode method is to make use
of this equivalence to replace the original environment with
one that can be treated more easily. To maximize the freedom
in choosing the replacement, the equivalence is extended be-
yond the unitary time evolution discussed so far, as we will
see in the next section.

B. Nonunitary environments

Let us now consider an auxiliary Hilbert space consisting
of the open system and the replacement environment, and a
state ρ(t ) that obeys a nonunitary time evolution equation. We
will here assume that it has the form

∂tρ(t ) = −i[Hs(t ), ρ(t )]

+
∑
μn

(
Lμ

n ρ(t ) − iλμ
n

[
Qμ(t )X μ

n , ρ(t )
])

(11)

and discuss further generalizations—such as a Tanimura ter-
minator, which is an extra nonunitary term acting on the
system subspace—in Appendix A 2. For notational conve-
nience, we have divided the replacement environment into
one or more auxiliary subspaces for each environment of the

original model. These auxiliary subspaces will later corre-
spond to the pseudomodes. The ranges of their indices n may
differ depending on the associated environment. The linear
superoperators Lμ

n which describe the free evolution and the
coupling operators X μ

n only act on their respective subspaces,
and λμ

n are coupling constants. The Caldeira-Leggett model
described previously is a special case of this form with only
one auxiliary subspace per environment, Lμ • = −i[Hμ

e , •]
and λμ = 1.

Our first main result is that within the class of models de-
scribed by Eq. (11), given three basic assumptions described
below, different environments are still equivalent as long as
their correlation functions are identical. The correlation func-
tions are

Cμ

adv(t ) ≡
∑

n

(
λμ

n

)2
tr
[
X μ

n (t )X μ
n ρμ

eq,n

]
and

Cμ
ret(t ) ≡

∑
n

(
λμ

n

)2
tr
[
X μ

n X μ
n (t ) ρμ

eq,n

]
, (12)

both evaluated at times t � 0. In this definition,

X μ
n (t ) ≡ (eLμ

n t
)†

X μ
n (13)

are the coupling operators in the Heisenberg picture, the dag-
ger signifies the adjoint with respect to the Hilbert-Schmidt
inner product, and ρ

μ
eq,n denotes the stationary state of the

generator Lμ
n .

More generally, the stationary state could be replaced by
any Gaussian initial state ρ

μ
0,n. In this case, the correlation

functions depend explicitly on both times, instead of just on
the time difference:

Cμ

adv(t, t ′) ≡
∑

n

(
λμ

n

)2
tr
[
X μ

n (t − t ′)X μ
n ρ

μ
0,n(t ′)

]
and

Cμ
ret(t, t ′) ≡

∑
n

(
λμ

n

)2
tr
[
X μ

n X μ
n (t − t ′) ρ

μ
0,n(t ′)

]
, (14)

where ρ
μ
0,n(t ′) = exp[Lμ

n t ′]ρμ
0,n. More details on nonstationary

initial states can be found in Appendix A 2.
For unitary environments, the advanced correlation func-

tion Cμ

adv(t ) agrees with the correlation function as defined
in Eq. (7), and the retarded correlation function Cμ

ret(t ) is
its complex conjugate. In the literature, the two correlation
functions are therefore sometimes bundled into a single object
Cμ(t ) which is defined as Cμ

adv(t ) for t � 0 and as Cμ
ret(|t |)

for t � 0. However, this alternative definition can lead to
confusion since, for nonunitary dynamics,

tr
[
X μ

n (−t )X μ
n ρμ

eq,n

] �= tr
[
X μ

n X μ
n (t ) ρμ

eq,n

]
(15)

in general. We prefer to treat Cμ

adv(t ) and Cμ
ret(t ) as two separate

functions, both defined only at t � 0, and consider them to
be independent degrees of freedom. Hence, to gain access to
the larger class of environments, we must pay the price of
matching two correlation functions instead of one. We shall
see that this undertaking is beneficial nevertheless.

We now return to the three basic assumptions underlying
our result, which are as follows.

(i) The generators Lμ
n must be trace-preserving, that is,

tr[Lμ
n ρ] = 0.

(ii) They must have Gaussian stationary states ρ
μ
eq,n, i.e.,

the moments of the stationary states must obey Wick’s
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probability theorem. A precise formulation of this require-
ment can be found in Eq. (A8) in the Appendix. In the
previously mentioned case of nonstationary initial states, the
initial states must still be Gaussian.

(iii) In order to state the third assumption, we define, for
any operator, A the superoperators

(A)←t • ≡ e−Let [(eLet•)A] and

(A)→t • ≡ e−Let [A(eLet•)] (16)

with Le =∑μn Lμ
n . The third assumption is that the commu-

tator of (X μ
n )i

t with (X μ
n ) j

t ′ is a complex number for any two
times t and t ′ and for any combination of i, j ∈ {←,→}. That
is, we require that [(

X μ
n

)i
t ,
(
X μ

n

) j

t ′

]
∝ 1, (17)

where 1 is the identity superoperator.
Assumption (iii) can be viewed as a generalization of the

relation (8), which holds in unitary environments and implies
that commutators of bath coordinate operators in the Heisen-
berg picture are complex numbers. Intuitively, this assumption
is also related to Gaussianity, since a Gaussianity-preserving
time evolution also preserves the linearity of the coupling
operators, and maps the bath coordinate operator to a linear
combination of the bath coordinate and momentum operators.

While assumptions (i) to (iii) are strong constraints, we
point out that they still leave much freedom. The coupling
constants λμ

n do not need to be real; they can be arbitrary
complex numbers as in Refs. [39–41]. The superoperators
Lμ

n are not required to generate positive maps and they may
even violate (Lμ

n ρ)† = Lμ
n (ρ†). Finally, the stationary states

ρ
μ
eq,n are, unlike in Refs. [39–41], not required to be Her-

mitian. We are thus considering potentially very unphysical
time evolutions on the replacement environments. However,
as long as these environments are equivalent to the original
unitary environment, the resulting reduced dynamics of the
open system will be the same as the original one, and therefore
physical.

A crucial ingredient in our main result is that the orig-
inal Caldeira-Leggett environment itself satisfies our three
assumptions, and can therefore be substituted with a different
environment. We note that this result can still be applied if
the original environment is not of the form (2), as long as
the three assumptions hold. However, in the form stated here,
the result does not immediately extend to fermionic environ-
ments. In fermionic environments, the commutation relation
(17) typically does not hold and would be replaced with an
anticommutation relation; also, Wick’s theorem does not hold
in the form given in Eq. (A8), which ignores signs picked
up from anticommuting fermionic operators. As stated in the
beginning, this paper thus focuses on bosonic environments
only, and we refer to Ref. [41] for an explanation of how
fermions can be accommodated.

We finally move to the proof of our main result. In Ap-
pendix A 1, we show that the reduced state of the system can
be written in terms of a Feynman-Vernon influence functional:

ρs(t ) = T
[
e−i

∫ t
0 dτ Hs (τ )×] T [e∑μ

∫ t
0 dτ Wμ(τ )

]
ρs(0), (18)

where T denotes time ordering, with later times moved to the
left. The influence phase superoperators Wμ(τ ) are given by

Wμ(τ ) ≡ −
∫ τ

0
dτ ′ Cμ

adv(τ − τ ′) Q̃μ(τ )×Q̃μ(τ ′)→

+
∫ τ

0
dτ ′ Cμ

ret(τ − τ ′) Q̃μ(τ )×Q̃μ(τ ′)←. (19)

Here, we defined for any operator A the superoperators A←
and A→ acting as A← • ≡ • A and A→ • ≡ A •, as well as
A× ≡ A→ − A←. The notation Q̃μ(t ) indicates that the opera-
tor is expressed in the interaction picture with respect to Hs(t ).
We thus find that the reduced state only depends on the two
correlation functions defined in Eq. (12), as claimed.

C. Pseudomodes

To construct a concrete replacement for a given unitary
environment with the correlation function Cμ(t ), we need
to find one with matching correlation functions Cμ

adv(t ) and
Cμ

ret(t ), that is,

Cμ

adv(t ) = Cμ(t ) and Cμ
ret(t ) = Cμ(t )∗. (20)

Here, the asterisk denotes complex conjugation. In order to
proceed, we must now specify the auxiliary subspaces, which
so far have been kept fully general. We will focus on the
dynamics

Lμ
n ρ = −i
μ

n

[
bμ†

n bμ
n , ρ
]

+ �μ
n

(
Nμ

n +1
) (

bμ
n ρ bμ†

n − {bμ†
n bμ

n ρ}/2
)

+ �μ
n Nμ

n

(
bμ†

n ρ bμ
n − {bμ

n bμ†
n ρ}/2

)
, (21)

where bμ
n and bμ†

n are bosonic ladder operators and the curly
braces denote the anticommutator, and choose

X μ
n = bμ

n + bμ†
n . (22)

The symbols of the free parameters 
μ
n , �μ

n , and Nμ
n have been

chosen to make this generator resemble the standard Lind-
bladian for a damped harmonic oscillator. However, both 
μ

n
and �μ

n can be arbitrary complex values, and Nμ
n a complex

value with a real part greater than −1/2. To highlight this fact,
we call these unphysical modes pseudomodes and Eq. (11) a
pseudo-Lindblad equation [39,83].

These pseudomodes are the most straightforward imple-
mentation of an environment satisfying the three assumptions
of Sec. II B. To further generalize the approach, it would be
possible to consider additional terms in the time evolution
that preserve Gaussianity. One could thus add terms to the
pseudomode Hamiltonian that are linear or quadratic in the
pseudomode coupling operators, and one could even consider
multiple coupled pseudomodes with bilinear coupling terms.
Coupled pseudomodes have been discussed, for example, in
Refs. [43–46,84]. Our framework also encompasses dissipa-
tons [55,56], which formally look like pseudomodes in pure
states and may therefore be more efficient numerically, see
Appendix A 3.

In the following, we will however continue to focus on the
simple pseudomodes (21), because they provide the clearest
physical picture and are sufficiently flexible for our applica-
tions without too much technical complication.
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TABLE I. Constructing pseudomodes (PMs) for a given environment correlation function (CF). We assume that the CF is a sum of terms
of the types listed in the first column. The second column gives restrictions on the parameters appearing in the respective CF term. Parameters
not mentioned here may be arbitrary complex numbers. The third column lists the number of PMs required to match the respective term, and
the remaining columns list the PM parameters as functions of the CF parameters. Each PM is fully specified by the four parameters 
μ

n , �μ
n ,

Nμ
n , and λμ

n , see Eqs. (11) and (21). The symbols Re and Im denote the real and imaginary parts of complex numbers. The last line of this table
describes the regularization procedure mentioned in the main text.

Pseudomode parameters

CF Term Conditions Pseudomodes 
 � N λ2

ae−νt a ∈ R 1 Im(ν ) 2Re(ν ) 0 a

ae−ν1t + a∗e−ν2t − 2 1
2i (ν1 − ν∗

2 ) ν1 + ν∗
2 0 a

1
2i (ν2 − ν∗

1 ) ν2 + ν∗
1 0 a∗

ae−ν1t − ae−ν2t − 3 Im(ν1) 2Re(ν1) 0 a∗

Im(ν2) 2Re(ν2) 0 −a
1
2i (ν1 − ν∗

2 ) ν1 + ν∗
2 0 a − a∗

a1e−νt + a2e−ν∗t a1 + a2 ∈ R 2 Im(ν ) 2Re(ν ) a2/(a1 − a∗
2 ) a1 − a∗

2

and |Re(a1)| > |Re(a2)| 0 2ν 0 a1 − a∗
1

ae−νt a /∈ R Treat as ae−νt + a∗e−
t for 
 → ∞.

The stationary state of the generator (21) is given by

ρμ
eq,n ∝ exp

[− log
[(

Nμ
n +1

)/
Nμ

n

]
bμ†

n bμ
n

]
, (23)

where the proportionality factor is fixed by the normalization
trρμ

eq,n = 1. Note that the state is normalizable because of the
real part of Nμ

n being greater than −1/2.
In Appendix B, we show that the generator satisfies all

three assumptions of Sec. II B. We also show that with this
dynamics, the contribution of a single pseudomode to the
correlation functions (12) evaluates to

tr
[
X μ

n (t )X μ
n ρμ

eq,n

]
= Nμ

n ei
μ
n t−�μ

n t/2 + (Nμ
n +1

)
e−i
μ

n t−�μ
n t/2 and

tr
[
X μ

n X μ
n (t ) ρμ

eq,n

]
= Nμ

n e−i
μ
n t−�μ

n t/2 + (Nμ
n +1

)
ei
μ

n t−�μ
n t/2. (24)

This result makes it clear that a finite number of pseu-
domodes can only exactly match a correlation function that
is a finite sum of exponential terms. However, the spectral
densities describing the environments are often derived phe-
nomenologically and the correlation functions in that case
unavoidably come with some uncertainty [85]. It is therefore
often justified to apply multiexponential approximations to
the correlation functions. Furthermore, we physically expect
that a slight change in the environment correlation func-
tions changes the dynamics of the open system only slightly
[85,86]. Multiexponential expansions can thus still provide
good approximations even when the environment spectral
densities are known exactly from first principles. In practice,
multiexponential expansions of the correlation functions can
be obtained from pole expansions of Eq. (7), from numerical
fitting procedures [39], through heuristic approaches like in
Ref. [48], by Prony analysis [55,56], or from rational approx-
imations of the spectral density [87,88]. We refer to Ref. [89]
for a recent review of these and other approaches.

In Table I, we provide a dictionary mapping possible
terms in a multiexponential correlation function to one or
more pseudomodes mimicking these terms. Note that the
shape of the terms considered here stems from the fact that
Cμ

adv(0) = Cμ
ret(0) holds in general; therefore, only correlation

functions with Cμ(0) ∈ R can be handled. For environments
violating this property, such as overdamped Drude-Lorentz
environments, one must add a regularization term as indicated
at the end of the table. We will demonstrate this regularization
procedure later in an example, see Sec. IV B.

D. Comparison with reaction coordinates

We note that the equivalent pseudomode model that we
have constructed here resembles the reaction coordinate
model [90–92] where, similarly, a number of environmental
degrees of freedom are treated exactly. The reaction coordi-
nate approach is based on a transformation of the environment
which singles out the reaction coordinates, i.e., the most
strongly interacting degrees of freedom. After extracting suf-
ficiently many reaction coordinates, the residual bath can
be coupled more weakly and is often treated in a Marko-
vian weak-coupling approximation. Recent extensions of the
reaction coordinate technique include effective modes [93],
chain mappings [94] and the reaction coordinate polaron
transform [95].

The two techniques differ in the following two points. First,
the pseudomode technique provides a direct mapping of the
unitary environment to a master equation for the system and
the pseudomodes. This mapping is exact to the degree that
the environment correlation functions can be fitted with, or
otherwise approximated by, a multiexponential function. To
the contrary, the reaction coordinate approach only maps one
Caldeira-Leggett type model to another, and the environment
in the new model must still be dealt with, for example through
a Markovian approximation. Second, reaction coordinates are
physical modes and thus have a transparent interpretation
in contrast to pseudomodes. In this paper, we have so far
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introduced pseudomodes as only a mathematical tool. Their
properties are related to the abstract exponents and coefficient
of the multiexponential correlation function, and they are in
principle unphysical. However, we will see in the following
that they can often still be treated as if they were physical
degrees of freedom representing the environment.

III. APPLICATIONS

A. Multitime correlation functions

Our considerations so far allow us to find the reduced state
of the open quantum system. We are thus able to compute
expectation values of system variables, averaging over the
environmental degrees of freedom. However, in order to study
response properties of the system or fluctuations of its dynam-
ical variables, we must go a step further. The quantities of
interest are then multitime correlation functions [96], which
have the general form

f = tr[SkVCL(tk, tk−1) · · · S1VCL(t1, 0)ρCL(0)]

= tr[Sk (tk ) · · · S1(t1)ρCL(0)]. (25)

Here, the Si are system operators, and the times ti are ordered
such that tk � · · · � t1 � 0. The propagation superoperators
VCL(tb, ta) ≡ T exp[−i

∫ tb
ta

dt HCL(t )×] act on everything to
their right, and Si(ti ) ≡ VCL(ti, 0)†Si denotes Heisenberg pic-
ture operators.

The first expression in Eq. (25) readily generalizes to
nonunitary environments, where we define

f ≡ tr[SkV(tk, tk−1) · · · S1V(t1, 0)ρ(0)]

= tr
[
(Sk )→tk · · · (S1)→t1 ρ(0)

]
. (26)

Here, V(tb, ta) ≡ T exp[
∫ tb

ta
dt L0(t )] is the propagator for the

time evolution equation (11), written as ∂tρ(t ) = L0(t )ρ(t ),
and the superoperators (Si )→ti are defined as (Si )→ti ≡
V(ti, 0)−1S→

i V(ti, 0).
For a unitary environment, the new definition (26) obvi-

ously reduces to Eq. (25). However, it is not a priori clear
whether this expression produces the same value with any
equivalent environment. In the remainder of this section, we
shall prove that it does. In other words, we will show that
the expression depends only on system space operators and
the correlation functions Cμ

adv(t ) and Cμ
ret(t ). We note that this

equivalence has already been shown in Ref. [97] for pseudo-
modes with physical parameters. We present a different proof
here that is more general and less technical.

For our proof, we take inspiration from a technique that
was used in Ref. [98] to compute certain expectation values
in the hierarchical equations of motion framework. We add
source fields Ji(t ) to the time evolution equation (11), modi-
fying it into

∂tρJ (t ) = L0(t ) ρJ (t ) − i
∑

i

Ji(t )Si ρJ (t ) (27)

with the formal solution

ρJ (t ) = T exp

{∫ t

0
dτ

[
L0(τ ) − i

∑
i

Ji(τ )S→
i

]}
ρ(0).

(28)

The formal solution shows that the multitime correlation
function in question can be obtained by taking functional
derivatives of the time-ordered exponential,

f = 1

(−i)k
tr

[
δ

δJ1(t1)
· · · δ

δJk (tk )
treρJ (t )

]
J=0

. (29)

It remains to show that the time evolution of treρJ (t ) only
depends on system operators and the bath correlation func-
tions. If this invariance holds for any source fields, it will
also hold for the functional derivatives in the equation above.
Repeating the derivation of the influence functional with the
modified time evolution, we find

treρJ (t ) = T
[
e−i

∫ t
0 dτ Hs (τ )×] T [e∫ t

0 dτ WJ (τ )
]
ρs(0), (30)

see Appendix A 1. The result is almost identical to Eq. (18),
except that the source fields have modified the total influence
phase superoperator into

WJ (τ ) =
∑

μ

Wμ(τ ) − i
∑

i

Ji(τ )S̃i(τ )→, (31)

with Wμ(τ ) as defined in Eq. (19). The interaction picture
operators S̃i(τ ) depend only on system operators. Hence, the
whole expression (30) depends only on system space opera-
tors and on the bath correlation functions, and our proof is
complete.

The multitime correlation functions (25) can therefore
be easily computed in pseudomode models using Eq. (26).
Moreover, our proof could be easily generalized to thermal
correlation functions, where the initial product state ρCL(0)
is replaced by the combined system-environment equilibrium
state ρCL,eq. To do so, one would assume that the equilibrium
state can be written as

ρCL,eq = VCL(0,−T )ρCL(−T ) (32)

for T → ∞ and some product state ρCL(−T ), and then pro-
ceed as described above. This generalization was discussed in
Ref. [99] for two-time correlation functions, but it can be done
in our formalism in a more straightforward manner.

B. System-environment interactions

To study the interaction between an open quantum sys-
tem and its environment, it is often necessary to calculate
expectation values involving one or more copies of interaction
Hamiltonians. Since the bath coupling operators commute
with each other and with operators on the system space, any
such expectation value can be brought into the generic form

E = tr[S X μ1 · · · X μk ρCL(t )]. (33)

Here, S is a system operator and X μ1 · · · X μk a string of k (not
necessarily distinct) environment coupling operators.

Our goal is to compute the expectation value E in a pseu-
domode model. To this end, we proceed like in the previous
section. That is, we first generalize the expression (33) to
nonunitary environments,

E ≡ tr

[
S

(∑
n

λμ1
n X μ1

n

)
· · ·
(∑

n

λμk
n X μk

n

)
ρ(t )

]
, (34)

033237-7



MENCZEL, FUNO, CIRIO, LAMBERT, AND NORI PHYSICAL REVIEW RESEARCH 6, 033237 (2024)

and then show that the new expression only depends on sys-
tem operators and the bath correlation functions. Note that
the indices n may range over different values in the different
sums, depending on the number of pseudomodes that are used
to represent the associated environment.

Adding again source fields to the time evolution equa-
tion (11), it now becomes

∂tρJ (t ) = L0(t ) ρJ (t ) − i
∑

μ

Jμ(t )

(∑
n

λμ
n X μ

n

)
ρJ (t ). (35)

The expectation value in question can be obtained by taking
functional derivatives of the time-ordered exponential,

E = 1

(−i)k
tr

[
S

δ

δJμ1 (t )
· · · δ

δJμk (t )
treρJ (t )

]
J=0

. (36)

The influence functional representation of treρJ (t ) is

treρJ (t ) = T
[
e−i

∫ t
0 dτ Hs (τ )×] T [e∑μ

∫ t
0 dτ Wμ

J (τ )] ρs(0), (37)

where Wμ
J (τ ) are modified influence phase superoperators:

Wμ
J (τ ) ≡

∫ τ

0
dτ ′ {Cμ

ret(τ )[Q̃μ(τ )×+Jμ(τ )]Q̃μ(τ ′)←

− Cμ

adv(τ )[Q̃μ(τ )×+Jμ(τ )][Q̃μ(τ ′)→+Jμ(τ ′)]
}

(38)

with τ ≡ τ − τ ′. This result shows that treρJ (t ) is invariant
under replacing equivalent environments, which concludes
our proof.

In order to compute the expectation value E , one therefore
simply has to evaluate Eq. (34) in a pseudomode model. It is
remarkable that both such expectation values and multitime
correlation functions can be computed using pseudomodes
in such a straightforward manner: one obtains the correct
results by basically pretending that the pseudomodes are the
real, physical environment. These results justify our earlier
statement, that pseudomodes can often be treated as if they
were physical degrees of freedom. However we note that there
are also situations where it is not possible to use pseudomodes
as a stand-in for the unitary environment; for example, when
calculating local bath occupation numbers.

C. Thermodynamics

The setup discussed in this paper, consisting of a discrete
quantum system and multiple bosonic environments, is com-
monly used to study quantum thermal machines [100–105].
The open system plays the role of the machine’s working
medium, and the environments the role of the heat reservoirs.
We will now explore how thermodynamic quantities such as
work and heat can be expressed in the pseudomode picture.
For simplicity, we will assume that the system-environment
coupling is not altered externally, i.e., that the system coupling
operators Qμ do not depend on time.

In the strong coupling scenario, the question how to the-
oretically identify work, heat and related quantities has not
yet been universally answered [105]. Here, we focus on some
common, straightforward definitions following Ref. [77] and
use them to demonstrate the application of the pseudomode
equivalence. As a consequence, the following definitions are

not meant to be thermodynamically consistent. They ignore
changes of the interaction energies and can thus violate the
first law of thermodynamics.

The internal energy of the working medium can be identi-
fied with the expectation value of the system Hamiltonian,

U (t ) ≡ 〈Hs(t )〉s. (39)

Here, we used 〈•〉s ≡ tr[• ρs(t )] for the expectation value with
respect to ρs(t ). Similarly, we will use 〈•〉 and 〈•〉CL to denote
expectation values in the states ρ(t ) and ρCL(t ). Since the
internal energy depends only on the reduced system state, it
can obviously be equivalently calculated in the pseudomode
model. The same is true for the power, i.e., the external work
performed on the machine per time, which equals the change
of the energy due to the external driving:

ẇ(t ) ≡ 〈Ḣs(t )〉s. (40)

The heat current from the system into a reservoir may be
identified with the change of that reservoir’s energy:

q̇μ(t ) ≡ ∂t
〈
Hμ

e

〉
CL. (41)

We note that this definition, sometimes called the bath heat
current [98], guarantees an integrated version of the second
law of thermodynamics [98,106] for factorized initial states,

SvN(t ) − SvN(0) +
∫ t

0
dτ
∑

μ

βμq̇μ(τ ) � 0. (42)

Here, SvN(t ) ≡ −〈log ρs(t )〉s denotes the von Neumann en-
tropy of the system, with Boltzmann’s constant set to one.

In order to translate the heat currents into the pseudomode
picture, we must first express them in terms of expectation
values of the form (33). Inserting the unitary time evolution
equation of ρCL(t ), one derives [98]

q̇μ(t ) = q̇μ

sys(t ) − ∂t
〈
Hμ

i

〉
CL + i

∑
ν

〈[
H ν

i , Hμ

i

]〉
CL (43)

where q̇μ
sys(t ) ≡ i〈[Hs(t ), Hμ

i ]〉CL are called system heat cur-
rents and the last term may be interpreted as cross currents
between the heat reservoirs. We can now perform the substi-
tution Hμ

i →∑
n Hμ

i,n, with

Hμ

i,n ≡ λμ
n QμX μ

n (44)

to obtain an equivalent expression in the pseudomode picture.
This procedure yields q̇μ(t ) =∑n q̇μ

n (t ) with

q̇μ
n (t ) ≡ i

〈[
Hs(t ), Hμ

i,n

]〉− ∂t
〈
Hμ

i,n

〉+ i
∑
νm

〈[
H ν

i,m, Hμ

i,n

]〉
= −tr

[
Hμ

i,n Lμ
n ρ(t )

]
. (45)

In the second line, we used the time evolution equation (11)
of the system-pseudomode state.

The heat currents naturally decompose into a sum of pseu-
docurrents q̇μ

n (t ) associated with the individual pseudomodes.
Their formal expression resembles the heat currents in the
standard quantum thermodynamic framework for the Marko-
vian weak-coupling limit, see e.g. Refs. [103,104,107,108].
We can thus, again, formally treat a pseudomode as if it was
physical. However, it is important to note that the pseudocur-
rents are not guaranteed to be real-valued. Since the sum of the
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pseudocurrents is the physical quantity q̇μ(t ), their imaginary
parts must cancel each other out. We will show an example of
this phenomenon in Sec. IV.

As shown for example in Refs. [43,44,48], it is always
possible to find a replacement environment consisting of only
physical pseudomodes that follow a completely positive time
evolution. Making the pseudomodes physical comes at the
cost of more complicated calculations and typically requiring
more pseudomodes to match the bath auto-correlation func-
tions with the same accuracy [43,44]. Such pseudomode mod-
els are therefore less suitable for practical calculations, but
their mere existence can allow us to infer qualitative properties
of the Caldeira-Leggett model. For example, consider a sys-
tem without time-dependent driving, that is, with a constant
Hamiltonian HCL. Looking only through the lens of unitary
system-bath evolution, the long-time behavior of the system
and the heat currents would not be immediately apparent.
However, since the system-pseudomode state ρ(t ) follows a
(regular) Lindblad equation, it will approach a nonequilibrium
steady state at long times (given that some basic conditions
are satisfied, see, e.g., Refs. [109,110]). We can therefore
immediately deduce that the system enters a nonequilibrium
steady state at long times, where all interaction observables,
such as heat currents, approach steady-state values.

D. Quantum jump trajectories

1. Background

The time evolution of the system-pseudomode state for-
mally resembles a Lindblad equation, but it is not completely
positive and does not even preserve the Hermiticity of the
state. In the following, we shall consider this type of time evo-
lution equation on a general Hilbert space H and temporarily
forget about the system-pseudomode structure of our setup.
The evolution has the form

∂tρ(t ) = −i[H (t ), ρ(t )]

+
∑

α

γα (Lαρ(t )L†
α − {L†

αLαρ(t )}/2), (46)

where H (t ) is a Hamiltonian (which may be non-Hermitian),
and the index α enumerates dissipative channels with corre-
sponding Lindblad operators Lα and rates γα (which may be
complex-valued).

Quantum jump trajectories are a valuable tool for the study
of regular Lindblad equations, where H (t ) is Hermitian and
γα positive. It is then possible to write ρ(t ) as the statistical
average of states |ψ (t )〉 that evolve according to a stochastic
differential equation, i.e., ρ(t ) = E{|ψ (t )〉〈ψ (t )|}. Hereafter,
we call a single realization of such a stochastic differential
equation a trajectory, and we use E to denote the expectation
value in the ensemble of trajectories.

In the present case, the state ρ(t ) will generally be non-
Hermitian and can therefore not be represented as a statistical
average of pure states. However, master equations such as
Eq. (46) can still be unravelled into stochastic trajectories. A
general technique that achieves this goal has been proposed in
Ref. [111], see also Ref. [10]. This technique, which applies to
generic time-local master equations, considers trajectories on
the double Hilbert space H ⊗ C2. More recently, it was also

shown that the dynamics of any time-local master equation
can be mapped to an equivalent Lindblad equation on the
double Hilbert space [112]. Motivated by these results, we
will now introduce a jump trajectory framework which is
based on trajectories in the double Hilbert space and applies
specifically to the master equation (46).

2. Unraveling

The solution of Eq. (46) can be represented as the statistical
average ρ = E{ρ�}, where � ≡ (|ψ1〉, |ψ2〉) is a trajectory
in the double Hilbert space and we set ρ� ≡ |ψ1〉〈ψ2|. Note
that we omit all time dependences for brevity. We require the
state � to evolve piecewise deterministically, according to the
following Itô stochastic differential equation:

d|ψ1〉 =
[
−iH − 1

2

∑
α

(γαL†
αLα − rα )

]
|ψ1〉 dt

+
∑

α

[√
γα

rα

Lα|ψ1〉 − |ψ1〉
]

dNα,

d|ψ2〉 =
[
−iH† − 1

2

∑
α

(γ ∗
α L†

αLα − rα )

]
|ψ2〉 dt

+
∑

α

[√
γα

rα

∗
Lα|ψ2〉 − |ψ2〉

]
dNα. (47)

Here, the random variables Nα counting the number of jumps
in the respective dissipative channels are independent Pois-
son processes. Their differentials satisfy the rules dNα dNβ =
δαβ dNα and dt dNα = 0. The rates rα > 0, which we keep
unspecified for now and may depend on the time and on the
state �, govern the frequency of jumps:

E{dNα|�} = rα dt . (48)

This notation stands for the expectation value conditioned on
the state � at the beginning of the time step. Note that for
a completely positive (CP) master equation with H = H† and
γα � 0, the evolution of |ψ1〉 and |ψ2〉 is the same. In this case,
we obtain the standard unraveling of the Lindblad equation
with the choice

rCP
α = γα〈ψ |L†

αLα|ψ〉, (49)

where |ψ〉 ≡ |ψ1〉 = |ψ2〉.
To show that the prescription (47) reproduces the desired

master equation on average, we first apply Itô’s lemma,

dρ� = (d|ψ1〉)〈ψ2| + |ψ1〉(d〈ψ2|) + (d|ψ1〉)(d〈ψ2|). (50)

We then plug in the stochastic differential equation and obtain

dρ� =
[
−i[H, ρ� ] −

∑
α

(γα{L†
αLαρ�}/2 − rαρ� )

]
dt

+
∑

α

[
γα

rα

Lαρ�L†
α − ρ�

]
dNα. (51)

Using E{ f (�) dNα} = E{ f (�) rα (�)} dt , where f (�) is any
function of �, we can take the expectation value on both sides
of this equation. After some simplifications, one finds that ρ ≡
E{ρ�} satisfies the master equation (46).
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In order to use this unraveling in practice, one must choose
a representation of the initial state ρ(0) as a linear combi-
nation of states ρ� . Due to linearity, one can then generate
trajectories for each initial state separately and eventually
form the linear combination of the results. In our application
to pseudomode models, the initial state is always a normal op-
erator and can therefore be written as ρ(0) =∑i ci |ψ i〉〈ψ i|
with 〈ψ i|ψ j〉 = δi j and

∑
i ci = 1. We therefore generate

trajectories starting from |ψ1(0)〉 = |ψ2(0)〉 = |ψ i〉 for each
eigenvector |ψ i〉 of ρ(0) with corresponding nonzero eigen-
value. In our examples in Sec. IV, we chose to make the
number of trajectories that start from |ψ i〉 proportional to
|ci|/(

∑
i |ci|).

Another consideration in practice is how solutions of
Eq. (47) can be efficiently numerically sampled. In our ex-
amples, we employed a form of Gillespie’s algorithm [113],
which replaces the sampling of the random variables dNα at
each time step dt with the inversion sampling of waiting time
distributions. For the reader’s convenience, the algorithm is
summarized in Appendix D.

We briefly discuss the relation between our unraveling and
earlier publications. The unraveling proposed in Ref. [111],
applied to the master equation (46), is a special case of our
result with

rBKP
α = |γα| 〈ψ1|L†

αLα|ψ1〉 + 〈ψ2|L†
αLα|ψ2〉

〈ψ1|ψ1〉 + 〈ψ2|ψ2〉 . (52)

We will here use a different choice of rates, see Eq. (56)
below, and compare our choice with Eq. (52) in Appendix C 5,
showing that our choice gives better convergence. (The index
“BKP” stands for the authors of Ref. [111].)

An important class of non-Markovian dynamics is char-
acterized by master equations of the form (46), where H is
Hermitian and the rates are real-valued but may be negative.
This type of dynamics arises, for example, in the study of
Redfield equations [114] or of classical noise [115,116]. In
Refs. [117–119], the authors study master equations of this
form and develop a stochastic unraveling that can also be
recovered as a special case of ours; we discuss details in
Appendix C 3. For the same type of master equation, another
scheme exists in which temporarily negative rates “undo” the
effects of earlier jumps [120,121]. Whether this scheme can
be extended to complex-valued rates may be an interesting
question for future research. Other approaches that we will
not explore here include the rate operator unraveling for P-
divisible dynamics [122] and the use of physical pseudomodes
in order to apply the quantum jump unraveling of regular
Lindblad equations [42,121].

3. Stability

In the standard unraveling of regular Lindblad equations,
the norm of the state is strictly conserved along each tra-
jectory. This property is desirable since it contributes to the
stability of jump trajectory based simulations of Lindblad
equations, for the following reasons. First, the uncertainty in
the result of any computed averages is proportional to the
typical size of the contributing ensemble members. It is there-
fore beneficial to keep the trajectories bounded. Furthermore,
the norm conservation prevents that some trajectories become

negligible over the course of the simulation and thereby re-
duce the effective size of the ensemble.

This property does not translate to our more general sce-
nario, where H is non-Hermitian or some rates γα nonpositive.
Since the dynamics is trace-preserving, one might expect that
the trace trρ� = 〈ψ2|ψ1〉 could play a similar role to that
of the norm in a regular Lindblad equation. However, this
quantity cannot be conserved on the trajectory-level, since no
choice of rα > 0 makes

d (trρ� ) =
∑

α

(
γα

rα

〈L†
αLα〉� − trρ�

)
(dNα − rα dt ) (53)

vanish in general. Here, we used 〈•〉� to mean 〈ψ2| • |ψ1〉.
The states along the individual trajectories therefore cannot
be normalized to have unit trace; the normalization of the state
operator is only recovered in the average.

The variance of the trace in the ensemble of trajectories is
given by E{|trρ� |2} − 1. To study its behavior, we consider

E{d (|trρ� |2)|�} =
∑

α

|trρ� |2
rα

∣∣∣∣rα − γα〈L†
αLα〉�

trρ�

∣∣∣∣
2

dt . (54)

Since no choice of rα > 0 makes this expression vanish, the
variance is exponentially increasing in time. It is thus unavoid-
able that the absolute value of the trace becomes large on some
trajectories. Note that due to the Cauchy-Schwarz inequality,

|trρ� |2 � 〈ψ1|ψ1〉〈ψ2|ψ2〉, (55)

the norm of at least one of the states |ψ1〉 and |ψ2〉 must then
also be large.

These results indicate that the uncertainty in any en-
semble average will typically grow exponentially in time.
The unraveling (47) is therefore more suitable for short- or
intermediate-time simulations than for the study of long-time
behavior. In order to minimize the impact of this effect, we
choose rα such that it minimizes Eq. (54). The optimal value
is

r∗
α =

∣∣∣∣γα〈L†
αLα〉�

trρ�

∣∣∣∣. (56)

We discuss other choices of rates which, for example, mini-
mize the expected change of the right-hand side of Eq. (55) in
Appendix C. There, we also introduce a more general unravel-
ing ansatz, and find that the instability persists. It thus appears
to be a generic feature of unravelings of not-completely pos-
itive master equations (and not due to Eq. (47) being badly
constructed).

We conjecture that this instability is generic and un-
avoidable. Note that the same phenomenon occurs in
Refs. [111,117] since their unravelings are special cases of
ours. A related issue is observed in Ref. [112], where the
mapping between a non-Lindblad master equation and a Lind-
blad equation on the double space involves an exponentially
growing conversion factor. Moreover, other stochastic meth-
ods lead to similar issues when applied to non-Markovian
systems, see, for example, Refs. [61,78,123–126].

To further support this conjecture, let us consider the
single-qubit master equation

∂tρ(t ) = γ (σ−ρ(t )σ+ − {σ+σ−ρ(t )}/2), (57)
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where σ± are the ladder operators of the qubit and γ ∈ C. For
Re(γ ) < 0, the population of the state |〉+ is increasing, but
the number of trajectories inhabiting that state can only de-
crease over time. Therefore the trajectories that remain in this
state must be weighted stronger and stronger to recover the
correct solution. Furthermore, for ρ(0) = |〉〈+|+, the equa-
tion is solved by

ρ(t ) = e−γ t |+〉〈+| + (1 − e−γ t ) |−〉〈−|. (58)

We see that for any γ /∈ R, the absolute value of the popula-
tion of the state |−〉 will exceed one at some times. Hence, the
state can never be written as a statistical average of normalized
states.

IV. EXAMPLES

A. Example 1

In this example, we consider the thermalization of a qubit
in an underdamped environment. We assume that the system
Hamiltonian is Hs = (/2) σx, where  is the level splitting
and σx the Pauli matrix, and that it couples to the environment
via Q = σz. At the initial time t = 0, the qubit is prepared in
the maximally mixed state and brought into contact with a
heat reservoir. The reservoir is characterized by the spectral
density of underdamped Brownian motion,

G(ω) = 2λ2γω(
ω2 − ω2

0

)2 + 4γ 2ω2
�(ω), (59)

and its inverse temperature β, which we assume to be finite.
Here, λ is the coupling strength, ω0 the reservoir characteristic
frequency, γ the half-width of the spectral density (with γ <

ω0), and � the Heaviside function.
The corresponding reservoir correlation function can be

determined from Eq. (7); it is

C(t ) = a+ e−ν+t + a− e−ν−t +
∞∑

k=1

ak e−νkt . (60)

It consists of a resonant contribution with frequencies ν± ≡
γ ± i(ω2

0 − γ 2)1/2 and corresponding coefficients

a± ≡ λ2

4Im(ν±)

[
1 + i cot

(
βν±

2

)]
(61)

and of a sum of Matsubara terms. The Matsubara frequencies
and coefficients are νk ≡ 2πk/β and

ak ≡ −4λ2γ

β

νk(
ν2+ + ν2

k

)(
ν2− + ν2

k

) , (62)

respectively. In practical calculations, one can only include a
finite number of Matsubara terms with k � kmax. It would be
possible to approximate the remaining terms as a δ contribu-
tion to the correlation function which could then be included
as a Tanimura terminator like discussed in Appendix A 2. For
simplicity, we will however not include such a terminator term
here and ignore all terms with k > kmax.

We are now ready to construct an equivalent pseudo-
mode environment. To apply Table I, we note that ak ∈ R
for the Matsubara terms, and that ν− = ν∗

+, (a+ + a−) ∈ R,
and |Re(a+)| > |Re(a−)|. The underdamped environment can

TABLE II. Parameters for pseudomodes that are equivalent to an
(a) underdamped environment [Eq. (59)], (b) overdamped (Drude-
Lorentz) environment [Eq. (64)]. The third line of each table refers
to the Matsubara modes with 1 � k � kmax, with the corresponding
pseudomodes indexed by n = 2 + k. The parameters appearing in the
tables are defined in Eqs. (60)–(62) and Eqs. (65)–(67), respectively.
The regularization constant 
 should be chosen larger than all other
relevant parameters.

(a) Underdamped environment

n 
n �n Nn λ2
n

1 Im(ν+) 2γ
a−

a+−a∗−
a+ − a∗

−
2 0 2ν+ 0 a+ − a∗

+
2 + k 0 2νk 0 ak

(b) Drude-Lorentz environment

n 
n �n Nn λ2
n

1 1
2i (γ − 
) γ + 
 0 a0

2 1
2i (
 − γ ) γ + 
 0 a∗

0

2 + k 0 2νk 0 ak

thus be represented by the (kmax + 2) pseudomodes listed in
Table II(a). This representation is exact except for the ig-
nored Matsubara modes. The only other approximation that
we make is truncating the pseudomode Hilbert spaces, dis-
carding states with more excitations than a cutoff Cn (where
n indexes the pseudomodes). We note that earlier attempts
to model finite-temperature underdamped environments with
pseudomodes required at least (kmax + 3) pseudomodes, see
for example Appendix D 2 in Ref. [61].

The system parameters used in our simulations can be
found underneath Fig. 2. By varying the number of Matsubara
exponents, we verified that it is sufficient to only consider the
resonant contribution, i.e., to set kmax = 0. We further verified
that a truncation with cutoff C1 = 9 and C2 = 3 perfectly
reproduces results obtained with a HEOM simulation. Our
code was written in PYTHON using QuTiP [80,127,128] and
is available on GitHub, see Ref. [129].

The upper panel of Fig. 2 shows the time dependence
of the expectation value of the system Hamiltonian together
with the results of a Monte Carlo simulation. We find very
good agreement between the exact result and the Monte Carlo
simulation at short times, and strong fluctuations in the Monte
Carlo results at long times. As expected from our stability
discussions, these fluctuations are hard to tame even with a
greatly increased number of trajectories. Further analysis in
Appendix C 5 confirms that the time interval on which the
Monte Carlo simulation converges grows logarithmically with
the number of trajectories.

Since trρ� is only constant on average and not along tra-
jectories, it is interesting to also consider the Monte Carlo
estimate of 〈1〉, i.e., the ensemble average of trρ� , shown in
the bottom panel of Fig. 2. We find qualitatively the same
convergence behavior as for the estimate of 〈Hs〉. If the exact
solution was unknown, the deviation of the estimate of 〈1〉
from 1 could thus be used to judge the convergence of the
Monte Carlo simulation.
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FIG. 2. Time evolution of a qubit thermalizing in an under-
damped environment (example 1). The upper panel shows the
behavior of 〈Hs〉, with the dashed gray curve corresponding to the
exact solution obtained by either integrating the pseudo-Lindblad
equation or the HEOM. The solid curves are Monte Carlo estimates
of 〈Hs〉 generated from a varying number of trajectories following
the unraveling (47). The lower panel shows Monte Carlo estimates
of 〈1〉. That is, the solid curves are obtained by taking the average
of trρ� over the trajectories �(t ). The deviations of these estimates
from 1 are indicators for the convergence of the Monte Carlo sim-
ulations. All Monte Carlo curves in this figure show only the real
parts. We used the parameters  = 1, λ = 0.2, γ = 0.025, ω0 = 1,

and β = 1, and the jump rates r∗
α defined in Eq. (56).

FIG. 3. Heat currents in example 1. Following Eq. (45), the total
heat current q̇ decomposes into contributions q̇n associated with the
pseudomodes (PMs). The solid curves in the upper (lower) panel
show the real (imaginary) parts of these contributions, and the dashed
orange curves their sums. The dotted gray curves are a HEOM
calculation based on the method described in Refs. [80,98], and they
agree well with the sum of the pseudomode heat currents. In the
upper panel, the curves for the first pseudomode, the sum and the
HEOM result all overlap.

In Fig. 3, we show the complex-valued heat currents asso-
ciated with the two pseudomodes according to Eq. (45). The
figure shows that the contribution of the second pseudomode
has a vanishing real part; this pseudomode only serves to
cancel out the imaginary part of the first pseudomode’s con-
tribution. What remains is the real part of that contribution,
which exactly matches the result of a HEOM calculation. We
are thus reminded that intermediate steps of calculations in the
pseudomode framework can yield complex-valued values that
appear unphysical. These unphysical values must however
combine to the correct physical result in the end.

B. Example 2

In this example, we will study the dynamical decoupling
of a qubit from an overdamped Drude-Lorentz environment.
The idea of dynamical decoupling is that the periodic appli-
cation of π -pulses to the qubit can counteract the effect of
the environment on the qubit [81]. The following setup is
identical to an example that was studied in Ref. [80] using
the HEOM; we will here use it to demonstrate the applicabil-
ity of the pseudomode method to overdamped environments
and time-dependent driving and add an analysis of the qubit-
environment correlations.

We work in an interaction picture where the qubit Hamil-
tonian is

Hs(t ) = f (t ) σx, (63)

with f (t ) describing the periodic π -pulses. Specifically,
f (t ) ≡ V whenever t ∈ [nτ − τp, nτ ] for some integer n, and
f (t ) ≡ 0 otherwise. Here, V is the pulse strength, τ−1 the
pulse frequency, and τp ≡ π/(2V ) the pulse duration. The
qubit is initially in the |+〉x eigenstate of σx with σx|+〉x =
|+〉x. It couples to the environment with the coupling operator
Q = σz. We assume the spectral density of the environment to
be

G(ω) = 2λγω

γ 2 + ω2
�(ω), (64)

where λ is the coupling strength and γ the cutoff
frequency [130].

The corresponding environment correlation function is

C(t ) = a0 e−γ t +
∞∑

k=1

ak e−νkt . (65)

Again, it consists of a resonant contribution and a sum of
Matsubara terms. The Matsubara frequencies and coefficients
are again all real-valued; they are given by νk ≡ 2πk/β and

ak ≡ 4λγ νk

β
(
ν2

k − γ 2
) . (66)

The single remaining coefficient,

a0 ≡ λγ

[
cot

(
βγ

2

)
− i

]
, (67)

has a nonzero imaginary part. We must therefore add a regu-
larization term a∗

0 e−
t with 
 � 1 to the correlation function.
We then obtain a representation of the environment with
(kmax + 2) pseudomodes [listed in Table II(b)], where kmax is
the number of included Matsubara terms.
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FIG. 4. Dynamical decoupling (example 2). The plot shows that
with dynamical decoupling, the expectation value 〈σx〉 remains ap-
proximately constant instead of decaying. The dashed and dotted
gray curves are, respectively, the result of HEOM simulations with
dynamical decoupling [Hs(t ) as described in the main text] and
without [Hs(t ) = 0]. The solid curves are pseudomode calculations
using different values of the regularization constant 
, showing that
the pseudomode results approach the HEOM result for large 
. The
gray shading of the background indicates the times where f (t ) = V .
We chose the parameters like in Ref. [80] (β = 10/V , γ = 10−2 V ,
λ = 10−4 V , τ = τp + 10/V ), and we set V = 1. The dashed and
dotted gray curves are therefore identical to the solid green and
dashed orange curves in Fig. 8 there.

In Fig. 4, we verify that this regularization procedure is
working by comparing our results with the HEOM calculation
of Ref. [80]. We included kmax = 3 Matsubara terms and used
the cutoff Cn = 3 for all pseudomodes. For 
 = 50V , our
results are in good agreement with the HEOM results, and will
use this value in the following. As for the previous example,
our code is available on GitHub [129].

We now want to study the rise and decay of correlations
and entanglement between the qubit and its environment. In a
usual bipartite system, a (Hermitian, positive semi-definite)
state ρ is called separable if it can be written as a convex
combination of product states [131],

ρ =
∑

i

pi ρAi ⊗ ρBi, (68)

where pi � 0 and ρAi and ρBi are states of the constituent
systems. Otherwise, the state is entangled, and the amount
of entanglement can be characterized by various measures
including the negativity [131]

N (ρ) ≡ ‖ρTA‖tr − 1

2
=
∑

λ∈σ (ρTA ) |λ| − 1

2
, (69)

which is zero if (but not only if) ρ is separable. Here, ρTA de-
notes the partial transpose of ρ with respect to the subsystem
A, ‖ • ‖tr the trace norm, and the sum runs over the eigenvalues
of ρTA .

FIG. 5. System-environment correlations in the dynamical de-
coupling example. The solid blue and red curves respectively show
the negativity (70) and the absolute value of the quantum mutual
information (71) with values on the left and right y axes. To compare
with the negativity, the dashed green curve shows the expression
(‖ρ‖tr − 1)/2 which would be zero for a usual (Hermitian, positive
semi-definite) state, also with values on the left axis. The gray shad-
ing of the background indicates the times where f (t ) = V .

In our case where ρ may be non-Hermitian, the distinction
between separable and entangled states is less clear. Applying
the operator Schmidt decomposition [131], any operator ρ

can be written in the form (68) with positive pi and some
operators ρAi and ρBi; the crucial condition for separability is
that ρAi and ρBi must be states, that is, Hermitian and positive
semi-definite. However, a non-Hermitian state ρ can never
be written in this form with positive pi and Hermitian ρAi

and ρBi.
Despite this issue, let us explore the behavior of the neg-

ativity of the system-pseudomode state. For non-Hermitian ρ

the second equality of Eq. (69) does not hold; we will still use

N (ρ) ≡ ‖ρTs‖tr − 1

2
(70)

in this case (with ρTs being the partial transpose with respect
to the open system). Figure 5 shows that the negativity be-
tween the system and the pseudomode environment builds up
until the first π -pulse is applied. After the π -pulse, the initial
state of the qubit is approximately restored and the negativ-
ity returns to zero. This behavior of the negativity matches
the intuition that the qubit-environment correlations form a
“memory” which can be drawn upon to restore the initial qubit
state. Even though there is no obvious formal relationship
between N (ρ) here and the actual qubit-environment entan-
glement, and despite the issues detailed above, our results
suggest that N (ρ) still provides at least a qualitative indicator
of the entanglement. Therefore we can, again, treat certain
properties of the sum of pseudomodes almost as if they pertain
to a physical environment.
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In addition to the negativity, Fig. 5 also shows the quantum
mutual information

Is:pm(ρ) = S(ρs) + S(ρpm) − S(ρ), (71)

where ρs and ρpm denote the partial states of the qubit and
the pseudomodes, and S the von Neumann entropy. For usual
states, the quantum mutual information quantifies both the
quantum and the classical correlations of the state. In our case,
the quantum mutual information becomes complex-valued
and we consider its absolute value, which exhibits a behavior
similar to the negativity. At greater times, the periodicity of
the state changes from 2τ to τ ; the initially broken time
translation symmetry by τ is thus restored. Interestingly, this
symmetry restoration process seems to happen on a much
faster time scale than the overall relaxation, which will even-
tually bring the system into a τ -periodic limit cycle despite
the dynamical decoupling.

V. CONCLUDING PERSPECTIVES

Understanding the interactions of quantum systems with
their environment in the non-Markovian and strong-coupling
regimes is crucial for the development of quantum technol-
ogy, for the study of quantum thermodynamics, and for our
comprehension of the quantum world in general. In this work,
we have demonstrated that the pseudomode technique may
provide a significant contribution to this understanding. By
more formally solidifying the theoretical framework that the
technique is built on, we have shown that, despite its apparent
unphysicality, a pseudomode environment can be used in lieu
of the actual one to analyze a multitude of quantities from
multitime correlation functions to quantum trajectories and
system-environment currents and correlations.

Furthermore, we have provided in Table I a handy recipe
for the translation of any given environment with a multi-
exponential autocorrelation function into a mathematically
equivalent pseudomode environment obeying a quantum
master equation. We have demonstrated the application of
this recipe on the examples of underdamped Brownian en-
vironments and overdamped Drude-Lorentz ones, and we
demonstrated that finite-temperature underdamped environ-
ments can be described using fewer pseudomodes than what
was previously thought possible.

In this work, we have focused on harmonic pseudomodes,
that is, such whose free time evolution follows the well-known
Lindblad equation for a damped harmonic oscillator—albeit
with complex-valued parameters—since they are the most
straightforward implementation of the general nonunitary
environments discussed at the beginning. The general frame-
work we have introduced also encompasses setups with
multiple coupled pseudomodes like in, e.g., Refs. [43–46],
as well the dissipaton approach [55,56], whose relationship
with pseudomodes had not been fully understood until now.
Whether it is possible to find equivalent environments that
are not based on harmonic modes, and whether our tech-
nique can be generalized even further are both interesting
questions for future studies. Further generalizations might
involve nonfactorizing initial conditions, treated either like in
Eq. (32) or with the approaches introduced in Refs. [132,133],
or they might even go beyond the complex-valued parameters

discussed here and introduce, for example, noncommuting
numbers.

By demonstrating how pseudomodes can improve dissi-
pative state engineering algorithms [83], pseudomodes have
already proven to be useful for practical applications. In
Ref. [134], it was shown that pseudomodes can be used to
study fluctuating quantities in strongly-coupled systems. Our
investigations of quantum jump trajectories is a step towards
advancing this line of research, and our results thus pave the
way for a variety of further applications. These applications
include the study of quantum many-body systems, of the
performance of quantum thermal machines, or of fundamental
relationships involving the fluctuations of such systems.
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APPENDIX A: INFLUENCE FUNCTIONALS
FOR NONUNITARY ENVIRONMENTS

1. Derivation

Here, we will derive the influence functional representation
(18) of the open system dynamics from the time evolution
equation (11), which we repeat here:

∂tρ(t ) = (Ls(t ) + Le) ρ(t ) − i
∑
μn

λμ
n

[
Qμ(t )X μ

n , ρ(t )
]
.

(A1)

Here, we set Ls(t ) ≡ −iHs(t )× and Le ≡∑μn Lμ
n . Recall that

for any operator A, we define the superoperators A← • ≡ • A,
A→ • ≡ A •, and A× ≡ A→ − A←.

We move to an interaction picture with respect to the free
evolution Ls(t ) + Le. For an operator A(t ) that may have an
explicit time dependence, we thus define

Ã(t ) ≡ T
[
e− ∫ t

0 dτ Ls (τ )
]

e−Let A(t )

= T
[
ei
∫ t

0 dτ Hs (τ )][e−Let A(t )
]
T
[
e−i

∫ t
0 dτ Hs (τ )], (A2)
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where T denotes inverse time-ordering with later times moved
to the right. The time evolution equation in the interaction
picture reads ∂t ρ̃(t ) = L̃i(t )ρ̃(t ), with

L̃i(t ) ≡ −i
∑
μn

λμ
n

[
Q̃μ(t )→

(
X μ

n

)→
t − Q̃μ(t )←

(
X μ

n

)←
t

]
,

(A3)

using the notation defined in Eq. (16).
Let us introduce the following correlation functions:

Cμ

adv,n(t ) ≡ tr
[
X μ

n (t )X μ
n ρμ

eq,n

]
and

Cμ
ret,n(t ) ≡ tr

[
X μ

n X μ
n (t ) ρμ

eq,n

]
. (A4)

Here, X μ
n (t ) is the Heisenberg picture operator as defined in

Eq. (13). Using our assumptions that Lμ
n is trace-preserving

and that Lμ
n ρ

μ
eq,n = 0, we derive the identities

tr
[(

X μ
n

)i
τ

(
X μ

n

)→
τ ′ ρ

μ
eq,n

] = Cμ

adv,n(τ − τ ′) and

tr
[(

X μ
n

)i
τ

(
X μ

n

)←
τ ′ ρ

μ
eq,n

] = Cμ
ret,n(τ − τ ′) (A5)

for any i ∈ {←,→}.
We are now ready to calculate the influence functional,

proceeding along the lines of the unitary case explained in
Ref. [10]. We formally write the system state as

ρ̃s(t ) = tre

{
T exp

[ ∫ t

0
dτ L̃i(τ )

]
ρ(0)

}

= Tstre

{
Te exp

[ ∫ t

0
dτ L̃i(τ )

]
ρ(0)

}
, (A6)

where tre denotes the partial trace over all of the auxiliary
environment. The time-ordering operators Ts and Te act only
on the system-space expressions Q̃μ(t )i and environment-
space expressions (X μ

n )i
t , respectively. Since all commutators

[(X μ
n )i

t , (X μ
n ) j

t ′] are complex numbers by our third assump-
tion, [L̃i(τ ), L̃i(τ ′)] acts only on the system space. Applying
Wick’s theorem [10], we thus arrive at

ρ̃s(t ) = Ts
{
e

1
2

∫ t
0 dτ

∫ τ

0 dτ ′ [L̃i (τ ),L̃i (τ ′ )]tre
[
e
∫ t

0 dτ L̃i (τ )ρ(0)
]}

.

(A7)

We are assuming that the initial state factorizes as ρ(0) =
ρs(0) ⊗ ρe(0) with Gaussian ρe(0). By “Gaussian,” we mean
that all n-point correlators vanish for odd n and decompose
into 2-point correlators for even n. We can formally express
this assumption as

(2nn!)〈A1 · · · A2n〉
=
∑

σ

〈N [Aσ (1)Aσ (2)]〉 · · · 〈N [Aσ (2n−1)Aσ (2n)]〉, (A8)

where 〈•〉 ≡ tr[• ρe(0)], the superoperators Ak all have the
form (X μ

n )i
t , the sum runs over all permutations of the 2n

indices, and N denotes the natural ordering, i.e., it moves
superoperators with smaller indices to the left. Making use
of this identity and of the fact that the factors Q̃μ(t )i behave
like commuting numbers inside the time ordering Ts, we can

write the system state as follows:

ρ̃s(t ) = Ts

[
exp

{
1

2

∫ t

0
dτ

∫ τ

0
dτ ′ [L̃i(τ ), L̃i(τ

′)]
}

× exp

{
1

2

∫ t

0
dτ

∫ t

0
dτ ′ 〈L̃i(τ )L̃i(τ

′)〉e

}
ρs(0)

]
.

(A9)

We finally restore the Schrödinger picture and obtain

ρs(t ) = T [e
∫ t

0 dτ Ls (τ )] T [e
∫ t

0 dτ W(τ )] ρs(0) (A10)

with the superoperator

W(τ ) ≡
∫ τ

0
dτ ′ 〈L̃i(τ )L̃i(τ

′)〉e. (A11)

Using some straightforward algebra and the identities (A5),
one can see that W(τ ) =∑μ Wμ(τ ) with the influence phase
superoperators Wμ(τ ) defined in Eq. (19). We have thus de-
rived Eq. (18).

In the derivation of Eq. (30), a source term is added to the
interaction term L̃i(t ). With this source term, equality between
Eqs. (A7) and (A9) does not hold. However, the source term
acts trivially on the environment subspace; it can therefore
be pulled out of the partial trace in Eq. (A7). Afterwards,
we can proceed as above to arrive at the desired result. In
the derivation of Eq. (37), the source terms are linear in the
(X μ

n )i
t and, hence, Eq. (A9) holds without modification here.

The result is obtained by plugging the modified L̃i(t ) into this
equation.

2. Generalizations

So far, we have focused on the relatively simple evolution
equation (11). We briefly discuss some straightforward gener-
alizations. To keep the presentation simple, we will consider
each generalization separately, but they can be easily com-
bined.

a. Multiple coupling terms

First, we consider multiple coupling terms per environ-
ment. The time evolution equation then becomes ∂tρ(t ) =
(Ls(t ) + Li(t ) + Le)ρ(t ) with an interaction term

Li(t ) ρ ≡ −i
∑
μnα

λμ
nα

[
Qμ

α (t )X μ
nα, ρ

]
. (A12)

The calculation proceeds exactly like above until we reach
Eq. (A11). Plugging in the new interaction term, we find
W(τ ) =∑μαβ Wμ

αβ (τ ) with

Wμ
αβ (τ ) ≡ −

∫ τ

0
dτ ′ Cμ

adv,αβ
(τ − τ ′) Q̃μ

α (τ )×Q̃μ
β (τ ′)→

+
∫ τ

0
dτ ′ Cμ

ret,αβ (τ − τ ′) Q̃μ
α (τ )×Q̃μ

β (τ ′)←.

(A13)
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Two environments are therefore equivalent as long as the
correlation functions

Cμ

adv,αβ
(t ) ≡

∑
n

λμ
nαλ

μ
nβ tr
[
X μ

nα (t )X μ
nβ ρμ

eq,n

]
and

Cμ

ret,αβ (t ) ≡
∑

n

λμ
nαλ

μ

nβ tr
[
X μ

nβX μ
nα (t ) ρμ

eq,n

]
(A14)

agree for all α and β.

b. Nonunitary system evolution

Next, we consider adding a nonunitary contribution on the
system Hilbert space. That is, we add a term K(t )ρ(t ) on the
right-hand side of Eq. (11), where K(t ) is a superoperator
acting only on the system space. This modification has the
effect of modifying Eq. (A11) into

W(τ ) ≡ K̃(τ ) +
∫ τ

0
dτ ′ 〈L̃i(τ )L̃i(τ

′)〉e (A15)

with K̃(t ) the appropriately transformed superoperator. If
K(t ) is chosen to be

K(t ) ρ =
∑

μ

�
μ

adv(Qμ(t )ρQμ(t ) − Qμ(t )2ρ)

+
∑

μ

�
μ
ret(Q

μ(t )ρQμ(t ) − ρQμ(t )2), (A16)

where �
μ

adv and �
μ
ret are some rates, adding the nonunitary term

thus has the same effect as adding δ terms to the correlation
functions:

Cμ

adv(t ) → Cμ

adv(t ) + �
μ

advδ(t ),

Cμ
ret(t ) → Cμ

ret(t ) + �
μ
retδ(t ). (A17)

The term (A16) is known as an Ishizaki-Tanimura terminator
in the HEOM literature [135]. It may be used to capture short-
time features of correlation functions that cannot be fitted well
with a multiexponential ansatz.

c. Modified interaction terms

Here, we consider modifications of the interaction terms.
There is a large number of possible modifications; let us
consider, for example,

Li(t ) ρ ≡ −i
∑
μn

λμ
n

(
Qμ(t )Y μ

n ρ − ρQμ(t )X μ
n

)
, (A18)

where X μ
n and Y μ

n are unrelated, arbitrary operators. Plugging
this interaction term into Eq. (A11), we find that such environ-
ments are equivalent as long as the following four correlation
functions agree:

Cμ
(1)(t ) ≡

∑
n

(
λμ

n

)2
tr
[
Y μ

n (t )Y μ
n ρμ

eq,n

]
,

Cμ
(2)(t ) ≡

∑
n

(
λμ

n

)2
tr
[
X μ

n X μ
n (t ) ρμ

eq,n

]
,

Cμ
(3)(t ) ≡

∑
n

(
λμ

n

)2
tr
[
X μ

n (t )Y μ
n ρμ

eq,n

]
, and

Cμ
(4)(t ) ≡

∑
n

(
λμ

n

)2
tr
[
X μ

n Y μ
n (t ) ρμ

eq,n

]
. (A19)

In this work, we focus on the case X μ
n = Y μ

n where only two
correlation functions need to be matched. The generalization
above, or similar modifications of the interaction terms, might
however be able to optimize our results a bit further.

d. Nonequilibrium environments

So far, we have only considered stationary initial states
for the unitary and pseudomode environments. However, this
assumption can be relaxed [38], as long as the initial states
remain Gaussian. The pseudomode framework can thus also
be applied to environments with nonthermal initial states,
such as squeezed states. It has been shown that nonthermal
initial states can be used as a thermodynamic resource and
thus, for example, increase the performance of quantum heat
engines [136].

We first review the situation for unitary environments. If a
unitary environment is initially in a nonstationary state ρ

μ
0 , its

two-time correlation function will generally depend explicitly
on both times, instead of just their difference:

Cμ(τ, τ ′) ≡ tr
[
X μ(τ )X μ(τ ′)ρμ

0

]
= tr

[
X μ(τ − τ ′)X μ

ρ
μ
0 (τ ′)

]
. (A20)

Here, ρ
μ
0 (τ ′) ≡ exp(−iHμ

e τ ′) ρ
μ
0 exp(iHμ

e τ ′) is the time-
evolved environment state. We note that the relation

Cμ(τ, τ ′)∗ = Cμ(τ ′, τ ) = tr
[
X μX μ(τ − τ ′)ρμ

0 (τ ′)
]

(A21)

holds, and therefore [X μ(τ ), X μ(τ ′)] = 2i Im[Cμ(τ, τ ′)].
We now consider nonequilibrium initial states ρ

μ
0,n for the

pseudomodes and define the correlation functions

Cμ

adv,n(τ, τ ′) ≡ tr
[
X μ

n (τ − τ ′)X μ
n ρ

μ
0,n(τ ′)

]
and

Cμ
ret,n(τ, τ ′) ≡ tr

[
X μ

n X μ
n (τ − τ ′) ρ

μ
0,n(τ ′)

]
. (A22)

in analogy to Eq. (A4). Note that ρ
μ
0,n(τ ′) ≡ exp(Lμ

n τ ′)ρμ
0 are

the time-evolved states, and X μ
n (τ − τ ′) are still Heisenberg

picture operators as defined in Eq. (13). Generalizing Eq. (A5)
to this situation, we find

tr
[(

X μ
n

)i
τ

(
X μ

n

)→
τ ′ ρ

μ
eq,n

] = Cμ

adv,n(τ, τ ′) and

tr
[(

X μ
n

)i
τ

(
X μ

n

)←
τ ′ ρ

μ
eq,n

] = Cμ
ret,n(τ, τ ′) (A23)

for any i ∈ {←,→}.
From here on, the derivation proceeds exactly as before.

We must therefore match the correlation functions as follows:

Cμ(τ, τ ′) =
∑

n

(
λμ

n

)2
Cμ

adv,n(τ, τ ′),

Cμ(τ, τ ′)∗ =
∑

n

(
λμ

n

)2
Cμ

ret,n(τ, τ ′). (A24)

3. Dissipatons

Until now, we have assumed that the full state ρ is a matrix,
that is, an element of the space

ρ ∈ (Hs ⊗ H′
e) ⊗ (Hs ⊗ H′

e)∗, (A25)

where Hs is the system Hilbert space, H′
e the replacement

environment Hilbert space and the star denotes the dual.
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Removing this assumption is our final generalization to con-
sider. Instead, we consider a state space of the form

ρ ∈ Hs ⊗ H∗
s ⊗ Hd, (A26)

where Hd is an arbitrary space. The partial trace operation
must then be replaced with an analogous operation, that is, a
linear functional ϕ : Hd → C.

We must still make the basic assumptions that the free
evolution on Hd preserves ϕ, that it has a Gaussian stationary
state, and that the commutators of the relevant environment
coupling operators in an interaction picture are central. The
free evolution preserving ϕ means that ϕ ◦ Ld = 0 if Ld is the
generator of the free evolution. In fact, the first assumption
can alternatively be formulated as “Ld has a zero eigenvalue,”
since the existence of a zero eigenvalue guarantees the exis-
tence of a preserved functional ϕ, which is the corresponding
left eigenvector. Under these assumptions, the derivation of
the influence functional [Eqs. (A10) and (A11)] procedes as
before. Note that the operation 〈•〉e appearing in Eq. (A11)
then refers to a partial application of ϕ.

Following this line of thought, one obtains the dissipatons
introduced in Refs. [55,56]. Assume that the time evolution is
given by

∂tρ(t ) = [Ls(t ) + Ld + Li(t )] ρ(t ), (A27)

where Ld ρ ≡ −i
∑

μn 
μ
n bμ†

n bμ
n ρ and

Li(t ) ρ ≡ −i
∑
μn

[
Qμ(t )Y μ

n ρ(t ) − X μ
n ρ(t )Qμ(t )

]
. (A28)

Here, bμ†
n and bμ

n are the raising and lowering operators of the
dissipatons, and 
μ

n their (usually complex-valued) frequen-
cies. If the coupling operators X μ

n and Y μ
n are linear in bμ†

n
and bμ

n , our three basic assumptions are all satisfied. In partic-
ular, the stationary state |0〉d is Gaussian, and the functional
ϕ ≡ 〈0|d is invariant.

We specify the coupling operators to be

X μ
n ≡ bμ†

n + λμ
n bμ

n , Y μ
n ≡ bμ†

n + �μ
n bμ

n (A29)

with some complex constants λμ
n and �μ

n . We then obtain

〈L̃i(τ )L̃i(τ
′)〉e

= 〈0|d L̃i(τ )L̃i(τ
′) |0〉d

=
∑
μn

〈0|d X μ
n (τ )X μ

n (τ ′) |0〉d Q̃μ(τ )×Q̃μ(τ ′)→

−
∑
μn

〈0|d Y μ
n (τ )Y μ

n (τ ′) |0〉d Q̃μ(τ )×Q̃μ(τ ′)←. (A30)

Noting that

〈0|d X μ
n (τ )X μ

n (τ ′) |0〉d = λμ
n exp

[
i
μ

n (τ − τ ′)
]

and

〈0|d Y μ
n (τ )Y μ

n (τ ′) |0〉d = �μ
n exp

[
i
μ

n (τ − τ ′)
]
, (A31)

and comparing with Eq. (19), we obtain the conditions

Cμ(t ) =
∑

n

λμ
n ei
μ

n t and Cμ(t )∗ =
∑

n

�μ
n ei
μ

n t (A32)

for t � 0. The constants λμ
n , �μ

n , and 
μ
n can be determined

from these conditions to find a replacement dissipaton model.

APPENDIX B: PSEUDOMODE TIME EVOLUTION

In this Appendix, we will discuss the generator (21). It is
obviously a linear, trace-preserving superoperator. Its unique
stationary state is given by Eq. (23); this statement can be
proven exactly like in the case of a completely positive Lind-
blad equation. The second and third of our assumptions follow
from the fact that the superoperators (X μ

n )i
t (i ∈ {←,→})

remain linear combinations of (bμ
n )←, (bμ

n )→, (bμ†
n )← and

(bμ†
n )→ at all times. To see this, note that

(
X μ

n

)i
t = e−(Lμ

n )×t
(
X μ

n

)i
(B1)

for i ∈ {←,→}, where (Lμ
n )×• ≡ [Lμ

n , •] is a commutator of
superoperators. It thus suffices to show that (Lμ

n )× maps the
subspace of superoperators spanned by (bμ

n )←, (bμ
n )→, (bμ†

n )←
and (bμ†

n )→ to itself. We calculate the action of (Lμ
n )× on

each of these basis elements and find that we do not leave
the subspace:

L×b← = (i
 − �(2N+1)/2) b← + �(N+1) b→,

L×b→ = (i
 + �(2N+1)/2) b→ − �N b←,

L×(b†)← = (−i
 + �(2N+1)/2) (b†)← − �N (b†)→,

L×(b†)→ = (−i
 − �(2N+1)/2) (b†)→ + �(N+1) (b†)←.

(B2)

We omitted all indices for the sake of presentation.
With the calculation (B2), we have gained a matrix repre-

sentation of (Lμ
n )×. Using Eq. (B1), it is thus straightforward

to find explicit expressions for (X μ
n )i

t . Plugging these expres-
sions into the identities (A5), one obtains Eq. (24) after a short
calculation.

APPENDIX C: QUANTUM JUMP TRAJECTORIES

1. Generalized ansatz

We will consider a complex scalar μ which evolves to-
gether with the double state � and aim to write the state ρ

as the statistical average

ρ = E{ρμ,�} ≡ E{μ |ψ1〉〈ψ2|}. (C1)

The scalar and the double state follow the following coupled
stochastic differential equations:

d|ψ1〉 =
[
−iH + 1

2
f1 − 1

2

∑
α

γαL†
αLα

]
|ψ1〉 dt

+
∑

α

[
gα

1 Lα|ψ1〉 − |ψ1〉
]

dNα,

d|ψ2〉 =
[
−iH† + 1

2
f ∗
2 − 1

2

∑
α

γ ∗
α L†

αLα

]
|ψ2〉 dt

+
∑

α

[
gα∗

2 Lα|ψ2〉 − |ψ2〉
]

dNα and

dμ = fμ μ dt +
∑

α

[
gα

μ − 1
]
μ dNα. (C2)
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Again, dNα are differentials of independent Poisson processes
with conditional expectation values

E{dNα|μ,�} = rα dt . (C3)

Like the rates rα > 0, the newly introduced degrees of
freedom fi and gα

i are a priori undetermined functions of μ

and �. To make ρ satisfy the master equation (46), they must
satisfy the following relations:

fμ + f1 + f2

2
=
∑

α

rα and rα gα
μgα

1gα
2 = γα. (C4)

The functions gα
i have the effect of rescaling the quantities

|ψ1〉, |ψ2〉 and μ after a jump in the corresponding dissipa-
tive channel such that their product ρμ,� remains the same.
Similarly, the functions f α

i redistribute weight between these
quantities during the continuous part of their evolution.

For a given realization of the random variables dNα , the
resulting state ρμ,� here will thus be identical to the state ρ�

in the main text. Hence, the generalization considered here
does not remove the issue of exponential growth found there.
We can however try applying various choices of the new de-
grees of freedom in order to minimize the impact of this issue,
or simply to make the scheme easier to implement numeri-
cally. In the following sections, we will explore some of these
choices. We will frequently use the notation ρ� ≡ |ψ1〉〈ψ2|,
〈•〉� ≡ 〈ψ2| • |ψ1〉, ‖ψi‖2 ≡ 〈ψi|ψi〉 and 〈•〉i ≡ 〈ψi| • |ψi〉
for i = 1, 2.

2. Constant scalar

We first take a step back and consider the scheme without
the scalar, setting fμ = 0 and gα

μ = 1. We thus consider the
evolution of a double state ρ� ≡ |ψ1〉〈ψ2| as in the main text,
but with additional degrees of freedom fi and gα

i . Following
Eq. (C4), they must satisfy

f1 + f2

2
=
∑

α

rα and rαgα
1gα

2 = γα. (C5)

The unraveling shown in the main text is the special case
where f1 = f2 =∑α rα and gα

1 = gα
2 = (γα/rα )1/2.

In the main text, we focused on minimizing the fluctu-
ations of trρ� . We therefore chose the rates rα such that
E{d (|trρ� |2)|�} is minimal. Since ρ� does not depend on the
choice of fi and gα

i , the rates that achieve this goal are still

r∗
α =

∣∣∣∣γα 〈L†
αLα〉�

trρ�

∣∣∣∣, (C6)

as in Eq. (56), independent of fi and gα
i .

Alternatively, one could try to minimize, for example, the
product of the individual norms. Computing

E{d (‖ψ1‖2‖ψ2‖2)|�}

=
∑

α

[
rα ‖ψ1‖2‖ψ2‖2 + |γα|2

rα

〈L†
αLα〉1〈L†

αLα〉2

]
dt

+ [terms not depending on rα , fi or gα
i

]
, (C7)

we find that this goal is achieved by the rates

ralt
α = |γα|

√
〈L†

αLα〉1

‖ψ1‖2

〈L†
αLα〉2

‖ψ2‖2
, (C8)

again independent of fi and gα
i .

Whether we choose the rates according to Eq. (C6), (C8),
or otherwise, we are still free to choose fi and gα

i . One possible
approach would be to demand ‖ψ1‖ = ‖ψ2‖ on each trajec-
tory at all times. To this end, we would choose

fi =
∑

α

[
rα ∓ Re(γα )

〈L†
αLα〉1 − 〈L†

αLα〉2

‖ψ1‖2 + ‖ψ2‖2

]

∓ i
〈H − H†〉1 + 〈H − H†〉2

‖ψ1‖2 + ‖ψ2‖2
and

gα
1(2) =

√
γα

rα

( 〈L†
αLα〉2(1)

〈L†
αLα〉1(2)

)1/2

. (C9)

Let us also briefly consider the expected change of
the individual norms, δi(�) ≡ E{d‖ψi‖2|�}. Whether these
quantities can be both set to zero using fi and gα

i depends
on � and on the anti-Hermitian part of the Hamiltonian,
HI ≡ 1

2i (H − H†). A detailed analysis shows that δ1(�) =
δ2(�) = 0 is possible if and only if the inequality

〈HI〉1

‖ψ1‖2
− 〈HI〉2

‖ψ2‖2
� −

∑
α

|γα|
√

〈L†
αLα〉1

‖ψ1‖2

〈L†
αLα〉2

‖ψ2‖2
(C10)

is satisfied. Due to this complication, we will not explore this
avenue further. The sum δ1(�) + δ2(�) relates to the change
of the squared norm ‖�‖2 = ‖ψ1‖2 + ‖ψ2‖2 of the double
state. It can always be set to zero, or indeed to any other value,
and is therefore less helpful in guiding us towards practical
choices of the rates. However, we will consider an unraveling
with δ1(�) + δ2(�) = 0 in Appendix C 4.

3. Martingale scalar

The additional complex scalar introduced in Eq. (C2) can
be used to absorb the changes of trρ� , i.e., keep trρ� = 1
throughout every trajectory, if we set

fμ =
∑

α

(rα − γα〈L†
αLα〉� ) and

gα
μ = γα

rα

〈L†
αLα〉�. (C11)

Then, the equation of motion for the scalar becomes

dμ = μ
∑

α

(
1 − γα

rα

〈L†
αLα〉�

)
(rα dt − dNα ). (C12)

We immediately see that the scalar now satisfies the martin-
gale property

E{dμ|μ,�} = 0, (C13)
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which corresponds to the original master equation being trace-
preserving. The fluctuations of this martingale are related to
the fluctuations of trρ� for constant μ,

E{d|μ|2|μ,�} =
∑

α

|μ|2
rα

∣∣∣∣rα − μγα 〈L†
αLα〉�

μ

∣∣∣∣
2

dt,

(C14)

which can be compared to Eq. (54).
In the case where H is Hermitian and γα real (but possibly

negative), we can choose f1 = f2 and gα
1 = gα

2 to make the
states |ψ1〉 and |ψ2〉 identical. In this case, the stochastic
differential equation (C2) reduces to the unraveling proposed
in Ref. [117] where μ was called the influence martingale.
Note that our and their definition of the rates rα differ by the
factor 〈L†

αLα〉� .
If H is non-Hermitian or γα complex, |ψ1〉 and |ψ2〉 gener-

ally cannot be identical. However, we can again keep ‖ψ1‖ =
‖ψ2‖ with the choices

fi =
∑

α

[
γα〈L†

αLα〉� ∓ Re(γα )
〈L†

αLα〉1 − 〈L†
αLα〉2

‖ψ1‖2 + ‖ψ2‖2

]

∓ i
〈H − H†〉1 + 〈H − H†〉2

‖ψ1‖2 + ‖ψ2‖2
and

gα
1(2) =

√
1

〈L†
αLα〉�

( 〈L†
αLα〉2(1)

〈L†
αLα〉1(2)

)1/2

. (C15)

We finally remark that μ being a martingale is due to
Eq. (C11) and not true in general. For example, one could
determine fi and gα

i from the condition d‖ψ1‖2 = d‖ψ2‖2 =
0. In that case, it is easy to check that E{dμ|μ,�} �= 0 in
general.

4. CPTP evolution on the double space

In this section, we will show that it is possible to gen-
erate an unraveling for the pseudo-Lindblad equation (46)
as follows. First, one generates trajectories for an associated
Lindblad equation on the double space. Second, one computes
a complex scalar value μ for each trajectory. The ensem-
ble average of ρμ,� ≡ μ |ψ1〉〈ψ2| (where � ≡ (|ψ1〉, |ψ2〉) is
the double state) then satisfies the pseudo-Lindblad equation.
Since the associated Lindblad equation is completely positive
and trace preserving, and since the trajectories do not depend
on μ, the first step can be done using any existing quantum
Monte Carlo tool such as QuTiP’s mcsolve [127,128]. This
procedure is more convenient than implementing the stochas-
tic process manually, but it requires a specific choice of rα that
might be worse for convergence.

The following is an extension of the technique introduced
in Ref. [118] (which QuTiP’s nm_mcsolve function is based
on), see also Ref. [112]. For notational convenience, we will
assume that the dissipation channels are labeled by an inte-
ger α ∈ {1, . . . , n}. We call the Hermitian and anti-Hermitian
parts of the Hamiltonian HR ≡ 1

2 (H + H†) and HI ≡ 1
2i (H −

H†), respectively, and the real and imaginary parts of γα are

γRα and γIα . Define

L̂α ≡
(

Lα 0
0 Lα

)
(1 � α � n) and

Ĥ ≡
(

HR +∑n
α=1

γIα

2 L†
αLα 0

0 HR −∑n
α=1

γIα

2 L†
αLα

)
.

(C16)

Hats denote operators on the double Hilbert space.
We can now construct the associated Lindblad equation.

It will have (n + 1) dissipation channels with corresponding
rates �α > 0 (0 � α � n) that can be chosen freely. To deter-
mine the extra Lindblad operator L̂0, consider the Hermitian
operator

X̂ ≡
n∑

α=1

(�α − γRα )L̂†
αL̂α + 2

(
HI 0
0 −HI

)
. (C17)

Assuming that it is bounded, we can find a � ∈ R such that
� − X̂ � 0. We can then find an L̂0 = diag(L(1)

0 , L(2)
0 ) such

that

�0 L̂†
0 L̂0 = � − X̂ . (C18)

The associated, completely positive Lindblad equation for
the double state ρ̂ is

∂t ρ̂ = −i[Ĥ , ρ̂] +
n∑

α=0

�α (L̂αρ̂L̂†
α − {L̂†

αL̂αρ̂}/2). (C19)

The standard unraveling of this master equation into trajecto-
ries with ρ̂ = E{��†} and �†� = 1 is

d� = −iĤ� dt − 1

2

n∑
α=0

(�αL̂†
αL̂α − rα )� dt

+
n∑

α=0

(
√

�α/rα L̂α� − �) dNα, (C20)

where dNα are differentials of independent Poisson processes
with

E{dNα|�} = rCP2
α dt, rCP2

α = �α �†L̂†
αL̂α�. (C21)

This choice of jump rates is necessary to fix �†� = 1 on the
trajectory level.

We rewrite this stochastic differential equation in terms of
its components and use Eq. (C18) to obtain

d|ψ1〉 =
[
−iH − �

2
−

n∑
α=0

rα

2
− 1

2

n∑
α=1

γαL†
αLα

]
|ψ1〉 dt

+
n∑

α=1

[
√

(�α/rα ) Lα|ψ1〉 − |ψ1〉] dNα

+ [√(�0/r0) L(1)
0 |ψ1〉 − |ψ1〉

]
dN0 and

d|ψ2〉 =
[
−iH† − �

2
−

n∑
α=0

rα

2
− 1

2

n∑
α=1

γ ∗
α L†

αLα

]
|ψ2〉 dt

+
n∑

α=1

[
√

(�α/rα ) Lα|ψ2〉 − |ψ2〉] dNα

+ [√(�0/r0) L(2)
0 |ψ2〉 − |ψ2〉

]
dN0. (C22)
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FIG. 6. Comparisons of different unravelings for Example 1. The
convergence fraction, shown on the y axis, is the fraction of the total
time interval t ∈ [0, 75] on which the Monte Carlo estimate of 〈Hs〉
differs from the exact result by at most δ. To produce the plot, we
generated a total of Ntraj ≈ 500k trajectories for each unraveling.
Given a number N on the x axis, we grouped these trajectories into
floor(Ntraj/N ) bunches of N trajectories and calculated the conver-
gence fraction for each bunch. The data shown here are the average
over all bunches. The inset gives more details for the unraveling from
Appendix C 4. It is an analog of the upper panel of Fig. 2, using this
alternative unraveling and the much shorter time interval t ∈ [0, 3].
The blue, green, and red curves are averages of 1k, 10k, and 500k
trajectories, respectively.

Aside from the dN0 terms, this equation has the same shape
as Eq. (C2). In analogy to there, we can make ρ = E{ρμ,�}
satisfy the pseudo-Lindblad equation by introducing a scalar
μ with

dμ = �μ dt +
n∑

α=1

[
γα

�α

− 1

]
μ dNα − μ dN0. (C23)

Equation (C19) can be simulated without knowledge of μ and
the value of μ determined afterwards. Given a trajectory with
jump counts Nα in the respective dissipation channels, the
value is μ = 0 if N0 � 1 and

μ = e�t
n∏

α=1

(
γα

�α

)Nα

(C24)

otherwise.

5. Comparison of unravelings

In Fig. 6, we compare some of the unravelings introduced
so far. Specifically, we consider the unraveling (47) with the
rates r∗

α defined in (56) and used in the main text, with the rates
rBKP
α defined in (52) and with the alternative rates ralt

α defined
in (C8), as well as the unraveling discussed in Appendix C 4
(with the choice �α = |γα|). We find that the rates r∗

α and
ralt
α perform similarly well, and outperform the rates rBKP

α of
Ref. [111]. The fact that r∗

α is beaten by ralt
α at large numbers of

trajectories might be an artifact of insufficient sample size. All
curves appear to grow approximately logarithmically with the
number of trajectories, confirming the exponentially growing
instability discussed in Sec. III D.

The unraveling introduced in Appendix C 4 performs very
badly in this example. It shows no convergence for t � 2
even when averaging over 500k trajectories. This result can be
understood by considering the growth of the scalar component
following Eq. (C24). Since its typical size is μ ∼ e�t , we
expect the number of remaining trajectories with nonzero μ

to scale with e−�t . For our example 1, we find � ≈ 3.902.
With N = 500k initial trajectories, the expected number of re-
maining trajectories becomes less than one at t = ln(N )/� ≈
3.363.

APPENDIX D: INVERSION SAMPLING
OF WAITING TIMES

Consider a random variable X undergoing a general piece-
wise deterministic jump process of the form

dX = Lt X dt +
∑

α

(JαX − X ) dNα. (D1)

Here, dNα are increments of independent Poisson processes
with E{dNα|X } = rα[X ] dt and we assume that the jump
channels are labeled by α ∈ {1, . . . , n}. The functions Lt and
Jα are not required to be linear. In this section, we discuss
how to algorithmically generate trajectories according to this
stochastic differential equation. We consider trajectories on
the time interval t0 � t � tf with the initial condition X (t =
t0) = X0.

The equation immediately invites the following algorith-
mic interpretation.

ALGORITHM 1. Naive implementation.

Initialize t ← t0, X ← X0.
while t < tf do

Generate a random integer a (0 � a � n)
according to the probabilities pa = ra[X ] dt
for a � 1 and p0 = 1 −∑α rα[X ] dt .

if a = 0 then
Update t ← t + dt and X ← X + Lt X dt .

else
Update t ← t + dt and X ← JaX .

In practice, the time step dt must be chosen finite and
small enough. We imagine an idealized algorithm where dt
is infinitesimal (dt2 = 0).

A jump record R is the combined information about the
number N � 0 of jumps on a trajectory, the jump channels
αk for 1 � k � N and the corresponding jump times tk (with
tk+1 > tk). If the algorithm above generates a certain jump
record R, the corresponding jump trajectory is

XR(t ) = U (t, tK ) ◦ Jαk ◦ · · · ◦ Jα1 ◦ U (t1, t0)X0. (D2)

Here, K is the largest index with tK < t , ◦ denotes function
composition and U the solution of the deterministic evolution.
That is, U (t, tk )X is the solution of the initial value problem
∂tU (t, tk )X = Lt ◦ U (t, tk )X and U (tk, tk )X = X . We read off
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the probability of the jump record from the algorithm:

P[R] d�t = exp

[
−
∫ tf

t0

∑
α

rα[XR(τ )] dτ

]

×
N∏

k=1

rαk [XR(tk )] dtk, (D3)

where we used that 1 −∑α rα[X ] dt = e−∑α rα [X ] dt and set
d�t ≡ dt1 · · · dtN .

With this algorithm, the deterministic part of the evolution
can only be integrated a small step dt at a time even if jumps
are rare. To find a more efficient approach, consider the state
after the kth jump, Xk ≡ Jαk XR(tk ). The a priori probability of
finding no other jump until the time t is given by

P(k)
0 (t ) ≡ e− ∫ t

tk

∑
α rα [U (τ,tk )Xk ] dτ (D4)

and the a priori distribution of waiting times until the next
jump is W (k)(t ) = −∂t P

(k)
0 (t ). The time of the next jump can

be determined directly by applying inversion sampling of the
distribution W (k). With this approach, tk+1 is determined by
the condition P(k)

0 (tk+1) = λ, where λ ∈ [0, 1] is chosen uni-
formly. We thus arrive at the algorithm below [113]. Further

improvements of this algorithm are discussed in Ref. [137],
but were not included in the simulations performed for this
paper.

ALGORITHM 2. Gillespie.

Initialize tk ← t0, Xk ← X0.
Repeat

Generate λ ∈ [0, 1] uniformly.
Integrate

∂t X = Lt X and ∂t P0 = −P0
∑

α rα[X ]
with the initial conditions

X (tk ) = Xk and P0(tk ) = 1
until one of the these conditions is reached:

if t = tf then
return X .

if P0 = λ then
Generate a random integer α (1 � α � n)
according to the weights rα[X ].

Update tk ← t and Xk ← JαX .

Clearly, both algorithms generate the same trajectories
XR(t ) described in Eq. (D2). The second algorithm generates
a jump record with the probability

P′[R] d�t = Prob
[
λN+1 � P(N )

0 (tf )
] N∏

k=1

Prob
[
Pk−1

0 (tk ) < λk � Pk−1
0 (tk − dtk )

] N∏
k=1

rαk [XR(tk )]∑
β rβ[XR(tk )]

. (D5)

Using the identities Prob[a < λ � b] = b − a and

Pk−1
0 (tk − dtk ) = Pk−1

0 (tk )

⎛
⎝1 +

∑
β

rβ[XR(tk )] dtk

⎞
⎠, (D6)

we find that P′[R] = P[R]. The two algorithms are therefore equivalent.
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